Search results for: vessel elements length
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6316

Search results for: vessel elements length

1096 Polyphenol-Rich Aronia Melanocarpa Juice Consumption and Line-1 Dna Methylation in a Cohort at Cardiovascular Risk

Authors: Ljiljana Stojković, Manja Zec, Maja Zivkovic, Maja Bundalo, Marija Glibetić, Dragan Alavantić, Aleksandra Stankovic

Abstract:

Cardiovascular disease (CVD) is associated with alterations in DNA methylation, the latter modulated by dietary polyphenols. The present pilot study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to investigate the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes, in subjects (n=34, age of 41.1±6.6 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation, such as folate intake levels, MTHFR C677T gene variant, as well as the anthropometric and metabolic parameters, modulated the LINE-1 methylation levels upon consumption of polyphenol-rich Aronia juice. The experimental analysis of LINE-1 methylation was done by the MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism method. Folate intake was assessed by processing the data from the food frequency questionnaire and repeated 24-hour dietary recalls. Serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using the Statistica software package. In women, after vs. before the treatment period, a significant decrease in LINE-1 methylation levels was observed (97.54±1.50% vs. 98.39±0.86%, respectively; P=0.01). The change (after vs. before treatment) in LINE-1 methylation correlated directly with MTHFR 677T allele presence, average daily folate intake and the change in serum low-density lipoprotein cholesterol, while inversely with the change in serum triacylglycerols (R=0.72, R2=0.52, adjusted R2=0.36, P=0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich Aronia juice consumption achieved through the modifications of DNA methylation pattern in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of DNA methylation may become targets for new approaches in the prevention and treatment of CVD.

Keywords: Aronia melanocarpa, cardiovascular risk, LINE-1, methylation, peripheral blood leukocytes, polyphenol

Procedia PDF Downloads 173
1095 Characterisation of Meteorological Drought at Sub-Catchment Scale in Afghanistan Using Time-Series Climate Data

Authors: Yun Chen, David Penton, Fazlul Karim, Santosh Aryal, Shahriar Wahid, Peter Taylor, Susan M. Cuddy

Abstract:

Droughts have severely affected Afghanistan over the last four decades, leading to critical food shortages where two-thirds of the country’s population are in a food crisis. Long years of conflict have lowered the country’s ability to deal with hazards such as drought, which can rapidly escalate into disasters. Understanding the spatial and temporal distribution of droughts is needed to be able to respond effectively to disasters and plan for future occurrences. This study used Standardized Precipitation Evapotranspiration Index (SPEI) at monthly, seasonal, and annual temporal scales to map the spatiotemporal change dynamics of drought characteristics (distribution, frequency, duration, and severity) in Afghanistan. SPEI indices were mapped for river basins, disaggregated into 189 sub-catchments, using monthly precipitation and potential evapotranspiration derived from temperature station observations from 1980 to 2017. The results show these multi-dimensional drought characteristics vary along different years, change among sub-catchments, and differ across temporal scales. During the 38 years, the driest decade and period are the 2000s and 1999–2022, respectively. The 2000–01 water year is the driest, with the whole country experiencing ‘severe’ to ‘extreme’ drought, more than 53% (87 sub-catchments) suffering the worst drought in history, and about 58% (94 sub-catchments) having ‘very frequent’ drought (7 to 8 months) or ‘extremely frequent’ drought (9 to 10 months). The estimated seasonal duration and severity present significant variations across the study area and throughout the study period. The nation also suffered from recurring droughts with varying length and intensity in 2004, 2006, 2008, and, most recently, 2011. There is a trend towards increasing drought with longer duration and higher severity extending all over sub-catchments from southeast to north and central regions. These datasets and maps help to fill the knowledge gap on detailed sub-catchment scale meteorological drought characteristics in Afghanistan. The study findings improve our understanding of the influences of climate change on drought dynamics and can guide catchment planning for reliable adaptation to and mitigation against future droughts.

Keywords: SPEI, precipitation, evapotranspiration, climate extremes

Procedia PDF Downloads 65
1094 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds

Authors: Zeina Merabi, Arij Dao

Abstract:

The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.

Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration

Procedia PDF Downloads 39
1093 Combustion Characteristics of Ionized Fuels for Battery System Safety

Authors: Hyeuk Ju Ko, Eui Ju Lee

Abstract:

Many electronic devices are powered by various rechargeable batteries such as lithium-ion today, but occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the number of study on the successful extinguishment is limited. Because most rechargeable batteries are operated on the ion state with electron during charge and discharge of electricity, and the reaction of this electrolyte has a big difference with normal combustion. Here, we focused on the effect of ions on reaction stability and pollutant emissions during combustion process. The other importance for understanding ionized fuel combustion could be found in high efficient and environment-friendly combustion technologies, which are used to be operated an extreme condition and hence results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy and non-equilibrium plasma is one of the way to solve the problems, but the application has been still limited because of lack of excited ion effects in the combustion process. Therefore, the understanding of ion role during combustion might be promised to the energy safety society including the battery safety. In this study, the effects of an ionized fuel on the flame stability and pollutant emissions were experimentally investigated in the hydrocarbon jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the gaseous fuels were ionized with the ionizer (SUNJE, SPN-11). Methane (99.9% purity) and propane (commercial grade) were used as a fuel and open ambient air was used as an oxidizer. As the performance of ionizer used in the experiment was evaluated at first, ion densities of both propane and methane increased linearly with volume flow rate but the ion density of propane is slightly higher than that of methane. The results show that the overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However, the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased with increasing fuel ionization, especially at high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.

