Search results for: tissue repair
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1973

Search results for: tissue repair

1853 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: repairable models, imperfect, availability, exponential distribution

Procedia PDF Downloads 262
1852 Implementation of Tissue Engineering Technique to Nursing of Unhealed Diabetic Foot Lesion

Authors: Basuki Supartono

Abstract:

Introduction: Diabetic wound risks limb amputation, and the healing remains challenging. Chronic Hyperglycemia caused the insufficient inflammatory response and impaired ability of the cells to regenerate. Tissue Engineering Technique is mandatory. Methods: Tissue engineering (TE)-based therapy Utilizing mononuclear cells, plasma rich platelets, and collagen applied on the damaged tissue Results: TE technique resulting in acceptable outcomes. The wound healed completely in 2 months. No adverse effects. No allergic reaction. No morbidity and mortality Discussion: TE-based therapy utilizing mononuclear cells, plasma rich platelets, and collagen are safe and comfortable to fix damaged tissues. These components stop the chronic inflammatory process and increase cells' ability for regeneration and restoration of damaged tissues. Both of these allow the wound to regenerate and heal. Conclusion: TE-based therapy is safe and effectively treats unhealed diabetic lesion.

Keywords: diabetic foot lesion, tissue engineering technique, wound healing, stemcells

Procedia PDF Downloads 51
1851 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 152
1850 Feature of Employment Injuries and Maintenance Works of Construction Machinery

Authors: Naoko Kanazawa, Tran Thi Bich Nguyet, Yoshiyuki Higuchi, Hideki Hamada

Abstract:

Construction machines’ condition is maintained with the regularly inspections, preventive maintenance and repairs by skillful and qualified engineers. If an accident occurs, there will be enormous influence such as human injuries, delays in the term of construction. In this paper, we revealed the characteristics such as inspection, maintenance and repair works for construction machines, and we also clarified the trends of employment injuries based on actual data by simple and cross tabulation methods, and investigated the relation with their works, injured body parts and accident types.

Keywords: construction machines, employment injuries, maintenance and repair, safety and health

Procedia PDF Downloads 269
1849 Depth of Penetration and Nature of Interferential Current in Cutaneous, Subcutaneous and Muscle Tissues

Authors: A. Beatti, L. Chipchase, A. Rayner, T. Souvlis

Abstract:

The aims of this study were to investigate the depth of interferential current (IFC) penetration through soft tissue and to investigate the area over which IFC spreads during clinical application. Premodulated IFC and ‘true’ IFC at beat frequencies of 4, 40 and 90Hz were applied via four electrodes to the distal medial thigh of 15 healthy subjects. The current was measured via three Teflon coated fine needle electrodes that were inserted into the superficial layer of skin, then into the subcutaneous tissue (≈1 cm deep) and then into muscle tissue (≈2 cm deep). The needle electrodes were placed in the middle of the four IFC electrodes, between two channels and outside the four electrodes. Readings were taken at each tissue depth from each electrode during each treatment frequency then digitized and stored for analysis. All voltages were greater at all depths and locations than baseline (p < 0.01) and voltages decreased with depth (P=0.039). Lower voltages of all currents were recorded in the middle of the four electrodes with the highest voltage being recorded outside the four electrodes in all depths (P=0.000).For each frequency of ‘true’ IFC, the voltage was higher in the superficial layer outside the electrodes (P ≤ 0.01).Premodulated had higher voltages along the line of one circuit (P ≤ 0.01). Clinically, IFC appears to pass through skin layers to depth and is more efficient than premodulated IFC when targeting muscle tissue.

