Search results for: Animal imagery
233 Relationship between Level of Physical Activity and Exercise Imagery among Klang Valley Citizens
Authors: Kok, M.O., Omar-Fauzee, M.S., Rosli, M.H.
Abstract:
This study investigated the relationship between exercise imagery use and level of physical activity within a wide range of exercisers in Klang valley, Malaysia. One hundred and twenty four respondents (Mage = 28.92, SD = 9.34) completed two sets of questionnaires (Exercise Imagery Inventory and Leisure-Time Exercise Questionnaire) that measure the use of imagery and exercise frequency of participants. From the result obtained, exercise imagery is found to be significantly correlated to level of physical activity. Besides that, variables such as gender, age and ethnicity that may affect the use of imagery and exercise frequency were also being assessed in this study. Among all variables, only ethnicity showed significant difference in level of physical activity (p < 0.05). Findings in this study suggest that further investigation should be done on other variables such as socioeconomic, educational level, and selfefficacy that may affect the imagery use and frequency of physical activity among exercisers.Keywords: Physical activity, exercise imagery, ExerciseImagery Inventory, Leisure-Time Exercise Questionnaire
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445232 An EEG Case Study of Arithmetical Reasoning by Four Individuals Varying in Imagery and Mathematical Ability: Implications for Mathematics Education
Authors: Mark Rousell, Di Catherwood, Graham Edgar
Abstract:
The main issue of interest here is whether individuals who differ in arithmetical reasoning ability and levels of imagery ability display different brain activity during the conduct of mental arithmetical reasoning tasks. This was a case study of four participants who represented four extreme combinations of Maths –Imagery abilities: ie., low-low, high-high, high-low, low-high respectively. As the Ps performed a series of 60 arithmetical reasoning tasks, 128-channel EEG recordings were taken and the pre-response interval subsequently analysed using EGI GeosourceTM software. The P who was high in both imagery and maths ability showed peak activity prior to response in BA7 (superior parietal cortex) but other Ps did not show peak activity in this region. The results are considered in terms of the diverse routes that may be employed by individuals during the conduct of arithmetical reasoning tasks and the possible implications of this for mathematics education.Keywords: Arithmetic, imagery, EEG, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079231 On Musical Information Geometry with Applications to Sonified Image Analysis
Authors: Shannon Steinmetz, Ellen Gethner
Abstract:
In this paper a theoretical foundation is developed to segment, analyze and associate patterns within audio. We explore this on imagery via sonified audio applied to our segmentation framework. The approach involves a geodesic estimator within the statistical manifold, parameterized by musical centricity. We demonstrate viability by processing a database of random imagery to produce statistically significant clusters of similar imagery content.
Keywords: Sonification, musical information geometry, image content extraction, automated quantification, audio segmentation, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426230 Curvelet Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.
Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620229 Motor Imagery Based Brain-Computer Interface for Cerebellar Impaired Patients
Authors: Young-Seok Choi
Abstract:
Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a “backdoor” to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.Keywords: Cerebellar ataxia, Electroencephalogram, brain-computer interface, motor imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750228 The Image as an Initial Element of the Cognitive Understanding of Words
Authors: S. Pesina, T. Solonchak
Abstract:
An analysis of word semantics focusing on the invariance of advanced imagery in several pressing problems. Interest in the language of imagery is caused by the introduction, in the linguistics sphere, of a new paradigm, the center of which is the personality of the speaker (the subject of the language). Particularly noteworthy is the question of the place of the image when discussing the lexical, phraseological values and the relationship of imagery and metaphors. In part, the formation of a metaphor, as an interaction between two intellective entities, occurs at a cognitive level, and it is the category of the image, having cognitive roots, which aides in the correct interpretation of the results of this process on the lexical-semantic level.
Keywords: Image, metaphor, concept, creation of a metaphor, cognitive linguistics, erased image, vivid image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961227 Wave Atom Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.
Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492226 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.
Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346225 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456224 EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Authors: Montri Phothisonothai, Masahiro Nakagawa
Abstract:
The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.
Keywords: electroencephalogram (EEG), motor imagery tasks, mental tasks, biomedical signals processing, human-machine interface, fractal analysis, critical exponent method (CEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258223 Two Class Motor Imagery Classification via Wave Atom Sub-Bants
Authors: Nebi Gedik
Abstract:
The goal of motor image brain computer interface research is to create a link between the central nervous system and a computer or device. The most important signal for brain-computer interface is the electroencephalogram. The aim of this research is to explore a set of effective features from EEG signals, separated into frequency bands, using wave atom sub-bands to discriminate right and left-hand motor imagery signals. Over the transform coefficients, feature vectors are constructed for each frequency range and each transform sub-band, and their classification performances are tested. The method is validated using EEG signals from the BCI competition III dataset IIIa and classifiers such as support vector machine and k-nearest neighbors.
Keywords: motor imagery, EEG, Wave atom transform sub-bands, SVM, k-NN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598222 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.
Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3325221 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554220 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery
Authors: Evans Belly, Imdad Rizvi, M. M. Kadam
Abstract:
Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837219 Corpus-Assisted Study of Gender Related Tiger Metaphors in the Chinese Context
Authors: Na Xiao
Abstract:
Animal metaphors have many different connotations, ranging from loving emotions to derogatory epithets, but gender expressions using animal metaphors are often imbalanced. Generally, animal metaphors related to females tend to be negative. Little known about the reasons for the negative expressions of animal female metaphors in Chinese contexts still have not been quantified. The study was based on the conceptual metaphor theory, and it used the Modern Chinese Corpus at the Center for Chinese Linguistics at Peking University (CCL Corpus) as a database, which identified the influencing variables of gender differences in the description of animal metaphors mapping humans in the Chinese context by observing the percentage of "tiger" metaphor. This study has proved that the tiger metaphors associated with humans in the Chinese context tend to be negative. Importantly, this study has also shown that the proportion of tiger metaphorical idioms that are related to women is very high. This finding can be used as crucial information for future studies on other gender-related animal metaphorical idioms and can offer additional insights for understanding trends in other animal metaphors.
Keywords: Chinese, CCL Corpus, gender differences, metaphorical idioms, tigers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266218 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: Data mining, data science, trajectory, animal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918217 Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method
Authors: Nebi Gedik
Abstract:
The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.
Keywords: Motor imagery, EEG, wave atom transform, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589216 Humans as Enrichment: Human-Animal Interactions and the Perceived Benefit to the Cheetah (Acinonyx jubatus), Human and Zoological Establishment
Authors: S. J. Higgs, E. Van Eck, K. Heynis, S. H. Broadberry
Abstract:
Engagement with non-human animals is a rapidly-growing field of study within the animal science and social science sectors, with human-interactions occurring in many forms; interactions, encounters and animal-assisted therapy. To our knowledge, there has been a wide array of research published on domestic and livestock human-animal interactions, however, there appear to be fewer publications relating to zoo animals and the effect these interactions have on the animal, human and establishment. The aim of this study was to identify if there were any perceivable benefits from the human-animal interaction for the cheetah, the human and the establishment. Behaviour data were collected before, during and after the interaction on the behaviour of the cheetah and the human participants to highlight any trends with nine interactions conducted. All 35 participants were asked to fill in a questionnaire prior to the interaction and immediately after to ascertain if their perceptions changed following an interaction with the cheetah. An online questionnaire was also distributed for three months to gain an understanding of the perceptions of human-animal interactions from members of the public, gaining 229 responses. Both questionnaires contained qualitative and quantitative questions to allow for specific definitive answers to be analysed, but also expansion on the participants perceived perception of human-animal interactions. In conclusion, it was found that participants’ perceptions of human-animal interactions saw a positive change, with 64% of participants altering their opinion and viewing the interaction as beneficial for the cheetah (reduction in stress assumed behaviours) following participation in a 15-minute interaction. However, it was noted that many participants felt the interaction lacked educational values and therefore this is an area in which zoological establishments can work to further improve upon. The results highlighted many positive benefits for the human, animal and establishment, however, the study does indicate further areas for research in order to promote positive perceptions of human-animal interactions and to further increase the welfare of the animal during these interactions, with recommendations to create and regulate legislation.
Keywords: Acinonyx jubatus, encounters, human-animal interactions, perceptions, zoological establishments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631215 High Performance Liquid Chromatographic Method for Determination of Colistin Sulfate and its Application in Medicated Premixand Animal Feed
Authors: S.Choosakoonkriang, S. Supaluknari, P. Puangkaew
Abstract:
The aim of the present study was to develop and validate an inexpensive and simple high performance liquid chromatographic (HPLC) method for the determination of colistin sulfate. Separation of colistin sulfate was achieved on a ZORBAX Eclipse XDB-C18 column using UV detection at λ=215 nm. The mobile phase was 30 mM sulfate buffer (pH 2.5):acetonitrile(76:24). An excellent linearity (r2=0.998) was found in the concentration range of 25 - 400 μg/mL. Intra- day and inter-day precisions of method (%RSD, n=3) were less than 7.9%.The developed and validated method was applied to determination of the content of colistin sulfate in medicated premix and animal feed sample.The recovery of colistin from animal feed was satisfactorily ranged from 90.92 to 93.77%. The results demonstrated that the HPLC method developed in this work is appropriate for direct determination of colistin sulfate in commercial medicated premixes and animal feed.Keywords: Colistin sulfate, HPLC, medicated premix, animal feed
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8165214 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170213 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation
Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid
Abstract:
This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.