Keywords: battery fires, ionization, jet flames, stability, NOx and soot

Procedia PDF Downloads 160
1092 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech

Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley

Abstract:

Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.

Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition

Procedia PDF Downloads 81
1091 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop

Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti

Abstract:

The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.

Keywords: residual boron, zinc, rice, wheat

Procedia PDF Downloads 125
1090 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 236
1089 Self-Inflicted Major Trauma: Inpatient Mental Health Management and Patient Outcomes

Authors: M. Walmsley, S. Elmatarri, S. Mannion

Abstract:

Introduction: Self-inflicted injury is a recognised cause of major trauma in adults and is an independent indicator of a reduced functional outcome compared to non-intentional major trauma. There is little literature available on the inpatient mental health (MH) management of this vulnerable group. A retrospective review was conducted of inpatient MH management of major trauma patients admitted to a UK regional Major Trauma Centre (MTC). Their outcomes were compared to all major trauma patients. This group of patients required multiple MH interventions whilst on the Major Trauma Ward (MTW) and a had worse functional outcome compared to non-intentional trauma. Method: The national TARN (Trauma Audit and Research Network) database was used to identify patients admitted to a regional MTC over a 2-year period from June 2018 to July 2020. Patients with an ISS (Injury Severity Score) of greater than 15 with a mechanism of either self-harm or high-risk behavior were included for further analysis. Inpatient medical notes were reviewed for MH interventions on the MTW. Further outcomes, including mortality, length of stay (LOS) and Glasgow Outcome Score (GOS) were compared with all major trauma patients for the same time period. Results: A total of 60 patients were identified in the time period and of those, 27 spent time on the MTW. A total of 23 (85%) had a prior MH diagnosis, with 11 (41%) under the care of secondary MH services. Adequate inpatient records for review were available for 24 patients. During their inpatient stay, 8 (33%) were reviewed on the ward by the inpatient MH team. There were 10 interventions required for 6 (25%) patients on the MTW including, sections under the Mental Health Act, transfer to specialist MH facility, pharmacological sedation and security being called to the MTW. When compared to all major trauma patients, those admitted due to self-harm or high-risk behavior had a statistically significantly higher ISS (31.43 vs 24.22, p=0.0001) and LOS (23.51d vs 16.06d, p=0.002). Functional outcomes using the GOS were reduced in this group of patients, GOS 5 (low disability) (51.66% vs. 61.01%) and they additionally had a higher level of mortality, GOS 1 (15.00% vs 11.67%). Discussion: Intentional self-harm is a recognised cause of major trauma in adults and this patient group sustains more severe injuries, requiring a longer hospital stay with worse outcomes compared to all major trauma patients. Inpatient MH interventions are required for a significant proportion of these patients and therefore, there needs to be a close relationship with MH services. There is limited available evidence for how this patient group is best managed as an inpatient to aid their recovery and further work is needed on how outcomes in this vulnerable group can be improved.

Keywords: adult major trauma, attempted suicide, self-inflicted major trauma, inpatient management

Procedia PDF Downloads 150
1088 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 297
1087 An Exploration of the Integration of Guided Play With Explicit Instruction in Early Childhood Mathematics

Authors: Anne Tan, Kok-Sing Tang, Audrey Cooke

Abstract:

Play has always been a prominent pedagogy in early childhood. However, there is growing evidence of success in students’ learning using explicit instruction, especially in literacy in the early years. There is also limited research using explicit instruction in early childhood mathematics, and play is usually prominently mentioned. This proposed research aims to investigate the possibilities and benefits of integrating guided play with explicit instruction in early childhood mathematics education. While play has traditionally been a prominent pedagogy in early childhood, there is growing evidence of success in student learning through explicit instruction, particularly in literacy. However, limited research exists on the integration of explicit instruction in early childhood mathematics, where play remains prominently mentioned. This study utilises a multiple case study methodology to gather data and provide immediate opportunities for curriculum improvement. The research will commence with semi-structured interviews to gain insights into educators' background knowledge. Highly structured observations will be conducted to record the frequency and manner in which guided play is integrated with specific elements of explicit instruction during mathematics teaching in early childhood. To enhance the observations, video recordings will be made using cameras with video settings and Microsoft Teams meeting recordings. In addition to interviews and observations, educators will maintain journals and use the Microsoft Teams platform for self-reflection on the integration of guided play and explicit instruction in their classroom practices and experiences. The study participants will include educators with early childhood degrees and students in years one and two. The primary goal of this research is to inform the benefits of integrating two high-impact pedagogies, guided play, and explicit instruction, for enhancing student learning outcomes in mathematics education. By exploring the integration of these pedagogical approaches, this study aims to contribute to the development of effective instructional strategies in early childhood mathematics education.