Keywords: electrotherapy, interferential current, interferential therapy, medium frequency current

Procedia PDF Downloads 317
1848 Evaluation of Promoter Hypermethylation in Tissue and Blood of Non-Small Cell Lung Cancer Patients and Association with Survival

Authors: Ashraf Ali, Kriti Upadhyay, Puja Sohal, Anant Mohan, Randeep Guleria

Abstract:

Background: Gene silencing by aberrant promoter hypermethylation is common in lung cancer and is an initiating event in its development. Aim: To evaluate the gene promoter hypermethylation frequency in serum and tissue of lung cancer patients. Method: 95 newly diagnosed untreated advance stage lung cancer patients and 50 cancer free matched controls were studied. Bisulfite modification of tissue and serum DNA was done; modified DNA was used as a template for methylation-specific PCR analysis. Survival was assessed for one year. Results: Of 95 patients, 82% were non-small cell lung cancer (34% squamous cell carcinoma, 34% non-small cell lung cancer and 14% adenocarcinoma) and 18% were small cell lung cancer. Biopsy revealed that tissue of 89% and 75% of lung cancer patients and 85% and 52% of controls had promoter hypermethylated for MGMT (p=0.35) and p16(p<0.001) gene, respectively. In serum, 33% and 49% of lung cancer patients and 28% and 43% controls were positive for MGMT and p16 gene. No significant correlation was found between survival and clinico-pathological parameters. Conclusion: High gene promoter methylation frequency of p16 gene in tissue biopsy may be linked with early stages of carcinogenesis. Appropriate follow-up is required for confirmation of this finding.

Keywords: lung cancer, MS- PCR, methylation, molecular biology

Procedia PDF Downloads 163
1847 The Rupture Potential of Nerve Tissue Constrained Intracranial Saccular Aneurysm

Authors: M. Alam, P. Seshaiyer

Abstract:

The rupture predictability of intracranial aneurysm is one of the most important parameters for physicians in surgical treatment. As most of the intracranial aneurysms are asymptomatic, still the rupture potential of both symptomatic and asymptomatic lesions is relatively unknown. Moreover, an intracranial aneurysm constrained by a nerve tissue might be a common scenario for a physician to deal with during the treatment process. Here, we perform a computational modeling of nerve tissue constrained intracranial saccular aneurysm to show a protective role of constrained tissue on the aneurysm. A comparative parametric study of the model also performs taking long constraint, medium constraint, short constraint, point contact, narrow neck aneurysm, wide neck aneurysm as parameters for the analysis. Results show that contact constraint aneurysm generates less stress near the fundus compared to no constraint aneurysm, hence works as a protective wall for the aneurysm not to be ruptured.

Keywords: rupture potential, intracranial saccular aneurysm, anisotropic hyper-elastic material, finite element analysis

Procedia PDF Downloads 176
1846 The Effects of Separating Inferior Alveolar Neurovascular Bundles on Osteogenesis of Tissue-Engineered Bone and Vascularization

Authors: Lin Feng, E. Lingling, Hongchen Liu

Abstract:

In order to evaluate the effects of autologous blood vessels and nerves on vascularization. A dog model of tissue-engineered bone vascularization was established by constructing inferior alveolar neurovascular bundles through the mandibular canal. Sixteen 12-month-old healthy beagles were randomly divided into two groups (n=8). Group A retained inferior alveolar neurovascular bundles, and Group B retained inferior alveolar nerves. Bone marrow mesenchymal stem cells were injected into β-tricalcium phosphate to prepare internal tissue-engineered bone scaffold. A personalized titanium mesh was then prepared by rapid prototyping and fixed by external titanium scaffold. Two dogs in each group were sacrificed on the 30th, 45th, 60th, and 90th postoperative days respectively. The bone was visually examined, scanned by CT, and subjected to HE staining, immunohistochemical staining, vascular casting and PCR to detect the changes in osteogenesis and vascularization.The two groups had similar outcomes in regard to osteogenesis and vascularization (P>0.05) both showed remarkable regenerative capacities. The model of tissue-engineered bone vascularization is potentially applicable in clinical practice to allow satisfactory osteogenesis and vascularization.

