Search results for: Spectral projection
461 Enhancement of m-FISH Images using Spectral Unmixing
Authors: Martin De Biasio, Raimund Leitner, Franz G. Wuertz, Sergey Verzakov, Pierre J. Elbischger
Abstract:
Breast carcinoma is the most common form of cancer in women. Multicolour fluorescent in-situ hybridisation (m-FISH) is a common method for staging breast carcinoma. The interpretation of m-FISH images is complicated due to two effects: (i) Spectral overlap in the emission spectra of fluorochrome marked DNA probes and (ii) tissue autofluorescence. In this paper hyper-spectral images of m-FISH samples are used and spectral unmixing is applied to produce false colour images with higher contrast and better information content than standard RGB images. The spectral unmixing is realised by combinations of: Orthogonal Projection Analysis (OPA), Alterating Least Squares (ALS), Simple-to-use Interactive Self-Modeling Mixture Analysis (SIMPLISMA) and VARIMAX. These are applied on the data to reduce tissue autofluorescence and resolve the spectral overlap in the emission spectra. The results show that spectral unmixing methods reduce the intensity caused by tissue autofluorescence by up to 78% and enhance image contrast by algorithmically reducing the overlap of the emission spectra.Keywords: breast carcinoma, hyperspectral imaging, m-FISH, spectral unmixing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770460 The Projection Methods for Computing the Pseudospectra of Large Scale Matrices
Authors: Zhengsheng Wang, Xiangyong Ji, Yong Du
Abstract:
The projection methods, usually viewed as the methods for computing eigenvalues, can also be used to estimate pseudospectra. This paper proposes a kind of projection methods for computing the pseudospectra of large scale matrices, including orthogonalization projection method and oblique projection method respectively. This possibility may be of practical importance in applications involving large scale highly nonnormal matrices. Numerical algorithms are given and some numerical experiments illustrate the efficiency of the new algorithms.Keywords: Pseudospectra, eigenvalue, projection method, Arnoldi, IOM(q)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323459 The Ratios between the Spectral Norm, the Numerical Radius and the Spectral Radius
Authors: Kui Du
Abstract:
Recently, Uhlig [Numer. Algorithms, 52(3):335-353, 2009] proposed open questions about the ratios between the spectral norm, the numerical radius and the spectral radius of a square matrix. In this note, we provide some observations to answer these questions.
Keywords: Spectral norm, Numerical radius, Spectral radius, Ratios
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824458 Influence of Replacement Used Reference Coordinate System for Georeferencing of the Old Map of Europe
Authors: Jakub Havlicek, Jiri Cajthaml
Abstract:
The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. The map was georeferenced into three types of projection – the equal-area conic (original cartographic projection), cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation.Keywords: Georeferencing, reference coordinate system, transformation, standard deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546457 Bidirectional Discriminant Supervised Locality Preserving Projection for Face Recognition
Abstract:
Dimensionality reduction and feature extraction are of crucial importance for achieving high efficiency in manipulating the high dimensional data. Two-dimensional discriminant locality preserving projection (2D-DLPP) and two-dimensional discriminant supervised LPP (2D-DSLPP) are two effective two-dimensional projection methods for dimensionality reduction and feature extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP preserve the local structure information of the original data and exploit the discriminant information, they usually have good recognition performance. However, 2D-DLPP and 2D-DSLPP only employ single-sided projection, and thus the generated low dimensional data matrices have still many features. In this paper, by combining the discriminant supervised LPP with the bidirectional projection, we propose the bidirectional discriminant supervised LPP (BDSLPP). The left and right projection matrices for BDSLPP can be computed iteratively. Experimental results show that the proposed BDSLPP achieves higher recognition accuracy than 2D-DLPP, 2D-DSLPP, and bidirectional discriminant LPP (BDLPP).Keywords: Face recognition, dimension reduction, locality preserving projection, discriminant information, bidirectional projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688456 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169455 A Simulation Tool for Projection Mapping Based on Mapbox and Unity
Authors: Noriko Hanakawa, Masaki Obana
Abstract:
A simulation tool is proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building three-dimensional models of real cities using Mapbox. The second function is movie projections to some buildings in real cities using Unity. The third is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event held in 2019. The event completed, but it faced a severe problem in the movie projection to the target building. Extra tents were set in front of the target building, and the tents became obstacles to the movie projection. The simulation tool developed herein could reconstruct the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents being obstacles could have been avoided using the tool. Moreover, we confirmed that the simulation tool is useful for planning future projection mapping events to avoid various extra equipment obstacles, such as utility poles, planting trees, and monument towers.