Keywords: early childhood, early childhood mathematics, early childhood numbers, guided play, play-based learning, explicit instruction

Procedia PDF Downloads 41
1086 Injury Characteristics and Outcome of Road Traffic Accident among Victims at Adult Emergency Department of Tikur Anbesa Specialized Hospital, Addis Ababa, Ethiopia

Authors: Mohammed Seid, Aklilu Azazh, Fikre Enquselassie, Engida Yisma

Abstract:

Background: Road traffic injuries are the eighth leading cause of death globally, and the leading cause of death for young people. More than a million people die each year on the world’s roads, and the risk of dying as a result of a road traffic injury is highest in the Africa. Methods: A prospective hospital-based study was undertaken to assess injury characteristics and outcome of road traffic accident among victims at Adult Emergency Department of Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. A structured pre-tested questionnaire was used to gather the required data. The collected data were analyzed using SPSS version 16.0. Results: A total of 230 road traffic accident victims were studied. The majority of the study subjects were men 165 (71.7%) and the male/female ratio was 2.6:1. The victims’ ages ranged from 14 to 80 years with the mean and standard deviations of 32.15 and ± 14.38 years respectively. Daily laborers (95 (41.3%)) and students (28 (12.2%)) were the majority of road traffic accident victims. Long-distance travelling Minibus (16.5%) was responsible for the majority of road traffic crash followed by followed by Taxi (14.8%) and pedestrians (62.6%) accounted for the majority of road traffic accident. Head (50.4%) and musculoskeletal (extremities) (47.0%) were the most common body region injured. Fractures (78.0%) and open wounds (56.5%) were the most common type of injuries sustained. Treatment of fracture was the most common procedure performed in 57.7 % of the victims. The overall length of hospital stay (LOS) ranged from 1 day to 61 days with mean (± standard deviation) of 7.12 ± 10.5 days and the mortality rate was 7.4 %. A significant higher proportion of victims aged 14-55 years were had less likelihood of death compared to those victims aged more than 55 years of age [Adjusted OR = 0.1 (95% CI: 0.01, 0.82)]. Conclusions: This study showed diverse injury characteristics and high morbidity and mortality among the victims attending Adult Emergency Department of Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. The findings reflect that road traffic accident is a major public health problem. Urgent road traffic accident preventive measures and prompt treatment of the victims are warranted in order to reduce morbidity and mortality among the victims.

Keywords: road traffic accident, injury characteristics, outcome, Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia

Procedia PDF Downloads 353
1085 Elderly for Elderly: The Role of Community Volunteer, a Case Study from the Great East Japan Earthquake and Tsunami in Kesennuma, Japan

Authors: Kensuke Otsuyama

Abstract:

The United Nation World Conference on Disaster Risk Reduction was held in Sendai, Japan, in 2015 and priorities for actions until 2030 were adopted for the next 15 years. Although one of these priorities is to ‘build back better’, there is neither a consensus definition of better recovery, nor indicators to measure better recovery. However, the community is considered as a key driver of recovery nowadays, and participation is a key word for effective recovery. In order to understand more about participatory community recovery, the author investigated recovery from the Great East Japan Earthquake and Tsunami (GEJET) in Kesennuma, a severely affected city. The research sought to: 1) Identify the elements that contribute to better recovery at the community level, and 2) analyze the role of community volunteers for disaster risk reduction for better recovery. A Participatory Community Recovery Index (PCRI) was created as a tool to measure community recovery. The index adopts seven primary indicators and 20 tertiary indicators, including: socio-economic aspect, housing, health, environment, self-organization, transformation, and institution. The index was applied to nine districts in Kesennuma city. Secondary and primary data by questionnaire surveys with local residents’ organization leaders and interviews with crisis management department officials in city government were also obtained. The indicator results were transformed into scores among 1 to 5, and the results were shown for each district. Based on the result of PCRI, it was found that the s Local Social Welfare Council played an important role in facilitating better recovery, enhancing community volunteer involvement to allow elderly residents to initiate local volunteer work for more affected single-living elderly people. Volunteers for the elderly by the elderly played a crucial role to strengthen community bonding in Kesennuma. In this research, the potential of community volunteers and inter-linkage with DRR activities are discussed.

Keywords: recovery, participation, the great East Japan earthquake and tsunami, community volunteers

Procedia PDF Downloads 239
1084 Demarcating Wetting States in Pressure-Driven Flows by Poiseuille Number

Authors: Anvesh Gaddam, Amit Agrawal, Suhas Joshi, Mark Thompson

Abstract:

An increase in surface area to volume ratio with a decrease in characteristic length scale, leads to a rapid increase in pressure drop across the microchannel. Texturing the microchannel surfaces reduce the effective surface area, thereby decreasing the pressured drop. Surface texturing introduces two wetting states: a metastable Cassie-Baxter state and stable Wenzel state. Predicting wetting transition in textured microchannels is essential for identifying optimal parameters leading to maximum drag reduction. Optical methods allow visualization only in confined areas, therefore, obtaining whole-field information on wetting transition is challenging. In this work, we propose a non-invasive method to capture wetting transitions in textured microchannels under flow conditions. To this end, we tracked the behavior of the Poiseuille number Po = f.Re, (with f the friction factor and Re the Reynolds number), for a range of flow rates (5 < Re < 50), and different wetting states were qualitatively demarcated by observing the inflection points in the f.Re curve. Microchannels with both longitudinal and transverse ribs with a fixed gas fraction (δ, a ratio of shear-free area to total area) and at a different confinement ratios (ε, a ratio of rib height to channel height) were fabricated. The measured pressure drop values for all the flow rates across the textured microchannels were converted into Poiseuille number. Transient behavior of the pressure drop across the textured microchannels revealed the collapse of liquid-gas interface into the gas cavities. Three wetting states were observed at ε = 0.65 for both longitudinal and transverse ribs, whereas, an early transition occurred at Re ~ 35 for longitudinal ribs at ε = 0.5, due to spontaneous flooding of the gas cavities as the liquid-gas interface ruptured at the inlet. In addition, the pressure drop in the Wenzel state was found to be less than the Cassie-Baxter state. Three-dimensional numerical simulations confirmed the initiation of the completely wetted Wenzel state in the textured microchannels. Furthermore, laser confocal microscopy was employed to identify the location of the liquid-gas interface in the Cassie-Baxter state. In conclusion, the present method can overcome the limitations posed by existing techniques, to conveniently capture wetting transition in textured microchannels.

Keywords: drag reduction, Poiseuille number, textured surfaces, wetting transition

Procedia PDF Downloads 140
1083 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing

Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto

Abstract:

Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.

Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence

Procedia PDF Downloads 365
1082 Manufacturing and Calibration of Material Standards for Optical Microscopy in Industrial Environments

Authors: Alberto Mínguez-Martínez, Jesús De Vicente Y Oliva

Abstract:

It seems that we live in a world in which the trend in industrial environments is the miniaturization of systems and materials and the fabrication of parts at the micro-and nano-scale. The problem arises when manufacturers want to study the quality of their production. This characteristic is becoming crucial due to the evolution of the industry and the development of Industry 4.0. As Industry 4.0 is based on digital models of production and processes, having accurate measurements becomes capital. At this point, the metrology field plays an important role as it is a powerful tool to ensure more stable production to reduce scrap and the cost of non-conformities. The most extended measuring instruments that allow us to carry out accurate measurements at these scales are optical microscopes, whether they are traditional, confocal, focus variation microscopes, profile projectors, or any other similar measurement system. However, the accuracy of measurements is connected to the traceability of them to the SI unit of length (the meter). The fact of providing adequate traceability to 2D and 3D dimensional measurements at micro-and nano-scale in industrial environments is a problem that is being studied, and it does not have a unique answer. In addition, if commercial material standards for micro-and nano-scale are considered, we can find that there are two main problems. On the one hand, those material standards that could be considered complete and very interesting do not give traceability of dimensional measurements and, on the other hand, their calibration is very expensive. This situation implies that these kinds of standards will not succeed in industrial environments and, as a result, they will work in the absence of traceability. To solve this problem in industrial environments, it becomes necessary to have material standards that are easy to use, agile, adaptive to different forms, cheap to manufacture and, of course, traceable to the definition of meter with simple methods. By using these ‘customized standards’, it would be possible to adapt and design measuring procedures for each application and manufacturers will work with some traceability. It is important to note that, despite the fact that this traceability is clearly incomplete, this situation is preferable to working in the absence of it. Recently, it has been demonstrated the versatility and the utility of using laser technology and other AM technologies to manufacture customized material standards. In this paper, the authors propose to manufacture a customized material standard using an ultraviolet laser system and a method to calibrate it. To conclude, the results of the calibration carried out in an accredited dimensional metrology laboratory are presented.

Keywords: industrial environment, material standards, optical measuring instrument, traceability

Procedia PDF Downloads 97
1081 Management of Pressure Ulcer with a Locally Constructed Negative Pressure Device (NPD) in Traumatic Paraplegia Patients: A Randomized Controlled Clinical Trial

Authors: Mukesh K. Dwivedi, Rajeshwar N. Srivastava, Amit K. Bhagat, Saloni Raj

Abstract:

