Search results for: total suspended solid (TSS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10641

Search results for: total suspended solid (TSS)

10401 Application of Dual-Stage Sugar Substitution Technique in Tommy Atkins Mangoes

Authors: Rafael A. B. De Medeiros, Zilmar M. P. Barros, Carlos B. O. De Carvalho, Eunice G. Fraga Neta, Maria I. S. Maciel, Patricia M. Azoubel

Abstract:

The use of the sugar substitution technique (D3S) in mango was studied. It consisted of two stages and the use of ultrasound in one or both stages was evaluated in terms of water loss and solid gain. Higher water loss results were found subjecting the fruit samples to ultrasound in the first stage followed by immersion of the samples in Stevia-based solution with application of ultrasound in the second stage, while higher solids gain were obtained without application of ultrasound in second stage. Samples were evaluated in terms of total carotenoids content and total color difference. Samples submitted to ultrasound in both D3S stages presented higher carotenoid retention compared to samples sonicated only in the first stage. Color of man goes after the D3S process showed notable changes.

Keywords: Mangifera indica L., quality, Stevia rebaudiana, ultrasound

Procedia PDF Downloads 367
10400 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 464
10399 Investigation of Biochar from Banana Peel

Authors: Anurita Selvarajoo, Svenja Hanson

Abstract:

Growing energy needs and increasing environmental issues are creating awareness for alternative energy which substitutes the non-renewable and polluting fossil fuels. Agricultural wastes are a good feedstock for biochar production through the pyrolysis process. There is potential to generate solid fuel from agricultural wastes, as there are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study on the pyrolysis of banana peel. The effects of pyrolysis temperatures on the yield of biochar from the banana peel were investigated. Banana peel was pyrolysed in a horizontal tubular reactor under inert atmosphere by varying the temperatures between 300 and 700 0C. With increasing temperature, the total biochar yield decreased with increased heating value. It was found that the pyrolysis temperature had major effect on the yield of biochar product. It also exerted major influence on the heating value and C,H and O composition. The obtained biochar ranged between 31.9 to 56.7 %wt, at different pyrolysis temperatures. The optimum biochar yield was obtained at 325 0C. Biochar yield obtained at optimum temperature was 47 % wt with a heating value of 25.9 MJ kg-1. The study has been performed in order to demonstrate that agricultural wastes like banana peel are also important source of solid fuel.

Keywords: agricultural Wastes, banana peel, biochar, pyrolysis

Procedia PDF Downloads 264
10398 The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand

Authors: Suttipong Phosuksirikul, Rawichar Chaipojjana, Arunsri Leejeerajumnean

Abstract:

The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand.

Keywords: fermented milk, volatile compounds, preference, PCA

Procedia PDF Downloads 336
10397 Large Eddy Simulation of Particle Clouds Using Open-Source CFD

Authors: Ruo-Qian Wang

Abstract:

Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.

Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill

Procedia PDF Downloads 400
10396 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 350
10395 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)

Authors: Amer Obaid Saud

Abstract:

Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.

Keywords: Babylon governorate, Canadian version, water quality, Euphrates river

Procedia PDF Downloads 375
10394 Failure Analysis: Solid Rocket Motor Type “Candy” - Explosion in a Static Test

Authors: Diego Romero, Fabio Rojas, J. Alejandro Urrego

Abstract:

The sounding rockets are aerospace vehicles that were developed in the mid-20th century, and Colombia has been involved in research that was carried out with the aim of innovating with this technology. The rockets are university research programs with the collaboration of the local government, with a simple strategy, develop and reduce the greatest costs associated with the production of a kind type of technology. In this way, in this document presents the failure analysis of a solid rocket motor, with the real compatibly to reach the thermosphere with a low-cost fuel. This solid rocket motor is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. This motor has been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, and the investigation has allowed the production of solid motors powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry.To outline the main points the explosion in a static test is an important to explore and demonstrate the ways to develop technology, methodologies, production and manufacturing, being a solid rocket motor with 30 kN of thrust. In conclusion, this analysis explores different fields such as: design, manufacture, materials, production, first fire and more, with different engineering tools with principal objective find root failure. Following the engineering analysis methodology, was possible to design a new version of motor, with learned lessons new manufacturing specification, therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.

Keywords: candy propellant, candy rockets, explosion, failure analysis, static test, solid rocket motor

Procedia PDF Downloads 134
10393 Erosion Modeling of Surface Water Systems for Long Term Simulations

Authors: Devika Nair, Sean Bellairs, Ken Evans

Abstract:

Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.

Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems

Procedia PDF Downloads 53
10392 Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation

Authors: Ajay Dwivedi, M. Suresh Kumar, A. N. Vaidya

Abstract:

The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized.

Keywords: vegetable waste, physico-chemical characteristics, hydrogen, methane

Procedia PDF Downloads 398
10391 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 50
10390 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 246
10389 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman

Abstract:

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst

Procedia PDF Downloads 337
10388 Community Involvement and Willingness To Pay for Municipal Solid Waste Management Activities in Rapid Urbanized Region: A Case Study of Mnadani and Madukani Wards-Dodoma Urban

Authors: Isabela Thomas Mkude

Abstract:

This research was done to assess how the community is involved in waste management activities and their willingness to pay for services. Mnadani and Madukani are among the old wards in Dodoma urban. These two areas are similar and face numerous environmental problems, poor solid waste management practices being among them. People realize problems because they live with them daily but the study advice that the only way to stay off problems is to find appropriate measures. The findings recognized some problems that led to poor community involvement solid waste management the study areas. Lack of community education on how to deal with solid wastes, poor responsibility of ward leaders in issues concerning the environment and in active participation of communities in environmental meeting are among other major problems found during the research. The research also revealed that there is low willingness to pay for waste collection among communities and financial problems that make environmental committee inactive; that leading to a poor disposal and unavailable collection facilities in urban area. Although the municipal improves disposal activities by increasing amount of waste to be disposed off by 11% in three years, the amount of waste that collected is also increasing by 41% each day. It is advised that some corrective measures need to be put in place so that the communities are well involved in managing solid wastes as the best way to attain achievement in keeping the urban free from solid waste. Environmental education dissemination to the communities is needed so that they become responsible and dedicated citizen on the environment. There should be some incentives from government to the wards local government and CBOs so that they can practically implement solid waste management programs and to attract formation of more groups and motivate the present groups. Capacity building programs to the ward leaders need to be given priority so that leaders are well organized and able to plan, coordinate and cooperate with various governmental institutions, and NGOs responsible for development and environmental management.

Keywords: solid waste, waste management, public involvement, rapid urbanized region

Procedia PDF Downloads 313
10387 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran

Authors: Sahar Elkaee Behjati

Abstract:

Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.

Keywords: dust, leaves, uptake total carbon, Tehran, tree species

Procedia PDF Downloads 110
10386 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System

Authors: Abdulrazzak Akroot, Lutfu Namli

Abstract:

Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.

Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis

Procedia PDF Downloads 125
10385 Analysis and Study of Phytoplankton and the Environmental Characteristics of Tarkwa Bay, Lagos, South-Western, Nigeria

Authors: Bukola Dawodu, Charles Onyema

Abstract:

The phytoplankton and environmental characteristics of Tarkwa Bay, Lagos in South-western Nigeria were investigated from January to June 2012. Environmental characteristics within the Bay were largely determined by floodwater inflow in the wet months (April – June) and increased tidal marine conditions in the dry months (January – March). Similarly, rainfall distribution and possibly tidal seawater inflow were the key factors that govern the variation in phytoplankton distribution, species diversity, chlorophyll a concentration and environmental characteristics of the bay. Values for physico-chemical parameters were indicative of high levels of fluctuations inwards from the East mole towards Tarkwa Bay (e.g. T.S.S > 11mg/L, T.D.S > 33541.0mg/L, D.O. < 5.4). Chlorophyll A values did not show any discernable pattern and correlated negatively with total dissolved solids and total suspended solids (r = -0.27 and -0.04) as both were inconsistent throughout the study period. Four phytoplankton divisions were observed throughout the sampling period with the Bacillariophyta (diatoms) being the dominant group followed by Dinophyta (dinoflagellates), Cyanophyta (the blue-green algae) and Chlorophyta (the green algae). A total of twenty-one species from nine genera were recorded during the period of study. Diatoms formed the most abundant group making fifteen species from five genera. The centric forms dominated over the pennates in the diatom group with Skeletonema sp. Chaetoceros spp. and Coscinodiscus spp. being the dominant centric diatoms while Navicula spp. was the more dominant pennate form. The Dinoflagellates were represented by six species from one genus, the blue-green algae with five species from two genera while the green algae had one species from one genus. Comparatively, total biomass was more in the dry months (Jan. - Mar.) and decreased in the 'wet months' (Apr. – Jun.). Species diversity (S), Shannon Wiener index (Hs), Margalef Index (d) and Equitability Index (j) values were higher during the dry months while reduced value marked the wet months possibly as a result of dilution of rain effects. Outcomes of bio-indices variations were reflections of the degree of occurrence and abundance of species linked to seasons operating in the study site.

