Search results for: web search engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2519

Search results for: web search engine

2429 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.

Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating

Procedia PDF Downloads 496
2428 Metaheuristic to Align Multiple Sequences

Authors: Lamiche Chaabane

Abstract:

In this study, a new method for solving sequence alignment problem is proposed, which is named ITS (Improved Tabu Search). This algorithm is based on the classical Tabu Search (TS). ITS is implemented in order to obtain results of multiple sequence alignment. Several ideas concerning neighbourhood generation, move selection mechanisms and intensification/diversification strategies for our proposed ITS is investigated. ITS have generated high-quality results in terms of measure of scores in comparison with the classical TS and simple iterative search algorithm.

Keywords: multiple sequence alignment, tabu search, improved tabu search, neighbourhood generation, selection mechanisms

Procedia PDF Downloads 269
2427 The Effect of Bearing Surface Finish on the Engine's Lubrication System Performance

Authors: Kudakwashe Diana Nyamugure

Abstract:

Engine design has evolved to suit new industry standards of smaller compact designs that operate at high temperatures and even higher stress loads. Research has proven that the interaction of the bearing surface and the lubrication film is affected by the bearing's surface texture, geometry, and dimensional tolerances. The challenge now for the automotive manufacturing industry is to understand which processes can be applied on bearing surfaces to reduce the 65% energy loss in engines, 15% of which is caused by friction. This paper will discuss a post grinding process known as microfinishing which optimises the characteristics of a manufactured surface such as roughness, profile, and waviness. Microfinishing is becoming an increasing trend within the automotive industry and has so far been applied on high performance and mass production crank or cam bearing surfaces in bid of friction reduction and extended engine service life. In the near future, microfinishing will be applied to more engine components because of the stringent environmental regulations demands on fuel consumption, reliability, power, and service life of engine components.

Keywords: bearings, tribology, friction reduction, energy efficiency

Procedia PDF Downloads 450
2426 Opposed Piston Engine Crankshaft Strength Calculation Using Finite Element Method

Authors: Konrad Pietrykowski, Michał Gęca, Michał Bialy

Abstract:

The paper presents the results of the crankshaft strength simulation. The crankshaft was taken from the opposed piston engine. Calculations were made using finite element method (FEM) in Abaqus software. This program allows to perform strength tests of individual machine parts as well as their assemblies. The crankshaft that was used in the calculations will be used in the two-stroke aviation research aircraft engine. The assumptions for the calculations were obtained from the AVL Boost software, from one-dimensional engine cycle model and from the multibody model using the method developed in the MSC Adams software. The research engine will be equipped with 3 combustion chambers and two crankshafts. In order to shorten the calculation time, only one crankcase analysis was performed. The cut of the shaft has been selected with the greatest forces resulting from the engine operation. Calculations were made for two cases. For maximum piston force when maximum bending load occurs and for the maximum torque. Cast iron material was adopted. For this material, Poisson's number, density, and Young's modulus were determined. The computational grid contained of 1,977,473 Tet elements. This type of elements was chosen because of the complex design of the crankshaft. Results are presented in the form of stress distributions maps and displacements on the surface and inside the geometry of the shaft. The results show the places of tension stresses, however, no stresses are exceeded at any place. The shaft can thus be applied to the engine in its present form. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft diesel engine, crankshaft, finite element method, two-stroke engine

Procedia PDF Downloads 158
2425 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine

Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy

Abstract:

This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.