Introduction: Management of Pressure Ulcer (PU) is an ongoing clinical challenge particularly in traumatic paraplegia patients in developing countries where socio economic conditions often dictate treatment modalities. When negative pressure wound therapy (NPWT) was introduced, there were a series of devices (V.A.C., KCI, San Antonio, TX) manufactured. These devices for NPWT are costly and hard to afford by patients in developing countries like India. Considering this limitation, this study was planned to design an RCT to compare NPWT by an indigenized locally constructed NPD and conventional gauze dressing for the treatment of PU. Material and Methods: This RCT (CTRI/2014/09/0050) was conducted in the Department of Orthopaedic Surgery at King George’s Medical University (KGMU), India. Thirty-four (34) subjects of traumatic paraplegia having PU of stage 3 or 4, were enrolled and randomized in two treatment groups (NPWT Group & Conventional dressing group). The outcome measures of this study were surface area and depth of PU, exudates, microorganisms and matrix metalloproteinase-8 (MMP-8) during 0 to 9 weeks follow-ups. Levels of MMP-8 were analyzed in the tissues of PU at week 0, 3, 6 and week 9 by Enzyme Linked Immuno Sorbent Assay (ELISA). Results: Significantly reduced length of PU in NPWT group was observed at week 6 (p=0.04) which further reduced at week 9 (p=0.001) as compared to conventionally treated group. Similarly significant reduction of width and depth of PU was observed in NPWT at week 9 (p<0.05). The exudate became significantly (p=0.001) lower in NPWT group as compared with conventionally treated group from 6th to 9th week. Clearance and conversion of slough into red granulation tissue was significantly higher in NPWT group (p=0.001). At week 9, the wound culture was negative in all the subjects of NPWT group, while it was positive in 10 (41⋅6%) subjects of conventional group. Significantly lower level of MMP-8 was observed in subjects of NPWT group at week 6 (0.006**), and continually more reduction was observed at week 9 (<0.0001**) as compared to the conventional group. Conclusion: NPWT by locally constructed NPD is better wound care procedure for management of PU. Our device gave similar results as commercially available devices. Reduction of level of MMP-8 and increased rate of healing was achieved by negative pressure wound therapy (NPWT) as compared to conventional dressing.

Keywords: NPWT, NPD, MMP8, ELISA

Procedia PDF Downloads 234
1080 Sense-Based Approach in the Design of Anti-Violence Shelters: A Comparative Analysis

Authors: Annunziata Albano

Abstract:

Intimate Partner Violence (IPV) and Non-Partner Sexual Violence (NPSV) are still the most common forms of interpersonal violence against women today, and numerous studies have shown how they can affect women's physical and psychological well-being, frequently leading to depression, posttraumatic stress disorder (PTSD), and substance abuse. The primary goal of Italian Anti-Violence Centres (AVCs) is to provide an appropriate context for women to embark on a personalised path out of violence by providing various services such as listening groups, psychological and legal support, housing support in collaboration with shelters, work orientation, and specific support in the case of minor children. However, their physical environment is frequently overlooked, partly because these centres are typically established in pre-existing buildings and have a limited budget. Several studies on healthcare design and mental health, on the other hand, emphasise the potential of the built environment to facilitate healing by providing a restorative setting that aids in coping with stress and traumatic experiences, investigating the positive role of natural features and sensorial qualities such as light, colours, sound, and smell. This research aims to collect and summarise the key evidence-based principles derived from a multidisciplinary literature review about interior design elements that can help women recover after their traumatic experience. Furthermore, the study examines multiple case studies of Italian AVCs through the lens of previously determined principles, to understand how and whether these guidelines have been applied and which outcomes can provide relevant insights for design practice, with an emphasis on sensory qualities, usually overlooked in favour of other requirements. The outlined guidelines may serve as a framework for various typologies of services provided to women who are the victims of interpersonal violence, such as women's crisis centres and shelters.

Keywords: anti-violence centres, environmental psychology, interior design, interpersonal violence, restorative environments

Procedia PDF Downloads 84
1079 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 28
1078 The Implementation of a Nurse-Driven Palliative Care Trigger Tool

Authors: Sawyer Spurry

Abstract:

Problem: Palliative care providers at an academic medical center in Maryland stated medical intensive care unit (MICU) patients are often referred late in their hospital stay. The MICU has performed well below the hospital quality performance metric of 80% of patients who expire with expected outcomes should have received a palliative care consult within 48 hours of admission. Purpose: The purpose of this quality improvement (QI) project is to increase palliative care utilization in the MICU through the implementation of a Nurse-Driven PalliativeTriggerTool to prompt the need for specialty palliative care consult. Methods: MICU nursing staff and providers received education concerning the implications of underused palliative care services and the literature data supporting the use of nurse-driven palliative care tools as a means of increasing utilization of palliative care. A MICU population specific criteria of palliative triggers (Palliative Care Trigger Tool) was formulated by the QI implementation team, palliative care team, and patient care services department. Nursing staff were asked to assess patients daily for the presence of palliative triggers using the Palliative Care Trigger Tool and present findings during bedside rounds. MICU providers were asked to consult palliative medicinegiven the presence of palliative triggers; following interdisciplinary rounds. Rates of palliative consult, given the presence of triggers, were collected via electronic medical record e-data pull, de-identified, and recorded in the data collection tool. Preliminary Results: Over 140 MICU registered nurses were educated on the palliative trigger initiative along with 8 nurse practitioners, 4 intensivists, 2 pulmonary critical care fellows, and 2 palliative medicine physicians. Over 200 patients were admitted to the MICU and screened for palliative triggers during the 15-week implementation period. Primary outcomes showed an increase in palliative care consult rates to those patients presenting with triggers, a decreased mean time from admission to palliative consult, and increased recognition of unmet palliative care needs by MICU nurses and providers. Conclusions: Anticipatory findings of this QI project would suggest a positive correlation between utilizing palliative care trigger criteria and decreased time to palliative care consult. The direct outcomes of effective palliative care results in decreased length of stay, healthcare costs, and moral distress, as well as improved symptom management and quality of life (QOL).

