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Abstract—The goal of motor image brain computer interface 

research is to create a link between the central nervous system and a 
computer or device. The most important signal for brain-computer 
interface is the electroencephalogram. The aim of this research is to 
explore a set of effective features from EEG signals, separated into 
frequency bands, using wave atom sub-bands to discriminate right and 
left-hand motor imagery signals. Over the transform coefficients, 
feature vectors are constructed for each frequency range and each 
transform sub-band, and their classification performances are tested. 
The method is validated using EEG signals from the BCI competition 
III dataset IIIa and classifiers such as support vector machine and k-
nearest neighbors. 
 

Keywords—Motor imagery, EEG, wave atom transform sub-
bands, SVM, k-NN.  

I. INTRODUCTION 
HE goal of motor image (MI) brain computer interface 
(BCI) research is to create a link between the central 

nervous system and a computer or device. The most important 
signal for brain-computer connections is the 
electroencephalogram (EEG). While BCI studies benefit people 
with health problems by providing support and treatment, they 
also benefit healthy people by providing robotic control and 
enjoyment [1]-[4]. 

To efficiently transform recorded EEG signals into device 
commands, MI-based BCI devices require a good feature 
extraction and classification method. Athif et al. [5] offer 
WaveCSP, a machine learning strategy that employs wavelet 
transform and common spatial pattern (CSP) filtering 
algorithms to extract 24 characteristics from EEG signals. 
WaveCSP extracts information from the mu-beta rhythm of 
EEG using wavelet transform and CSP methods. The goal is to 
enhance the number of features to capture intra-band temporal 
and frequency domain class distinction. The performance of left 
versus right hand clenching MI classification is evaluated using 
the recommended EEG approach. To improve the performance 
of the SRC method for MI EEG classification, Miao et al. [6] 
focus on optimizing CSP features in subject-adapted space–
frequency–time patterns and provide a detailed design for a 
more incoherent dictionary proposing spatial-frequency-
temporal optimized feature sparse representation-based 
classification (SFTOFSRC) method. Al-Faiz et al. [7] uses four 
main processing steps to decode two-class motor imagery: 1- 
The raw EEG signal is decomposed into single trials, and spatial 
filters are estimated for each trial using CSP method; 2- features 
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are extracted using the log transformation (normal distribution) 
of the spatially filtered EEG signal; 3- an optimal channel 
selection algorithm is proposed to reduce the number of EEG 
channels; 4- finally, to distinguish between two classes of left 
and right hand MI, a support vector machine (SVM) is used. 
Polynomial function Kernel and radial-based function RBF 
Kernel are two SVM variants that have been proposed. Wang 
et al. [8] proposed a validation section for a deep convolutional 
neural network (CNN) that can categorize MI EEG signals. 
Based on EEG power spectrum data, a 6-layer CNN model is 
built to characterize MI tasks (left-right hand movement). The 
findings are compared to three other classic classification 
systems' results (LDA, SVM and MLP). Li et al. [9] proposes 
an adaptive feature extraction method based on wavelet packet 
decomposition (WPD) and SE-isomap. Through average power 
spectrum analysis, the MI-EEG is preprocessed to select a more 
effective time interval. The subject-based optimum wavelet 
packets (OWPs) with top mean variance difference are then 
obtained autonomously after WPD is applied to the specified 
segment of MI-EEG. The OWP coefficients are also utilized to 
statistically calculate time-frequency features and obtain 
nonlinear manifold structure features, as well as explicit 
nonlinear mapping, via SE-isomap. A k-nearest neighbor (k-
NN) classifier is used to evaluate the hybrid features. Cheng et 
al. [10] offer a feature extraction method that combines 
principal component analysis (PCA) and deep belief networks 
(DBN). Initially, the second-order moment is applied to the 
time-domain of MI-EEG in order to determine the effective 
time interval. Then, PCA is used to examine the chosen time-
domain period and determine the principal component feature 
points. The feature points are then transferred into DBN to 
complete the feature extraction process. Finally, classification 
is carried out using the softmax classifier. The BCI Competition 
II Data set III and BCI Competition IV Data set 2b are used to 
validate the algorithms. 