Keywords: inferior alveolar neurovascular bundle, osteogenesis, tissue-engineered bone, vascularization

Procedia PDF Downloads 358
1845 Burn/Traumatic Scar Maturation Using Autologous Fat Grafts + SVF

Authors: Ashok K. Gupta

Abstract:

Over the past few decades, since the bio-engineering revolution, autologous cell therapy (ACT) has become a rapidly evolving field. Currently, this form of therapy has broad applications in modern medicine and plastic surgery, ranging from the treatment/improvement of wound healing to life-saving operations. A study was conducted on 50 patients having to disfigure, and deform post burn scars and was treated by injection of extracted, refined adipose tissue grafts with their unique stem cell properties. To compare the outcome, a control of 20 such patients was treated with conventional skin or soft-tissue flaps or skin grafting, and a control of 10 was treated with more advanced microsurgical techniques such as Pre-fabricated flaps/pre laminated flaps / free flaps. Assessment of fat volume and survival post- follow up period was done by radiological aid, using MRI and clinically (Survival of the autograft and objective parameters for scar elasticity were evaluated skin elasticity parameters 3 to 9 months postoperatively). Recently, an enzyme that is involved in collagen crosslinking in fibrotic tissue, lysyl hydroxylase (LH2), was identified. This enzyme is normally active in bone and cartilage but hardly in the skin. It has been found that this enzyme is highly expressed in scar tissue and subcutaneous fat; this is in contrast to the dermis, where the enzyme is hardly expressed. Adipose tissue-derived stem cell injections are an effective method in the treatment of various extensive post-burn scar deformities that makes it possible to re-create the lost sub-dermal tissue for improvement in the function of involved joint movements.

Keywords: adipose tissue-derived stem cell injections, treatment of various extensive post-burn scar deformities, re-create the lost sub-dermal tissue, improvement in function of involved joint movements

Procedia PDF Downloads 36
1844 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 for Neural Regeneration after Traumatic Brain Injury

Authors: Xiao-Yin Liu, Liang-Xue Zhou

Abstract:

Traumatic brain injury (TBI), as a kind of nerve trauma caused by an external force, affects people all over the world and is a global public health problem. Although there are various clinical treatments for brain injury, including surgery, drug therapy, and rehabilitation therapy, the therapeutic effect is very limited. To improve the therapeutic effect of TBI, scaffolds combined with exosomes are a promising but challenging method for TBI repair. In this study, we examined whether a novel 3D-printed collagen/chitosan scaffold/exosomes derived from neural stem cells (NSCs) pretreated with insulin growth factor-1 (IGF-I) scaffolds (3D-CC-INExos) could be used to improve TBI repair and functional recovery after TBI. Our results showed that composite scaffolds of collagen-, chitosan- and exosomes derived from NSCs pretreated with IGF-I (INExos) could continuously release the exosomes for two weeks. In the rat TBI model, 3D-CC-INExos scaffold transplantation significantly improved motor and cognitive function after TBI, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that the recovery of damaged nerve tissue in the injured area was significantly improved by 3D-CC-INExos implantation. In conclusion, our data suggest that 3D-CC-INExos might provide a potential strategy for the treatment of TBI and lay a solid foundation for clinical translation.

Keywords: traumatic brain injury, exosomes, insulin growth factor-1, neural stem cells, collagen, chitosan, 3D printing, neural regeneration, angiogenesis, functional recovery

Procedia PDF Downloads 42
1843 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements

Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono

Abstract:

The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.

Keywords: hip joint center, motion capture, soft tissue artefact, ultrasound depth measurement

Procedia PDF Downloads 253
1842 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats

Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar

Abstract:

Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.

Keywords: boldenone, Jujube extract, pancreases tissue, resistance training

Procedia PDF Downloads 44
1841 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network

Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed

Abstract:

Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.

Keywords: modeling, truck rental, supply chains management.