Keywords: palliative care, nursing, quality improvement, trigger tool

Procedia PDF Downloads 163
1077 Contribution of the Study of Inclusion Fluids to the Knowledge of the Conditions of Formation of the Layers with SN-W of Central Hoggar, Algeria

Authors: J. Bouguebrine, L. Bouabsa

Abstract:

The ground of study is localized in central Hoggar and contains the most important layers and Stanno-Wolframifére indices of the metallogenic province have tin and wolfram of Hoggar. These layers are always associate with post-orogenetic Panafrican magmatism (GMR) which was set up in the form of circumscribed granitic solid masses of relatively reduced size or in dykes of microgranites. The area studied are in Tounine, Aléméda, Hanana-hananére, Tim Amzi, El Karoussa. The geochemical data processing watch peralumineux character rich person out of Li-F and rare metals (MR). Pegmatites of the type stocksheider, formations of greisens and mineralization Sn-W accompany these granites. Mineralisation Sn-W, expressed particularly well in the seams of quartz and greinsen is spacialement and génitiquement dependent on the maguatism specific to white feldspar-topaz (GMR) (grained and microgrenu). the mineral paragenesis is primarily made up of wolframite and cassetérite. The minerals of gangue are represented by quartz, topaz, the micas containing lithia and the fluorite. A microthermometric study of fluid inclusions related to the granites end on white feldspar-topaz of Hanana, topaz of Hananére, the microgranite of Aléméda, and the seams of quartz D In Tounine (Tiftazouine) and of Tim Amzi; allows to characterize the fluids associated with these layers. It comes out from this study the abundance of aqueous inclusions and three types of fluids were given: -Hot and salted fluids rich in volatile elements particularly CO2; -follow-ups by aquo-carbonic fluids less hot and moderately salted with temperatures of homogenisations (HT) average respectively of 300°C and 180°C; -finally of the aqueous fluids very little salted (≤1%pds.éq.NaCl) and definitely colder. An estimate depths éteé made starting from the diagram of (Haas, 1971) in the system H2O-NaCl, the results are the following: • Inclusion aqueous (L and Lw): correspond to depths of about 50 à500m. • Inclusions aquo-carbonic (Lcw and Lwc): correspond to depths of L order of 600 with 1200m • Carbonic inclusion (Vcw): correspond to depths about 1400à1800m

Keywords: fluid inclusions microthermométrie, cassiterite wolframite, granites with rare metals, Central Hoggar

Procedia PDF Downloads 384
1076 A Descriptive Study of the Characteristics of Introductory Accounting Courses Offered by Community Colleges

Authors: Jonathan Nash, Allen Hartt, Catherine Plante

Abstract:

In many nations, community colleges, or similar institutions, play a crucial role in higher education. For example, in the United States more than half of all undergraduate students enroll in a community college at some point during their academic career. Similar statistics have been reported for Australia and Canada. Recognizing the important role these institutions play in educating future accountants, the American Accounting Association has called for research that contributes to a better understanding of these members of the academic community. Although previous literature has shown that community colleges and 4-year institutions differ on many levels, the extant literature has provided data on the characteristics of introductory accounting courses for four-year institutions but not for community colleges. We fill a void in the literature by providing data on the characteristics of introductory accounting courses offered by community colleges in the United States. Data are collected on several dimensions including: course size and staffing, pedagogical orientation, standardization of course elements, textbook selection, and use of technology-based course management tools. Many of these dimensions have been used in previous research examining four-year institutions thereby facilitating comparisons. The resulting data should be of interest to instructors, regulators and administrators, researchers, and the accounting profession. The data provide information on the introductory accounting courses completed by the average community college student which can help instructors identify areas where transfer students’ experiences might differ from their contemporaries at four-year colleges. Regulators and administrators may be interested in the differences between accounting courses offered by two- and four-year institutions when implementing standardized transfer programs. Researchers might use the data to motivate future research into whether differences between two- and four-year institutions affect outcomes like the probability of students choosing to major in accounting and their performance within the major. Accounting professionals may use our findings as a springboard for facilitating discussions related to the accounting labor supply.

Keywords: Accounting curricula, Community college, Descriptive study, Introductory accounting

Procedia PDF Downloads 78
1075 A Damage-Plasticity Concrete Model for Damage Modeling of Reinforced Concrete Structures

Authors: Thanh N. Do

Abstract:

This paper addresses the modeling of two critical behaviors of concrete material in reinforced concrete components: (1) the increase in strength and ductility due to confining stresses from surrounding transverse steel reinforcements, and (2) the progressive deterioration in strength and stiffness due to high strain and/or cyclic loading. To improve the state-of-the-art, the author presents a new 3D constitutive model of concrete material based on plasticity and continuum damage mechanics theory to simulate both the confinement effect and the strength deterioration in reinforced concrete components. The model defines a yield function of the stress invariants and a compressive damage threshold based on the level of confining stresses to automatically capture the increase in strength and ductility when subjected to high compressive stresses. The model introduces two damage variables to describe the strength and stiffness deterioration under tensile and compressive stress states. The damage formulation characterizes well the degrading behavior of concrete material, including the nonsymmetric strength softening in tension and compression, as well as the progressive strength and stiffness degradation under primary and follower load cycles. The proposed damage model is implemented in a general purpose finite element analysis program allowing an extensive set of numerical simulations to assess its ability to capture the confinement effect and the degradation of the load-carrying capacity and stiffness of structural elements. It is validated against a collection of experimental data of the hysteretic behavior of reinforced concrete columns and shear walls under different load histories. These correlation studies demonstrate the ability of the model to describe vastly different hysteretic behaviors with a relatively consistent set of parameters. The model shows excellent consistency in response determination with very good accuracy. Its numerical robustness and computational efficiency are also very good and will be further assessed with large-scale simulations of structural systems.

