
 

 

 
Abstract—Pulse code modulation is a widespread technique 

in digital communication with significant impact on existing 
modern and proposed future communication technologies. Its 
widespread utilization is due to its simplicity and attractive 
spectral characteristics. In this paper, we present a new 
approach to the spectral analysis of PCM signals using 
Riemann-Stieltjes integrals, which is very accurate for high bit 
rates. This approach can serve as a model for similar spectral 
analysis of other competing modulation schemes. 
 

Keywords—Coding, discrete Fourier, power spectral density, 
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I. INTRODUCTION 
 ULSE code modulation (PCM) has undoubtedly 
revolutionalised digital communication. In retrospect, 

PCM appears to be simple, trivial, and as old as telephony 
itself. Historically, PCM was invented by the British engineer 
Alec Reeves while working for the ITT (International 
Telephone and Telegraph) in France in 1937. Ever since that 
time, never has a modulation technique been as ubiquitous as 
PCM. Nowadays, PCM is employed by advanced digital 
technologies such as GSM, GPRS, and Ethernet. 

While PCM is basically a baseband modulation technique, 
it serves as a model for the phase diagram of passband 
modulation schemes such as the equally popular binary phase 
shift keying (BPSK).  

PCM has traditionally found widespread applications in 
digital telephony, combining signal processing with coding. 
The conventional standard audio signal for a single voice path 
is sampled at a rate of 8 KHz (the Nyquist rate), each sample 
is coded with 8 bits, yielding 64 Kbits/s digital signal known 
as DS0. DS0 serves as a building block for an even more 
popular standard G.711. In such a system, the encoding on a 
DS0 is a logarithmic compression law, known as μ -law in 
North American and Japan and A-law in Europe and the rest 
of the world [1]. Fig. 1 illustrates sampling and quantization 
of a 4-bit (or 24 levels) PCM signal. 

As research in compression techniques advanced, further 
compression was possible and additional standards were 
published. We note here the powerful ADPCM scheme, which 
is widely used in VoIP (voice over IP) communication. 
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Fig. 1 A 4-bit PCM signal 

 
Encoding the PCM bitstream as a signal (ready for 

transmission through a channel) can be done using a variety of 
line codes. Most notably are the following formats: BNRZ 
(bipolar non-return to zero), UNRZ (unipolar non-return-to-
zero), BRZ (bipolar return-to-zero), URZ (unipolar return-to-
zero), AMI (alternate mark inversion), Manchester (or bi-
phase). The latter is used in Ethernet local area computer 
networks (LAN). 

The choice of a given PCM line code or format depends on 
a number of factors: (1) power efficiency; (2) bandwidth 
efficiency; (3) synchronization; (4) error detection 
capabilities; (5) ability of carrier recovery.  

Key to determining most of these characteristics, is an 
accurate spectral analysis of the PCM signal. This paper 
presents a new approach to the spectral analysis of PCM 
signals using Riemann-Stieltjes integrals, which is very 
accurate for high bit rates.  

II. BACKGROUND ON RIEMANN-STIELTJES INTEGRALS 

A. Definition 
The Riemann-Stieltjes integral, developed by Bernhard 

Riemann and Thomas Joannes Stieltjes, is a generalization of 
the Riemann integral.  

The Riemann-Stieltjes integral of a real-valued function ψ  
(termed the integrand) of a real variable with respect to a real 
function Φ  (termed the integrator) is denoted by 
  

 ψ ψΦ = Φ∫
1

0

, ( ) ( )
x

x

x d xRS . (1) 
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Strictly speaking, the Riemann-Stieltjes integral is 
mathematically defined to be the limit as the mesh of the 
partition P  of the interval 0 1[ , ]x x  approaches 0, of the 
approximating sum 
  

 ( )ψ ψ ζ +
∈

Φ ≈ Ψ − Ψ∑ 1, ( ) ( ) ( )
i

i i i
x

x x
P

RS , (2) 

 
where ζ +∈ 1[ , ]i i ix x .  

B. Existence 
Perhaps the best simple existence theorem states: If ψ  is 

continuous and Φ  is of bounded variation on the interval 
0 1[ , ]x x , then the integral exists. 
Simply stated, the Riemann-Stieltjes integral of (1) exists if 

the integrand ψ  and the integrator Φ  do not share any points 
of discontinuities.  

C. Properties 
The Riemann integral is defined as 

  

 ψ ψΦ = Φ∫
1

0

', ( ) ( )
x

x

x x dxR . (3) 

 
If Φ  is the Lebesgue integral of its derivative, then the 
Riemann-Stieltjes integral of (1) is equal to the Riemann 
integral of (3). In this case, Φ  is said to be absolutely 
continuous. Below is a few mathematical highlights on some 
of the mentioned concepts. 