Keywords: CFD model, combustion, engine, simulation

Procedia PDF Downloads 331
2424 Engine Thrust Estimation by Strain Gauging of Engine Mount Assembly

Authors: Rohit Vashistha, Amit Kumar Gupta, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

Accurate thrust measurement is required for aircraft during takeoff and after ski-jump. In a developmental aircraft, takeoff from ship is extremely critical and thrust produced by the engine should be known to the pilot before takeoff so that if thrust produced is not sufficient then take-off can be aborted and accident can be avoided. After ski-jump, thrust produced by engine is required because the horizontal speed of aircraft is less than the normal takeoff speed. Engine should be able to produce enough thrust to provide nominal horizontal takeoff speed to the airframe within prescribed time limit. The contemporary low bypass gas turbine engines generally have three mounts where the two side mounts transfer the engine thrust to the airframe. The third mount only takes the weight component. It does not take any thrust component. In the present method of thrust estimation, the strain gauging of the two side mounts is carried out. The strain produced at various power settings is used to estimate the thrust produced by the engine. The quarter Wheatstone bridge is used to acquire the strain data. The engine mount assembly is subjected to Universal Test Machine for determination of equivalent elasticity of assembly. This elasticity value is used in the analytical approach for estimation of engine thrust. The estimated thrust is compared with the test bed load cell thrust data. The experimental strain data is also compared with strain data obtained from FEM analysis. Experimental setup: The strain gauge is mounted on the tapered portion of the engine mount sleeve. Two strain gauges are mounted on diametrically opposite locations. Both of the strain gauges on the sleeve were in the horizontal plane. In this way, these strain gauges were not taking any strain due to the weight of the engine (except negligible strain due to material's poison's ratio) or the hoop's stress. Only the third mount strain gauge will show strain when engine is not running i.e. strain due to weight of engine. When engine starts running, all the load will be taken by the side mounts. The strain gauge on the forward side of the sleeve was showing a compressive strain and the strain gauge on the rear side of the sleeve shows a tensile strain. Results and conclusion: the analytical calculation shows that the hoop stresses dominate the bending stress. The estimated thrust by strain gauge shows good accuracy at higher power setting as compared to lower power setting. The accuracy of estimated thrust at max power setting is 99.7% whereas at lower power setting is 78%.

Keywords: engine mounts, finite elements analysis, strain gauge, stress

Procedia PDF Downloads 447
2423 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine

Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.

Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup

Procedia PDF Downloads 222
2422 Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine

Authors: Hanbey Hazar, Hakan Gul, Ugur Ozturk

Abstract:

In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased.

Keywords: boriding, diesel engine, exhaust emission, thermal barrier coating

Procedia PDF Downloads 453
2421 The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablus, Osama Ab. M. Shafah

Abstract:

The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given.

Keywords: fuels, fuel atomization, pattern factor, alternate fuels combustion, efficiency gas turbine combustion, lean blow out, exhaust and liner wall temperature

Procedia PDF Downloads 487
2420 Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

Authors: H. Hazar, S. Sap

Abstract:

In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating the internal and external parts of the exhaust pipe was reduced and its effects on harmful exhaust emissions were investigated. As a result of the experiments; a remarkable improvement was determined in emission values as a result of delay in cooling of exhaust gases due to the coating.

Keywords: chrome carbide, diesel engine, exhaust emission, thermal barrier

Procedia PDF Downloads 242
2419 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 351
2418 Development of Intake System for Improvement of Performance of Compressed Natural Gas Spark Ignition Engine

Authors: Mardani Ali Serah, Yuriadi Kusuma, Chandrasa Soekardi

Abstract:

The improvement of flow strategy was implemented in the intake system of the engine to produce better Compressed Natural Gas engine performance. Three components were studied, designed, simulated, developed,tested and validated in this research. The components are: the mixer, swirl device and fuel cooler device. The three components were installed to produce pressurised turbulent flow with higher fuel volume in the intake system, which is ideal condition for Compressed Natural Gas (CNG) fuelled engine. A combination of experimental work with simulation technique were carried out. The work included design and fabrication of the engine test rig; the CNG fuel cooling system; fitting of instrumentation and measurement system for the performance testing of both gasoline and CNG modes. The simulation work was utilised to design appropriate mixer and swirl device. The flow test rig, known as the steady state flow rig (SSFR) was constructed to validate the simulation results. Then the investigation of the effect of these components on the CNG engine performance was carried out. A venturi-inlet holes mixer with three variables: number of inlet hole (8, 12, and 16); the inlet angles (300, 400, 500, and 600) and the outlet angles (200, 300, 400, and 500) were studied. The swirl-device with number of revolution and the plane angle variables were also studied. The CNG fuel cooling system with the ability to control water flow rate and the coolant temperature was installed. In this study it was found that the mixer and swirl-device improved the swirl ratio and pressure condition inside the intake manifold. The installation of the mixer, swirl device and CNG fuel cooling system had successfully increased 5.5%, 5%, and 3% of CNG engine performance respectively compared to that of existing operating condition. The overall results proved that there is a high potential of this mixer and swirl device method in increasing the CNG engine performance. The overall improvement on engine performance of power and torque was about 11% and 13% compared to the original mixer.