Keywords: concrete, damage-plasticity, shear wall, confinement

Procedia PDF Downloads 141
1074 Conceptualizing Psycho-Social Intervention with Juvenile Offenders as Attachment Therapy: A Practical Approach

Authors: Genziana Lay

Abstract:

A wide majority of older children and adolescents who enter the juvenile court system present with an array of problematic symptoms and behaviors including anxiety, depression, aggressive acting out, detachment, and substance abuse. Attachment theory offers a framework for understanding normative and pathological functioning, which during development is influenced by emotional, social and cognitive elements. There is clear evidence that children and adolescents with the highest risk of developing adaptation problems present an insecure attachment profile. Most offending minors have experienced dysfunctional family relationships as well as social and/or economic deprivation. Their maladaptive attachment develops not only through their relationship with caregivers but with the environment at large. Activation of their faulty attachment system leads them to feel emotionally overwhelmed and engage in destructive behaviors and decision-making. A psycho-social intervention with this population conceptualized as attachment therapy is a multi-faceted, practical approach that has shown excellent results in terms of increased psychological well-being and drastically reduced rates of re-offense/ destructive behavior. Through several; components including psychotherapy, monitoring, volunteering, meditation and socialization, the program focuses on seven dimensions: self-efficacy, responsibility, empathy/reparation, autonomy/security, containment/structure, insight building, and relational health. This paper presents the program and illustrates how the framework of attachment theory practically applied to psycho-social intervention has great therapeutic and social reparation potential. Preliminary evidence drawn from the Sassari Juvenile Court is very promising; this paper will illustrate these results and propose an even more comprehensive, applicable approach to psycho-social reparative intervention that leads to greater psychological health and reduced recidivism in the child and adolescent population.

Keywords: attachment, child, adolescent, crime, juvenile, psychosocial

Procedia PDF Downloads 151
1073 Life Time Improvement of Clamp Structural by Using Fatigue Analysis

Authors: Pisut Boonkaew, Jatuporn Thongsri

Abstract:

In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.

Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability

Procedia PDF Downloads 213
1072 Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium

Authors: H. M. Nanjundaswamy, S. K. Nath, S. Ray

Abstract:

TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.

Keywords: composite, fracture toughness, forging, tensile properties

Procedia PDF Downloads 223
1071 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 157
1070 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 177
1069 Creating Legitimate Expectations in International Energy Investments: Role of the Stability Provisions

Authors: Rahmi Kopar

Abstract:

Legitimate expectations principle is considered one of the most dominant elements of the Fair and Equitable Treatment Standard which is today’s most relied upon treaty standard. Since its utilization by arbitral tribunals is relatively new, the contours of the legitimate expectations concept under investment treaty law have not been precisely defined yet. There are various fragmented views arising both from arbitral tribunals and scholarly writings with respect to its limits and use even though the principle is ‘firmly rooted in arbitral practice.’ International energy investments, due to their characteristics, are more prone to certain types of risks, especially the political risks. Thus, there are several mechanisms to protect an energy investment against those risks. Stabilisation is one of these investment protection methods. Stability provisions can be found under domestic legislations, as a contractual clause, or as a separate legal stability agreement. This paper will start by examining the roots of the contentious concept of legitimate expectations with reference to its application in domestic legal systems from where the doctrine under investment treaty law context was transplanted. Then the paper will turn to the investment treaty law and analyse the main contours of the doctrine as understood and applied by arbitral tribunals. 'What gives rise to the investor’s legitimate expectations?' question is answered mainly by three categories of sources: the general legal framework prevalent in a host state, the representations made by the officials or organs of a host state, and the contractual commitments. However, there is no unanimity among the arbitral tribunals and the scholars with respect to the form these sources should take. At this point, the study will discuss the sources of a stability provision and the effect of these stability provisions found in various legal sources in creating a legitimate expectation for the investor. The main questions to be discussed in this paper are as follows: a) Do the stability provisions found under different legal sources create a legitimate expectation on the investor side? b) If yes, what levels of legitimate expectations do they create? These questions will be answered mainly by reference to investment treaty jurisprudence.