Keywords: avoiding obstacles, projection mapping, projector position, real 3D map
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721454 A New Seed Projection Method for Solving Shifted Systems with Multiple Right-Hand Sides
Abstract:
In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method.
Keywords: shifted systems, multiple right-hand sides, seed projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488453 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix
Authors: Tao Dai, Andy Adler, Behnam Shahrrava
Abstract:
This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.
Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630452 New Approach to Spectral Analysis of High Bit Rate PCM Signals
Authors: J. P. Dubois
Abstract:
Pulse code modulation is a widespread technique in digital communication with significant impact on existing modern and proposed future communication technologies. Its widespread utilization is due to its simplicity and attractive spectral characteristics. In this paper, we present a new approach to the spectral analysis of PCM signals using Riemann-Stieltjes integrals, which is very accurate for high bit rates. This approach can serve as a model for similar spectral analysis of other competing modulation schemes.Keywords: Coding, discrete Fourier, power spectral density, pulse code modulation, Riemann-Stieltjes integrals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590451 The Variable Step-Size Gauss-Seidel Pseudo Affine Projection Algorithm
Authors: F. Albu, C. Paleologu
Abstract:
In this paper, a new pseudo affine projection (AP) algorithm based on Gauss-Seidel (GS) iterations is proposed for acoustic echo cancellation (AEC). It is shown that the algorithm is robust against near-end signal variations (including double-talk).Keywords: pseudo affine projection algorithm, acoustic echo cancellation, double-talk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425450 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint
Authors: Young-Seok Choi
Abstract:
We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617449 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors
Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad
Abstract:
In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.Keywords: Adaptive filter, affine projection, selective regressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573448 Combination Scheme of Affine Projection Algorithm Filters with Complementary Order
Authors: Young-Seok Choi
Abstract:
This paper proposes a complementary combination scheme of affine projection algorithm (APA) filters with different order of input regressors. A convex combination provides an interesting way to keep the advantage of APA having different order of input regressors. Consequently, a novel APA which has the rapid convergence and the reduced steady-state error is derived. Experimental results show the good properties of the proposed algorithm.
Keywords: Adaptive filter, affine projection algorithm, convex combination, input order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663447 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations
Authors: Yiqin Lin, Liang Bao, Yimin Wei
Abstract:
In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.
Keywords: Arnoldi process, Krylov subspace, Iterative method, Sylvester equation, Dissipative matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994446 Affine Projection Algorithm with Variable Data-Reuse Factor
Authors: ChangWoo Lee, Young Kow Lee, Sung Jun Ban, SungHoo Choi, Sang Woo Kim
Abstract:
This paper suggests a new Affine Projection (AP) algorithm with variable data-reuse factor using the condition number as a decision factor. To reduce computational burden, we adopt a recently reported technique which estimates the condition number of an input data matrix. Several simulations show that the new algorithm has better performance than that of the conventional AP algorithm.
Keywords: Affine projection algorithm, variable data-reuse factor, condition number, convergence rate, misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544445 Enhanced Spectral Envelope Coding Based On NLMS for G.729.1
Authors: Keunseok Cho, Sangbae Jeong, Hyungwook Chang, Minsoo Hahn
Abstract:
In this paper, a new encoding algorithm of spectral envelope based on NLMS in G.729.1 for VoIP is proposed. In the TDAC part of G.729.1, the spectral envelope and MDCT coefficients extracted in the weighted CELP coding error (lower-band) and the higher-band input signal are encoded. In order to reduce allocation bits for spectral envelope coding, a new quantization algorithm based on NLMS is proposed. Also, reduced bits are used to enhance sound quality. The performance of the proposed algorithm is evaluated by sound quality and bit reduction rates in clean and frame loss conditions.