The current study provides a multi-scale analysis-based 
feature extraction approach for identifying motor imagery EEG 
signals. Raw EEG signals are divided into four frequency 
bands, and each frequency range is subjected to a wave-atom 
transform to separate EEG data into sub-bands. To generate 
feature data, feature vectors are created using transform 
coefficients. SVM and k-NN classifiers, as well as BCI 
Competition III Data set IIIa, are used to validate the 
algorithm's classification of left- and right-hand motor imagery 
EEG data. 
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II. MATERIAL AND METHOD 

A. Dataset 
BCI competition III [11] used the motor imagery EEG data 

in this paper. BCI technology competitions are established to 
ensure that diverse data analysis approaches are assessed and to 
support the development of BCI technology. Various data sets 
are made available to everyone on the internet throughout each 
tournament, and each data set is a record of brain signals 
prepared in experienced and top BCI facilities. The labeled data 
partition, the "training set," and the unlabeled data partition, the 
"test set," make up these records. It comprises data on the right 
hand, left hand, foot, and tongue from three different 
participants. In each class, there are also 60 channels and 60 
trials [12]. EEG signals are recorded using a 64-channel EEG 
amplifier, with the left mastoid serving as the reference and the 
right mastoid serving as the ground. Fig. 1 depicts the channel 
placements. 

 

 
Fig. 1 Channel positions for the data set IIIa of the BCI competition 

III [12] 
 

The experiment is carried out while creating the dataset and 
comprises of numerous runs (at least 6) with 40 trials each. 
The first two seconds of the trial are silent; then, at t=2s, an 

acoustic stimulus indicates the start of the trial and a cross "+" 
is displayed; then, from t=3s, an arrow to the left, right, up, or 
down is displayed for 1s; and, at the same time, the subject is 

asked to imagine a left hand, right hand, tongue, or foot 
movement until the cross disappears at t=7s [12]. Fig. 2 

depicts the procedure. 
 

 
Fig. 2 The paradigm's timeline [12] 

B. Wave Atom Transform 
Demanet and Ying presented the wave atom transform in 

[13], which belongs to the family of directed multi-scale 
transforms. The transform is a parabolic scaling relation 
variation of 2-D wavelet packets, in which the wavelength is 
proportional to the square of the diameter. Wave atoms generate 
an expansion of oscillatory functions or oriented textures that 
are much sparser than any other multi-resolution 

representations, in addition to having superior frequency 
localization, which is a concern for filter banks. 

Among the several available transforms, the wave atom 
transform is defined by two parameters, α and β. Most known 
wave packet topologies may be classified using these 
parameters. The links between various transforms have been 
elucidated using this explanation. These parameters indicate 
whether the decomposition is multi-scale (α = 1) or not (α = 0), 
as well as if it is poorly directional (β = 1) or totally directional 
(β = 0). Fig. 3 depicts the classification of multi-resolution 
transforms according to α and β [13]. 

 

 
Fig. 3 According to (α, β), the structures of several wave packets are 

depicted III [13] 
 

The tensor products of 1D wave packets make up wave 
atoms. Ortho-normal basis functions with the subscript , ,  are used to produce two-dimensional wave atoms , . The wave atom tight frame is created by combining 
the basis function and its Hilbert-transformed version [13]. 