Keywords: intake system, Compressed Natural Gas, volumetric efficiency, engine performance

Procedia PDF Downloads 319
2417 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 180
2416 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport

Authors: Dominic Wentworth-Linton, Shian Gao

Abstract:

This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.

Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test

Procedia PDF Downloads 259
2415 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions

Authors: Cheng-Chi Yu, Chi-Shiun Chiou

Abstract:

This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.

Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission

Procedia PDF Downloads 260
2414 Integrating Human Preferences into the Automated Decisions of Unmanned Aerial Vehicles

Authors: Arwa Khannoussi, Alexandru-Liviu Olteanu, Pritesh Narayan, Catherine Dezan, Jean-Philippe Diguet, Patrick Meyer, Jacques Petit-Frere

Abstract:

Due to the nature of autonomous Unmanned Aerial Vehicles (UAV) missions, it is important that the decisions of a UAV stay consistent with the priorities of an operator, while at the same time allowing them to be easily audited and explained. We propose a multi-layer decision engine that integrates the operator (human) preferences by using the Multi-Criteria Decision Aiding (MCDA) methods. A software implementation of a UAV simulator and of the decision engine is presented to highlight the advantage of using such techniques on high-level decisions. We demonstrate that, with such a preference-based decision engine, the decisions of the UAV are compatible with the priorities of the operator, which in turn increases her/his confidence in its autonomous behavior.

Keywords: autonomous UAV, multi-criteria decision aiding, multi-layers decision engine, operator's preferences, traceable decisions, UAV simulation

Procedia PDF Downloads 226
2413 Research on Internet Attention of Tourism and Marketing Strategy in Northeast Sichuan Economic Zone in China Based on Baidu Index

Authors: Chuanqiao Zheng, Wei Zeng, Haozhen Lin

Abstract:

As of March 2020, the number of Chinese netizens has reached 904 million. The proportion of Internet users accessing the Internet through mobile phones is as high as 99.3%. Under the background of 'Internet +', tourists have a stronger sense of independence in the choice of tourism destinations and tourism products. Tourists are more inclined to learn about the relevant information on tourism destinations and other tourists' evaluations of tourist products through the Internet. The search engine, as an integrated platform that contains a wealth of information, is highly valuable to the analysis of the characteristics of the Internet attention given to various tourism destinations, through big data mining and analysis. This article uses the Baidu Index as the data source, which is one of the products of Baidu Search. The Baidu Index is based on big data, which collects and shares the search results of a large number of Internet users on the Baidu search engine. The big data used in this article includes search index, demand map, population profile, etc. The main research methods used are: (1) based on the search index, analyzing the Internet attention given to the tourism in five cities in Northeast Sichuan at different times, so as to obtain the overall trend and individual characteristics of tourism development in the region; (2) based on the demand map and the population profile, analyzing the demographic characteristics and market positioning of the tourist groups in these cities to understand the characteristics and needs of the target groups; (3) correlating the Internet attention data with the permanent population of each province in China in the corresponding to construct the Boston matrix of the Internet attention rate of the Northeast Sichuan tourism, obtain the tourism target markets, and then propose development strategies for different markets. The study has found that: a) the Internet attention given to the tourism in the region can be categorized into tourist off-season and peak season; the Internet attention given to tourism in different cities is quite different. b) tourists look for information including tour guide information, ticket information, traffic information, weather information, and information on the competing tourism cities; with regard to the population profile, the main group of potential tourists searching for the keywords of tourism in the five prefecture-level cities in Northeast Sichuan are youth. The male to female ratio is about 6 to 4, with males being predominant. c) through the construction of the Boston matrix, it is concluded that the star market for tourism in the Northeast Sichuan Economic Zone includes Sichuan and Shaanxi; the cash cows market includes Hainan and Ningxia; the question market includes Jiangsu and Shanghai; the dog market includes Hubei and Jiangxi. The study concludes with the following planning strategies and recommendations: i) creating a diversified business format that integrates cultural and tourism; ii) creating a brand image of niche tourism; iii) focusing on the development of tourism products; iv) innovating composite three-dimensional marketing channels.