Keywords: fair and equitable treatment standard, international energy investments, investment protection, legitimate expectations, stabilization

Procedia PDF Downloads 187
1068 A Service Evaluation Exploring the Effectiveness of a Tier 3 Weight Management Programme Offering Face-To-Face and Remote Dietetic Support

Authors: Rosemary E. Huntriss, Lucy Jones

Abstract:

Obesity and excess weight continue to be significant health problems in England. Traditional weight management programmes offer face-to-face support or group education. Remote care is recognised as a viable means of support; however, its effectiveness has not previously been evaluated in a tier 3 weight management setting. This service evaluation explored the effectiveness of online coaching, telephone support, and face-to-face support as optional management strategies within a tier 3 weight management programme. Outcome data were collected for adults with a BMI ≥ 45 or ≥ 40 with complex comorbidity who were referred to a Tier 3 weight management programme from January 2018 and had been discharged before October 2018. Following an initial 45-minute consultation with a specialist weight management dietitian, patients were offered a choice of follow-up support in the form of online coaching supported by an app (8 x 15 minutes coaching), face-to-face or telephone appointments (4 x 30 minutes). All patients were invited to a final 30-minute face-to-face assessment. The planned intervention time was between 12 and 24 weeks. Patients were offered access to adjunct face-to-face or telephone psychological support. One hundred and thirty-nine patients were referred into the programme from January 2018 and discharged before October 2018. One hundred and twenty-four patients (89%) attended their initial assessment. Out of those who attended their initial assessment, 110 patients (88.0%) completed more than half of the programme and 77 patients (61.6%) completed all sessions. The average length of the completed programme (all sessions) was 17.2 (SD 4.2) weeks. Eighty-five (68.5%) patients were coached online, 28 (22.6%) patients were supported face-to-face support, and 11 (8.9%) chose telephone support. Two patients changed from online coaching to face-to-face support due to personal preference and were included in the face-to-face group for analysis. For those with data available (n=106), average weight loss across the programme was 4.85 (SD 3.49)%; average weight loss was 4.70 (SD 3.19)% for online coaching, 4.83 (SD 4.13)% for face-to-face support, and 6.28 (SD 4.15)% for telephone support. There was no significant difference between weight loss achieved with face-to-face vs. online coaching (4.83 (SD 4.13)% vs 4.70 (SD 3.19) (p=0.87) or face-to-face vs. remote support (online coaching and telephone support combined) (4.83 (SD 4.13)% vs 4.85 (SD 3.30)%) (p=0.98). Remote support has been shown to be as effective as face-to-face support provided by a dietitian in the short-term within a tier 3 weight management setting. The completion rates were high compared with another tier 3 weight management services suggesting that offering remote support as an option may improve completion rates within a weight management service.

Keywords: dietitian, digital health, obesity, weight management

Procedia PDF Downloads 114
1067 The Role of Dynamic Ankle Foot Orthosis on Temporo-Spatial Parameters of Gait and Balance in Patients with Hereditary Spastic Paraparesis: Six-Months Follow Up

Authors: Suat Erel, Gozde Gur

Abstract:

Background: Recently a supramalleolar type of dynamic ankle foot orthosis (DAFO) has been increasingly used to support all of the dynamic arches of the foot and redistribute the pressure under the plantar surface of the foot to reduce the muscle tone. DAFO helps to maintain balance and postural control by providing stability and proprioceptive feedback in children with disease like Cerebral Palsy, Muscular Dystrophies, Down syndrome, and congenital hypotonia. Aim: The aim of this study was to investigate the role of Dynamic ankle foot orthosis (DAFO) on temporo-spatial parameters of gait and balance in three children with hereditary spastic paraparesis (HSP). Material Method: 13, 14, and 8 years old three children with HSP were included in the study. To provide correction on weight bearing and to improve gait, DAFO was made. Lower extremity spasticity (including gastocnemius, hamstrings and hip adductor muscles) using modified Ashworth Scale (MAS) (0-5), The temporo-spatial gait parameters (walking speed, cadence, base of support, step length) and Timed Up & Go test (TUG) were evaluated. All of the assessments about gait were compared with (with DAFO and shoes) and without DAFO (with shoes only) situations. Also after six months follow up period, assessments were repeated by the same physical therapist. Results: MAS scores for lower extremity were between “2-3” for the first child, “0-2” for the second child and “1-2” for the third child. TUG scores (sec) decreased from 20.2 to 18 for case one, from 9.4 to 9 for case two and from 12,4 to 12 for case three in the condition with shoes only and also from 15,2 to 14 for case one, from 7,2 to 7,1 for case two and from 10 to 7,3 for case three in the condition with DAFO and shoes. Gait speed (m/sec) while wearing shoes only was similar but while wearing DAFO and shoes increased from 0,4 to 0,5 for case one, from 1,5 to 1,6 for case two and from 1,0 to 1,2 for case three. Base of support scores (cm) wearing shoes only decreased from 18,5 to 14 for case one, from 13 to 12 for case three and were similar as 11 for case two. While wearing DAFO and shoes, base of support decreased from 10 to 9 for case one, from 11,5 to 10 for case three and was similar as 8 for case two. Conclusion: The use of a DAFO in a patient with HSP normalized the temporo-spatial gait parameters and improved balance. Walking speed is a gold standard for evaluating gait quality. With the use of DAFO, walking speed increased in this three children with HSP. With DAFO, better TUG scores shows that functional ambulation improved. Reduction in base of support and more symmetrical step lengths with DAFO indicated better balance. These encouraging results warrant further study on wider series.

Keywords: dynamic ankle foot orthosis, gait, hereditary spastic paraparesis, balance in patient

Procedia PDF Downloads 332