Keywords: Tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736212 Effect of Natural Animal Fillers on Polymer Rheology Behaviour
Authors: M. Seidl, J. Bobek, P. Lenfeld, L. Běhálek, A. Ausperger
Abstract:
This paper deals with the evaluation of flow properties of polymeric matrix with natural animal fillers. Technical university of Liberec cooperates on the long-term development of “green materials“ that should replace conventionally used materials (especially in automotive industry). Natural fibres (of animal and plant origin) from all over the world are collected and adapted (drying, cutting etc.) for extrusion processing. Inside the extruder these natural additives are blended with polymeric (synthetic and biodegradable - PLA) matrix and created compound is subsequently cut for pellets in the wet way. These green materials with unique recipes are then studied and their mechanical, physical and processing properties are determined. The main goal of this research is to develop new ecological materials very similar to unfilled polymers. In this article the rheological behaviour of chosen natural animal fibres is introduced considering their shape and surface that were observed with use of SEM microscopy.Keywords: Polypropylene matrix, Green polymers, Rheology, Natural animal fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193211 Road Extraction Using Stationary Wavelet Transform
Authors: Somkait Udomhunsakul
Abstract:
In this paper, a novel road extraction method using Stationary Wavelet Transform is proposed. To detect road features from color aerial satellite imagery, Mexican hat Wavelet filters are used by applying the Stationary Wavelet Transform in a multiresolution, multi-scale, sense and forming the products of Wavelet coefficients at a different scales to locate and identify road features at a few scales. In addition, the shifting of road features locations is considered through multiple scales for robust road extraction in the asymmetry road feature profiles. From the experimental results, the proposed method leads to a useful technique to form the basis of road feature extraction. Also, the method is general and can be applied to other features in imagery.
Keywords: Road extraction, Multiresolution, Stationary Wavelet Transform, Multi-scale analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877210 A Lossless Watermarking Based Authentication System For Medical Images
Authors: Samia Boucherkha, Mohamed Benmohamed
Abstract:
In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.Keywords: Medical Imaging, Invertible Watermarking, Authentication, Integrity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665209 Electroencephalography Based Brain-Computer Interface for Cerebellum Impaired Patients
Authors: Young-Seok Choi
Abstract:
In healthy humans, the cortical brain rhythm shows specific mu (~6-14 Hz) and beta (~18-24 Hz) band patterns in the cases of both real and imaginary motor movements. As cerebellar ataxia is associated with impairment of precise motor movement control as well as motor imagery, ataxia is an ideal model system in which to study the role of the cerebellocortical circuit in rhythm control. We hypothesize that the EEG characteristics of ataxic patients differ from those of controls during the performance of a Brain-Computer Interface (BCI) task. Ataxia and control subjects showed a similar distribution of mu power during cued relaxation. During cued motor imagery, however, the ataxia group showed significant spatial distribution of the response, while the control group showed the expected decrease in mu-band power (localized to the motor cortex).
Keywords: Brain-computer interface, EEG, modulation, ataxia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968208 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures
Authors: M. Bosques-Perez, W. Izquierdo, H. Martin, L. Deng, J. Rodriguez, T. Yan, M. Cabrerizo, A. Barreto, N. Rishe, M. Adjouadi
Abstract:
Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.
Keywords: Big data, image processing, multispectral, principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94207 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876206 Color View Synthesis for Animated Depth Security X-ray Imaging
Authors: O. Abusaeeda, J. P. O Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of color encoded, materials discriminating, X-ray images that exhibit animated depth in a visual display. During the image acquisition process, the requirement for a linear X-ray detector array is replaced by synthetic image. Scale Invariant Feature Transform, SIFT, in combination with material segmented morphing is employed to produce synthetic imagery. A quantitative analysis of the feature matching performance of the SIFT is presented along with a comparative study of the synthetic imagery. We show that the total number of matches produced by SIFT reduces as the angular separation between the generating views increases. This effect is accompanied by an increase in the total number of synthetic pixel errors. The trends observed are obtained from 15 different luggage items. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, view synthesis, KDE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662205 Economic Returns of Using Brewery`s Spent Grain in Animal Feed
Authors: U. Ben-Hamed, H. Seddighi, K. Thomas
Abstract:
UK breweries generate extensive by products in the form of spent grain, slurry and yeast. Much of the spent grain is produced by large breweries and processed in bulk for animal feed. Spent brewery grains contain up to 20% protein dry weight and up to 60% fiber and are useful additions to animal feed. Bulk processing is economic and allows spent grain to be sold so providing an income to the brewery. A proportion of spent grain, however, is produced by small local breweries and is more variably distributed to farms or other users using intermittent collection methods. Such use is much less economic and may incur losses if not carefully assessed for transport costs. This study reports an economic returns of using wet brewery spent grain (WBSG) in animal feed using the Co-product Optimizer Decision Evaluator model (Cattle CODE) developed by the University of Nebraska to predict performance and economic returns when byproducts are fed to finishing cattle. The results indicated that distance from brewery to farm had a significantly greater effect on the economics of use of small brewery spent grain and that alternative uses than cattle feed may be important to develop.Keywords: Animal Feed, Brewery Spent Grains, cattle CODE, Economic returns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7818204 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan
Authors: Jieh-Haur Chen, Pei-Fen Huang
Abstract:
This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682