Procedia PDF Downloads 201
1840 A Method to Identify the Critical Delay Factors for Building Maintenance Projects of Institutional Buildings: Case Study of Eastern India

Authors: Shankha Pratim Bhattacharya

Abstract:

In general building repair and renovation projects are minor in nature. It requires less attention as the primary cost involvement is relatively small. Although the building repair and maintenance projects look simple, it involves much complexity during execution. Many of the present research indicate that few uncertain situations are usually linked with maintenance projects. Those may not be read properly in the planning stage of the projects, and finally, lead to time overrun. Building repair and maintenance become essential and periodical after commissioning of the building. In Institutional buildings, the regular maintenance projects also include addition –alteration, modification activities. Increase in the student admission, new departments, and sections, new laboratories and workshops, up gradation of existing laboratories are very common in the institutional buildings in the developing nations like India. The project becomes very critical because it undergoes space problem, architectural design issues, structural modification, etc. One of the prime factors in the institutional building maintenance and modification project is the time constraint. Mostly it required being executed a specific non-work time period. The present research considered only the institutional buildings of the Eastern part of India to analyse the repair and maintenance project delay. A general survey was conducted among the technical institutes to find the causes and corresponding nature of construction delay factors. Five technical institutes are considered in the present study with repair, renovation, modification and extension type of projects. Construction delay factors are categorically subdivided into four groups namely, material, manpower (works), Contract and Site. The survey data are collected for the nature of delay responsible for a specific project and the absolute amount of delay through proposed and actual duration of work. In the first stage of the paper, a relative importance index (RII) is proposed for the delay factors. The occurrence of the delay factors is also judged by its frequency-severity nature. Finally, the delay factors are then rated and linked with the type of work. In the second stage, a regression analysis is executed to establish an empirical relationship between the actual time of a project and the percentage of delay. It also indicates the impact of the factors for delay responsibility. Ultimately, the present paper makes an effort to identify the critical delay factors for the repair and renovation type project in the Eastern Indian Institutional building.

Keywords: delay factor, institutional building, maintenance, relative importance index, regression analysis, repair

Procedia PDF Downloads 230
1839 Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment

Authors: P. I. Bobyleva, E. R. Andreeva, I. V. Andrianova, E. V. Maslova, L. B. Buravkova

Abstract:

This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages.

Keywords: hematopoietic stem and progenitor cells, mesenchymal stromal cells, tissue-related oxygen, adipose tissue

Procedia PDF Downloads 397
1838 3D Electrode Carrier and its Implications on Retinal Implants

Authors: Diego Luján Villarreal

Abstract:

Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge density

Keywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices

Procedia PDF Downloads 75
1837 Bio-Functionalized Silk Nanofibers for Peripheral Nerve Regeneration

Authors: Kayla Belanger, Pascale Vigneron, Guy Schlatter, Bernard Devauchelle, Christophe Egles

Abstract:

A severe injury to a peripheral nerve leads to its degeneration and the loss of sensory and motor function. To this day, there still lacks a more effective alternative to the autograft which has long been considered the gold standard for nerve repair. In order to overcome the numerous drawbacks of the autograft, tissue engineered biomaterials may be effective alternatives. Silk fibroin is a favorable biomaterial due to its many advantageous properties such as its biocompatibility, its biodegradability, and its robust mechanical properties. In this study, bio-mimicking multi-channeled nerve guidance conduits made of aligned nanofibers achieved by electrospinning were functionalized with signaling biomolecules and were tested in vitro and in vivo for nerve regeneration support. Silk fibroin (SF) extracted directly from silkworm cocoons was put in solution at a concentration of 10wt%. Poly(ethylene oxide) (PEO) was added to the resulting SF solution to increase solution viscosity and the following three electrospinning solutions were made: (1) SF/PEO solution, (2) SF/PEO solution with nerve growth factor and ciliary neurotrophic factor, and (3) SF/PEO solution with nerve growth factor and neurotrophin-3. Each of these solutions was electrospun into a multi-layer architecture to obtain mechanically optimized aligned nanofibrous mats. For in vitro studies, aligned fibers were treated to induce β-sheet formation and thoroughly rinsed to eliminate presence of PEO. Each material was tested using rat embryo neuron cultures to evaluate neurite extension and the interaction with bio-functionalized or non-functionalized aligned fibers. For in vivo studies, the mats were rolled into 5mm long multi-, micro-channeled conduits then treated and thoroughly rinsed. The conduits were each subsequently implanted between a severed rat sciatic nerve. The effectiveness of nerve repair over a period of 8 months was extensively evaluated by cross-referencing electrophysiological, histological, and movement analysis results to comprehensively evaluate the progression of nerve repair. In vitro results show a more favorable interaction between growing neurons and bio-functionalized silk fibers compared to pure silk fibers. Neurites can also be seen having extended unidirectionally along the alignment of the nanofibers which confirms a guidance factor for the electrospun material. The in vivo study has produced positive results for the regeneration of the sciatic nerve over the length of the study, showing contrasts between the bio-functionalized material and the non-functionalized material along with comparisons to the experimental control. Nerve regeneration has been evaluated not only by histological analysis, but also by electrophysiological assessment and motion analysis of two separate natural movements. By studying these three components in parallel, the most comprehensive evaluation of nerve repair for the conduit designs can be made which can, therefore, more accurately depict their overall effectiveness. This work was supported by La Région Picardie and FEDER.