Lebesgue integral: The Lebesgue integral is defined using 
Lebesgue measure which is used throughout real analysis. (On 
a historical note, Henri Lesbesgue described his measure in 
1901 and described his integral the next year). 

Absolute continuity: A real function Φ  of a real variable is 
said to be absolutely continuous if ε∀ > 0  (arbitrarily small), 

δ∃ > 0  small enough so that if a sequence of pairwise 

disjoint intervals = L[ , ], 1, 2, ,k ky z k n  satisfies 

( ) δ
=

− <∑
1

n

k k
k

z y , then ε
=

Φ − Φ <∑
1

( ) ( )
n

k k
k

z y . 

The Riemann-Stieltjes integral is not captured by any 
expression involving derivatives of the integrator Φ , that is, 
the Riemann-Stieltjes and Riemann integrals are different if: 
(1) Φ  has jump discontinuities and (2) Φ  has derivative 0 
almost everywhere while still being continuous and 
increasing. The latter condition may arise if Φ  is, for 
example, a Cantor function or a Minkowski’s question mark 
function. In Fig. 2, the Cantor function is depicted as the 
standard example of what is sometimes called a devil’s 
staircase. 

 

 
Fig. 2 The Cantor function as an example of a devil’s staircase 

III. POWER SPECTRAL DENSITY OF PCM 
In this section, we present a new approach to deriving the 

power spectral density (PSD) of PCM signals, which can 
serve as a model for similar spectral analysis of other 
competing modulation schemes. 

Throughout the communication literature [2-6], the 
canonical form of the PSD of PCM is derived using discrete 
Fourier transforms (DFT). The derivation is complicated, 
lengthy, and involves DFT. The drawback of such analysis is 
that if DFT is used as a guide for spectral analysis of other 
modulation schemes, experimental validation of such analysis 
can only be accomplished using fast Fourier transform (FFT) 
chips and ultimately highly expensive digital spectrum 
analyzers (which process signals using FFT at a cost of 
around $25,000). On the other hand, the approach we follow 
only invokes Riemann-Stieltjes integral, which can be easily 
and cost effectively implemented using the sum expression of 
(2) (for example, with summing operational amplifiers).  

Following is a detailed derivation of the PSD of PCM 
signals. A PCM signal is represented by the complex envelope 
  

 ( ) ( )k b
m

p t a t mTφ
∞

=−∞

= −∑ , (4) 

 
where 1

bbT R−=  is the bit period (reciprocal of the incoming 

bit rate Rb), ka  is the random voltage value of the k-th random 
bit, assumed to be wide-sense stationary, and φ(t) is the pulse 
shape modulated by a bit.  

The autocorrelation function (ACF) is a very power tool 
that describes the correlation between random variables 
generated by a random signal at specific time instants 
separated by a deterministic interval of time. Knowledge of 
the ACF results in a thorough understanding of the PSD of the 
random signal. The ACF of the PCM signal is given by 
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[ ]

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ).

m b n b
m n

m n b b
m n

A b b
m n

E p t p t

E a t mT a t nT

E a a t mT t nT

R m n t mT t nT

τ

φ τ φ

φ τ φ

φ τ φ

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞
∞ ∞

=−∞ =−∞

+ =

⎡ ⎤
+ − −⎢ ⎥

⎢ ⎥⎣ ⎦

= + − −

= − + − −

∑ ∑

∑ ∑

∑ ∑

 (5) 

 
Making a change of variable from (m,n) to (k,l) results in 
  

 
k m n m k l
l n n l
= − = +⎫ ⎧

⇒⎬ ⎨= =⎭ ⎩
. (6) 

 
The ACF thus becomes 
  
[ ]
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( ) ( )
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Riemann-Stieltjes integral of ( ) ( ) 
with respect to  

,

1 ( ) lim ( ) ( )
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k
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t
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∞

=−∞
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= + −

= − ⊗
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∑ ∫

∑

1444442444443

( ),φ τ

(7) 

 
where ⊗  is the time correlation operator. 

Since the PSD is the Fourier transform of the ACF, we have 
  

 
2

2( )
( ) ( ) bj kfT

P A
b k

f
S f R k e

T
πφ ∞

−

=−∞

= ∑ , (8) 

 
where the autocorrelation of the data  

 ( )( )A n n k ii
i

R k a a p+=∑ , (9) 

 

with n n ka a +  being the levels of the n-th and the (n + k)-th symbol 
position and ip  being the probability of having the i-th ( )n n ka a +  
product. Fig. 3 illustrates the power spectral density of some PCM 
line codes. 
 

 
Fig. 3 Power spectral density of different PCM line codes 
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