Keywords: coastal waters, phytoplankton, species abundance, ecosystems

Procedia PDF Downloads 150
10384 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: heat sources, Lattice Boltzmann method, solid oxide fuel cell, temperature

Procedia PDF Downloads 275
10383 Solid Oral Leiomyoma: Clinical Case Report

Authors: Hurtado Zuñiga Yonel Marcos, Ferreira Joao Tiago

Abstract:

Introduction: Leiomyoma is a benign smooth muscle tumor. It is predominantly found between 40-49 years with a small prevalence in men. It is commonly found in the uterus, stomach, and in areas with smooth muscle. It presents as nodular, solitary, variable size, slow growing, and asymptomatic. It is classified into solid, vascular, and epithelioid leiomyoma. Vascular leiomyoma is the most common in the oral cavity. Oral leiomyomas are very rare because a smooth muscle in the oral cavity isn’t common. The most frequent areas of this pathologyaretongue, lip, buccal mucosa, and palate. It may be derived from the vascular walls or excretory ducts of the salivary glands. The diagnosis is made by histologically analysis. The treatment of choice is complete excision. Recurrence is rare. Objective: To report the case of a solid leiomyoma on the dorsum of the tongue and review the literature. Case description: A 78-year-old female patient presented a nodular (ovoid) elevation of 8x6mm, brownish color, with irregular limits and firm consistency located in the dorsal part of the tongue with slight symptoms. An excisional biopsy was performed, photographic record, and 3 weeks post-surgical follow-up. Result: The surgical specimen was submitted to an anatomopathological analysis, resulting in a benign nodule with defined limits compatible with solid leiomyoma of the tongue. Discussion: It is a pathology that presents in a solitary, nodular, well-defined, asymptomatic form; in the oral cavity, leiomyomas are found in the tongue, lip, buccal mucosa, and palate; as in our patient, it was nodular and, in the tongue, with a difference only in the symptomatology. The most prevalent age is 40-49 years and with small predominance in men, unlike our female patient with 78 years. Conclusions: Oral leiomyoma is a rare benign lesion that presents as a solitary nodular nodule; for its diagnosis, an anatomopathological analysis should be performed, and the treatment of choice is total excision with little recurrence.

Keywords: tongue, bening tumor, oral leiomyoma, leiomyoma

Procedia PDF Downloads 198
10382 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 380
10381 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'

Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.

Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics

Procedia PDF Downloads 283
10380 A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery

Authors: Bosung Kim, Youngmok Yun, Sungho Lee, Chanseok Park

Abstract:

There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 µA is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V.

Keywords: isotope, betavoltaic, nuclear, battery, energy harvesting

Procedia PDF Downloads 294
10379 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.

Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal

Procedia PDF Downloads 108
10378 The Use of Geographic Information System in Spatial Location of Waste Collection Points and the Attendant Impacts in Bida Urban Centre, Nigeria

Authors: Daramola Japheth, Tabiti S. Tabiti, Daramola Elizabeth Lara, Hussaini Yusuf Atulukwu

Abstract:

Bida urban centre is faced with solid waste management problems which are evident in the processes of waste generation, onsite storage, collection, transfer and transport, processing and disposal of solid waste. As a result of this the urban centre is defaced with litters of garbage and offensive odours due to indiscriminate dumping of refuse within the neighborhood. The partial removal of the fuel subsidy by the Federal Government in January 2012 leads to the formation of Subsidy Reinvestment Programmes (SURE-P), the Federal Government’s share is 41 per cent of the savings while the States and Local Government shared the remaining 59 percent. The SURE-P Committee in carrying out the mandate entrusted upon it by the President by identifying few critical infrastructure and social Safety nets that will ameliorate the sufferings of Nigerians. Waste disposal programme as an aspect of Solid waste management is one of the areas of focus for Niger State SURE-programmes incorporated under Niger State Environmental Protection Agency. The emergence of this programme as related to waste management in Bida has left behind a huge refuse spots along major corridors leading to a serious state of mess. Major roads within the LGA is now turned to dumping site, thereby obstructing traffic movements, while the aesthetic nature of the town became something else with offensive odours all over. This paper however wishes to underscore the use of geographical Information System in identifying solid waste sports towards effective solid waste management in the Bida urban centre. The paper examined the spatial location of dumping points and its impact on the environment. Hand held Global Position System was use to pick the dumping points location; where a total number of 91 dumping points collected were uploaded to ArcGis 10.2 for analysis. Interview method was used to derive information from households living near the dumping site. It was discovered that the people now have to cope with offensive odours, rodents invasion, dog and cats coming around the house as a result of inadequate and in prompt collection of waste around the neighborhood. The researchers hereby recommend that more points needs to be created with prompt collections of waste within the neighborhood by the necessary SURE - P agencies.