 ,                       (1) 

C. Proposed Method 
The BCI competition III dataset IIIa provided the motor 

imagery EEG dataset used in this investigation. From three 
people, the dataset has four types of motor imagery EEG data. 
Those are right hand (rh), left hand (lh), foot, and tongue. This 
research, on the other hand, focused on the classification of rh 
and lh imagery signals classification among them. So, first, the 
EEG data, which contains the rh and lh motor imagery 
information, is extracted from the data set, and then a new data 
set is constructed utilizing them. This new data set containing 
60 channel signal information, as a further operation for dataset 
preparing, is rebuilt using three channels (C3, C4, and Cz), 
which is also preferred in the literature [14], [15]. The dataset 
consists of the signal from the C3, C4, and Cz electrodes is 
separated into four frequency bands, and the wave atom 
transform is applied to the data in each frequency range to 
decompose the data into five sub-bands. The feature data sets, 
totaling 9 feature sets, are then constructed by computing 
standard deviation (sd), entropy (en), and log-variance (lv) for 
each sub-band in each frequency range separately from the 
transformation coefficients Every feature set is classified using 
SVM and k-NN (k-value starts with 3 and accepts 30 different 
values) algorithms. Fig. 4 shows the flow chart for the 
procedure. 
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Fig. 4 The flow chart of the method expressed in this paper. Where 

sbFx express xth sub-bands feature i.e. sbF1=sb18-13Hz+sb114-

18Hz+sb119-23Hz+sb124-28Hz, frFx express frequency range feature i.e. 
frF1=sb1+sb2+sb3+sb4+sb5 

III. FINDINGS 
After transferring the selected channel signals to the four 

frequency bands and performing the wave atom transform, the 
sd, en, and lv values for each sub-band are calculated separately 
across the transform coefficients. Nine feature sets are 
reproduced and used to feed classifiers one by one. The success 
rates of the sub-bands wise classification are shown in Table I. 
Table II shows the classification findings by frequency range. 

 
TABLE I 

THE CLASSIFICATION RESULTS FOR THE FEATURES FROM EACH SUB-BANDS 

Feature set Subject SVM k-NN k 

sbF1 

Subject 1 55,55 58,89 13 

Subject 2 58,33 56,67 5 

Subject 3 50 56,67 27 

sbF2 

Subject 1 51,11 57,78 13 

Subject 2 63,33 60 39 

Subject 3 55 58,33 3 

sbF3 

Subject 1 64,44 63,33 39 

Subject 2 56,67 55 33 

Subject 3 58,33 58,33 25 

sbF4 

Subject 1 70 56,67 17 

Subject 2 58,33 63,33 37 

Subject 3 68,33 63,33 13 

sbF5 

Subject 1 56,67 60 15 

Subject 2 63,33 63,33 3 

Subject 3 51,67 60 23 

TABLE II 
THE CLASSIFICATION RESULTS FOR THE FEATURES FROM EACH FREQUENCY 

RANGES 

Feature set Subject SVM k-NN k 

frF1 

Subject 1 62,22 64,44 33 

Subject 2 50 58,33 17 

Subject 3 63,33 56,67 35 

frF2 

Subject 1 65,56 65,56 23 

Subject 2 63,33 66,67 41 

Subject 3 60 58,33 33 

frF3 

Subject 1 62,22 58,89 7 

Subject 2 60 58,33 25 

Subject 3 60 58,33 7 

frF5 

Subject 1 65,56 56,67 19 

Subject 2 66,67 63,33 41 

Subject 3 53,33 56,67 39 

 
In terms of overall classification performance, the SVM 

classifier utilizing feature data from subject one and wave atom 
sub-bands 4 (sbF4) has the best classification performance. 
However, in both classifiers, the averages of classification 
results by sub-bands (ie with sbFxs) remain lower than the 
average of classification results by frequency range (ie with 
frFxs). When it comes to the subjects, the sub-band feature set 
sbF4 again provides the best average of classification success 
for the three subjects. 

IV. CONCLUSION 
The success of the sub-bands of the wave atom transform in 

the classification of motor imagery EEG data comprising right- 
and left-hand motor imagery information is studied in this 
work. The signals are decomposed into five sub-bands using the 
wave atom transform after the three-channel EEG data is split 
into four frequency bands. The nine feature data sets are created 
using the coefficients of each sub-band considering frequency 
ranges. As a consequence of the classification processes, the 
best classification performance is obtained from SVM classifier 
with feature data from subject one and wave atom sub-bands 4.  
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