Keywords: Baidu Index, big data, internet attention, tourism

Procedia PDF Downloads 99
2412 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing

Procedia PDF Downloads 115
2411 The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance

Authors: Chun Pao Kuo, Chi Tong Lin

Abstract:

The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel.

Keywords: diesel engine, exhaust pollution, fuel injection timing, tire pyrolysis oil

Procedia PDF Downloads 377
2410 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 94
2409 Experimental Study of Iron Metal Powder Compacting by Controlled Impact

Authors: Todor N. Penchev, Dimitar N. Karastoianov, Stanislav D. Gyoshev

Abstract:

For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force.

Keywords: powder metallurgy, impact, iron powder compacting, rocket engine

Procedia PDF Downloads 496
2408 Monte Carlo Neutronic Calculations on Laser Inertial Fusion Energy (LIFE)

Authors: Adem Acır

Abstract:

In this study, time dependent neutronic analysis of incineration of minor actinides of a Laser Fusion Inertial Confinement Fusion Fission Energy (LIFE) engine was performed. The calculations were carried out by using MCNP codes with ENDF/B.VI neutron data library. In the neutronic calculations, TRISO particles fueled with minor actinides with natural lithium coolant were performed. The natural lithium cooled LIFE engine used 10 % TRISO fuel minor actinides composition. Tritium breeding ratios (TBR) and energy multiplication factor (M) burnup values were computed as 1.46 and 3.75, respectively. The reactor operation time was calculated as ~ 21 years. The burnup values were obtained as ~1060 GWD/MT, respectively. As a result, the very higher burnup were achieved of LIFE engine.

Keywords: Monte Carlo, minor actinides, nuclear waste, LIFE engine

Procedia PDF Downloads 267
2407 Design and Development of Engine Valve Train Wear Test Rig for the Assessment of Valve Train Tribochemistry

Authors: V. Manjunath, C. V. Chandrashekara

Abstract:

Ecosystem authority calls for the use of lubricants with less effect on the nature in terms of exhaust emission, while engine user demands more mileage per liter of fuel without any compromise on engine durability. From this viewpoint, engine manufacturers require the optimum combination of materials and lubricant additive package to minimize friction and wear in the engine components like piston, crankshaft and valve train etc. The demands are placed for requirements to operate at higher speeds, loads, temperature and for extended replacement intervals of engine oil. Besides, it is necessary to accurately predict the lubricant life or the replacement interval to prevent lubrication and valve-train components failure. Experimental tribology evaluation of new engine oils requires large amount of time and energy. Hence low cost bench test is necessary for industries and original equipment manufacturing companies (OEM) to study the performance of lubricants. The present work outlines the procedure for the design and development of a valve train wear rig (MCR) to simulate the ASTMD-6891 and to develop new engine test for Indian automobile sector to evaluate lubricants for Indian automobile market. In order to improve the lubrication between cam and follower of internal combustion engine, the influence of materials or oils viscosity and additives on the friction and wear characteristics are examined with test rig by increasing the contact load at two different revolution speed. From the experimentation following results are made obvious. Temperature, Torque, speed and wear plots are used to validate the data obtained from the newly developed multi-cam cam rig (MCR) with follower against a cast iron camshaft. Camshaft lobe wear is measured at seven different locations on cam profile. Tribofilm formed using 5W-30 oil is evaluated and correlated with the standard test results.