Keywords: G.729.1, MDCT coefficient, NLMS, spectral envelope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666444 Affine Projection Adaptive Filter with Variable Regularization
Authors: Young-Seok Choi
Abstract:
We propose two affine projection algorithms (APA) with variable regularization parameter. The proposed algorithms dynamically update the regularization parameter that is fixed in the conventional regularized APA (R-APA) using a gradient descent based approach. By introducing the normalized gradient, the proposed algorithms give birth to an efficient and a robust update scheme for the regularization parameter. Through experiments we demonstrate that the proposed algorithms outperform conventional R-APA in terms of the convergence rate and the misadjustment error.Keywords: Affine projection, regularization, gradient descent, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609443 3-D Reconstruction of Objects Using Digital Fringe Projection: Survey and Experimental Study
Authors: R. Talebi, A. Abdel-Dayem, J. Johnson
Abstract:
Three-dimensional reconstruction of small objects has been one of the most challenging problems over the last decade. Computer graphics researchers and photography professionals have been working on improving 3D reconstruction algorithms to fit the high demands of various real life applications. Medical sciences, animation industry, virtual reality, pattern recognition, tourism industry, and reverse engineering are common fields where 3D reconstruction of objects plays a vital role. Both lack of accuracy and high computational cost are the major challenges facing successful 3D reconstruction. Fringe projection has emerged as a promising 3D reconstruction direction that combines low computational cost to both high precision and high resolution. It employs digital projection, structured light systems and phase analysis on fringed pictures. Research studies have shown that the system has acceptable performance, and moreover it is insensitive to ambient light. This paper presents an overview of fringe projection approaches. It also presents an experimental study and implementation of a simple fringe projection system. We tested our system using two objects with different materials and levels of details. Experimental results have shown that, while our system is simple, it produces acceptable results.Keywords: Digital fringe projection, 3D reconstruction, phase unwrapping, phase shifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5219442 Sparsity-Aware Affine Projection Algorithm for System Identification
Authors: Young-Seok Choi
Abstract:
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554441 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.
Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809440 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.
Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323439 A Straightforward Approach for Determining the Weights of Decision Makers Based on Angle Cosine and Projection Method
Authors: Qiang Yang, Ping-An Du
Abstract:
Group decision making with multiple attribute has attracted intensive concern in the decision analysis area. This paper assumes that the contributions of all the decision makers (DMs) are not equal to the decision process based on different knowledge and experience in group setting. The aim of this paper is to develop a novel approach to determine weights of DMs in the group decision making problems. In this paper, the weights of DMs are determined in the group decision environment via angle cosine and projection method. First of all, the average decision of all individual decisions is defined as the ideal decision. After that, we define the weight of each decision maker (DM) by aggregating the angle cosine and projection between individual decision and ideal decision with associated direction indicator μ. By using the weights of DMs, all individual decisions are aggregated into a collective decision. Further, the preference order of alternatives is ranked in accordance with the overall row value of collective decision. Finally, an example in a chemical company is provided to illustrate the developed approach.Keywords: Angel cosine, ideal decision, projection method, weights of decision makers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857438 Steganalysis of Data Hiding via Halftoning and Coordinate Projection
Authors: Woong Hee Kim, Ilhwan Park
Abstract:
Steganography is the art of hiding and transmitting data through apparently innocuous carriers in an effort to conceal the existence of the data. A lot of steganography algorithms have been proposed recently. Many of them use the digital image data as a carrier. In data hiding scheme of halftoning and coordinate projection, still image data is used as a carrier, and the data of carrier image are modified for data embedding. In this paper, we present three features for analysis of data hiding via halftoning and coordinate projection. Also, we present a classifier using the proposed three features.Keywords: Steganography, steganalysis, digital halftoning, data hiding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599437 Surface Topography Measurement by Confocal Spectral Interferometry
Authors: A. Manallah, C. Meier
Abstract:
Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.
Keywords: Confocal spectral interferometry, Nondestructive testing, Optical metrology, Surface topography, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972436 Some New Upper Bounds for the Spectral Radius of Iterative Matrices
Authors: Guangbin Wang, Xue Li, Fuping Tan
Abstract:
In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones.Keywords: doubly α diagonally dominant matrix, eigenvalue, iterative matrix, spectral radius, upper bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338435 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis
Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht
Abstract:
With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680434 Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet
Authors: Talbi Mourad, Salhi Lotfi, Chérif Adnen
Abstract:
In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.
Keywords: Enhancement, spectral subtraction, SNR, discrete wavelet packet transform, spectral entropy Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990433 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simple spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various widths we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application.Keywords: Anomaly detection, spectroscopic line imaging, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645432 New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images
Authors: Mario Mastriani
Abstract:
This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.
Keywords: Projection, speckle, superresolution, synthetic aperture radar, thresholding, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616