Keywords: dumping site, neighborhood, refuse, waste

Procedia PDF Downloads 501
10377 Stabilization of Pb, Cr, Cd, Cu and Zn in Solid Waste and Sludge Pyrolysis by Modified Vermiculite

Authors: Yuxuan Yang, Zhaoping Zhong

Abstract:

Municipal solid waste and sludge are important sources of waste energy and their proper disposal is of great importance. Pyrolysis can fully decompose solid wastes and sludge, and the pyrolysis products (charcoal, oil and gas) have important recovery values. Due to the complex composition of solid wastes and sludge, the pyrolysis process at high temperatures is prone to heavy metal emissions, which are harmful to humans and the environment and reduce the safety of pyrolysis products. In this paper, heavy metal emissions during pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse at 450-650°C were investigated and the emissions and hazards of heavy metals (Pb, Cr, Cd, Cu and Zn) were effectively reduced by adding modified vermiculite as an additive. The vermiculite was modified by intercalation with cetyltrimethylammonium bromide, which resulted in more than twice the original layer spacing of the vermiculite. Afterward, the interpolated vermiculite was made into vermiculite flakes by exfoliation modification. After that, the expansion rate of vermiculite flakes was increased by Mg2+ modification and thermal activation. The expanded vermiculite flakes were acidified to improve the textural characteristics of the vermiculite. The modified vermiculite was analysed by XRD, FT-IR, BET and SEM to clarify the modification effect. The incorporation of modified vermiculite resulted in more than 80% retention of all heavy metals at 450°C. Cr, Cu and Zn were better retained than Pb and Cd. The incorporation of modified vermiculite effectively reduced the risk of heavy metals, and all risks were low for Pb, Cr, Cu and Zn. The toxicity of all heavy metals was greatly reduced by the incorporation of modified vermiculite and the morphology of heavy metals was transformed from Exchangeable and acid-soluble (F1) and Reducible (F2) to Oxidizable (F3) and Residual (F4). In addition, the increase in temperature favored the stabilization of heavy metal forms. This study provides a new insight into the cleaner use of energy and the safe management of solid waste.

Keywords: heavy metal, pyrolysis, vermiculite, solid waste

Procedia PDF Downloads 34
10376 Assessment of Pollutant Concentrations and Respiratory Tract Depositions of PM from Traffic Emissions: A Case Study of a Highway Toll Plaza in India

Authors: Nazneen, Aditya Kumar Patra

Abstract:

The aim of this study was to investigate the personal exposures of toll plaza workers on a busy national highway in India during the winter season to PM₂.₅, PM₁₀, BC (black carbon), and UFP (ultrafine particles). The results showed that toll workers inside the toll collection booths (ITC) were exposed to higher concentrations of air pollutants than those working outside the booths (OTC), except for UFP. Specifically, the concentrations of PM₂.₅ were 20₄.₇ µg m⁻³ (ITC) and 100.4 µg m⁻³ (OTC), while PM₁₀ concentrations were 326.1 µg m⁻³ (ITC) and 24₄.₇ µg m⁻³ (OTC), and BC concentrations were 30.7 µg m⁻³ (ITC) and 17.2 µg m⁻³ (OTC). In contrast, UFP concentrations were higher at OTC (11312.8 pt cm⁻³) than at IOC (7431.6 pt cm⁻³). The diurnal variation of pollutants showed higher concentrations in the evening due to increased traffic and less atmospheric dispersion. The respiratory deposition dose (RDD) of pollutants was higher inside the toll booths, especially during the evening. The study also revealed that PM particles consisted of soot, mineral and fly ash, which are proxies of fresh exhaust emissions, re-suspended road dust, and industrial emissions, respectively. The presence of Si, Al, Ca and Pb, as confirmed by EDX (Energy Dispersive X-ray analysis) analyses, indicated the sources of pollutants to be re-suspended road dust, brake/tire wear, and construction dust. The findings emphasize the need for policies to regulate air pollutant concentrations, particularly in workplaces situated near busy roads.

Keywords: air pollution, PM₂.₅, black carbon, traffic emissions

Procedia PDF Downloads 55
10375 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture

Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi

Abstract:

Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.

Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus

Procedia PDF Downloads 382
10374 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 107
10373 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant

Authors: Azad Khalid, Ime Akanyeti

Abstract:

About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.

Keywords: aeration, sewage sludge, food waste, sawdust, composting

Procedia PDF Downloads 45
10372 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 525