Keywords: ASTMD-6891, multi-cam rig (MCR), 5W-30, cam-profile

Procedia PDF Downloads 149
2406 Experimental Investigation of Performance and Emission Characteristics of Using Acetylene Gas in CI Engine

Authors: S. Sivakumar, Ashwin Bala, S. Prithviraj, K. Panthala Rajakumaran, R. Pradeep, J. Udhayakumar

Abstract:

Studies reveal that acetylene gas derived from hydrolysis of calcium carbide has similar properties to that of diesel. However, the self-ignition temperature of acetylene gas is higher than that of diesel. Early investigations reveal that acetylene gas could be used as alternative fuel mode. In the present work, acetylene gas of 31/min were inducted and diesel was injected into the combustion chamber of a single cylinder air cooled diesel engine. It was observed that the higher calorific value of acetylene gas improves the brake thermal efficiency at full load conditions. The CO and HC emissions were higher at part load conditions as compared to conventional diesel. The Nox emission level was higher and smoke emission was lower during dual fuel mode under all operating conditions. It is concluded that dual fuel mode of acetylene gas and diesel improves the brake thermal efficiency and reduces smoke in diesel engine.

Keywords: acetylene gas, diesel engine, Nox emission, CO emission, HC emission

Procedia PDF Downloads 341
2405 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition

Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.

Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation

Procedia PDF Downloads 287
2404 CI Engine Performance Analysis Using Sunflower and Peanut Bio-Diesel Blends

Authors: M. Manjunath, R. Rakesh, Y. T. Krishne Gowda, G. Panduranga Murthy

Abstract:

The availability of energy resources plays a vital role in the progress of a country. Over the last decades, there is an increase in the consumption of energy worldwide resulting in the depletion of fossil fuels. This necessitates dependency on other countries for energy resources. Therefore, a renewable eco-friendly alternate fuel is replaced in place of fossil fuel which can be vegetable oils as a substitute fuel for diesel. Since oils are more viscous it cannot be used directly in CI engines without any engine modification. Thus, a conversion of vegetable oils to biodiesel is done by a Transesterification process. The present paper is restricted to Biofuel substitute for diesel and which can be obtained from a number of edible and non-edible oil resources. The oil from these resources can be Transesterified by a suitable method depending on its FFA content for the production of biodiesel and that can be used to operate CI engine. In this work, an attempt is made to test the performance of CI engine using Transesterified peanut and sunflower oil methyl esters blends with diesel.

Keywords: SOME, POME, BMEP, BSFC, BTE

Procedia PDF Downloads 446
2403 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA

Authors: Yi-Guang Li, Suresh Sampath

Abstract:

Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.

Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring

Procedia PDF Downloads 52
2402 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 446
2401 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 265
2400 The Investigation of LPG Injector Control Circuit on a Motorcycle

Authors: Bin-Wen Lan, Ying-Xin Chen, Hsueh-Cheng Yang

Abstract:

Liquefied petroleum gas is a fuel that has high octane number and low carbon number. This paper uses MSC-51 controller to investigate the effect of liquefied petroleum gas (LPG) on exhaust emissions for different engine speeds in a single cylinder, four-stroke and spark ignition engine. The results indicate that CO, CO2 and NOX exhaust emissions are lower with the use of LPG compared to the use of unleaded gasoline by using the developed controller. The open-loop in the LPG injection system was controlled by MCS-51 single chip. The results show that if a SI engine is operated with LPG fuel rather than gasoline fuel under the same conditions, significant reduction in exhaust emissions can be achieved. In summary, LPG has positive effects on main exhaust emissions such as CO, CO2 and NOX.

Keywords: LPG, control circuit, emission, MCS-51

Procedia PDF Downloads 454