Keywords: electrospinning, nerve guidance conduit, peripheral nerve regeneration, silk fibroin

Procedia PDF Downloads 218
1836 An Exploration of the Pancreatic Cancer miRNome during the Progression of the Disease

Authors: Barsha Saha, Shouvik Chakravarty, Sukanta Ray, Kshaunish Das, Nidhan K. Biswas, Srikanta Goswami

Abstract:

Pancreatic Ductal Adenocarcinoma is a well-recognised cause of cancer death with a five-year survival rate of about 9%, and its incidence in India has been found to be increased manifold in recent years. Due to delayed detection, this highly metastatic disease has a poor prognosis. Several molecular alterations happen during the progression of the disease from pre-cancerous conditions, and many such alterations could be investigated for their biomarker potential. MicroRNAs have been shown to be prognostic for PDAC patients in a variety of studies. We hereby used NGS technologies to evaluate the role of small RNA changes during pancreatic cancer development from chronic pancreatitis. Plasma samples were collected from pancreatic cancer patients (n=16), chronic pancreatitis patients (n=8), and also from normal individuals (n=16). Pancreatic tumour tissue (n=5) and adjacent normal tissue samples (n=5) were also collected. Sequencing of small RNAs was carried out after small RNAs were isolated from plasma samples and tissue samples. We find that certain microRNAs are highly deregulated in pancreatic cancer patients in comparison to normal samples. A combinatorial analysis of plasma and tissue microRNAs and subsequent exploration of their targets and altered molecular pathways could not only identify potential biomarkers for disease diagnosis but also help to understand the underlying mechanism.

Keywords: small RNA sequencing, pancreatic cancer, biomarkers, tissue sample

Procedia PDF Downloads 62
1835 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor

Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo

Abstract:

The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.

Keywords: automated equipment, management, multi-beam sensor, pothole

Procedia PDF Downloads 201
1834 Gellan Gum/Gamma-Polyglutamic Acid and Glycerol Composited Membrane for Guiding Bone Regeneration

Authors: Chi-Chang Lin, Jiun-Yan Chiu

Abstract:

Periodontal disease, oral cancer relating trauma is the prominent factor devastating bone tissue that is crucial to reestablishing in clinical. As we know, common symptom, osteoporosis, and infection limiting the ability of the bone tissue to recover cause difficulty before implantation therapy. Regeneration of bone tissue is the fundamental therapy before surgical processes. To promote the growth of bone tissue, many commercial products still have sophisticated problems that need to overcome. Regrettably, there is no available material which is apparently preferable for releasing and controlling of loading dosage, or mitigating inflammation. In our study, a hydrogel-based composite membrane has been prepared by using Gellan gum (GG), gamma-polyglutamic acid (γ-PGA) and glycerol with simple sol-gel method. GG is a natural material that is massively adopted in cartilage. Unfortunately, the strength of pure GG film is a manifest weakness especially under simulating body fluidic conditions. We utilize another biocompatible material, γ-PGA as cross-linker which can form tri-dimension structure that enhancing the strength. Our result indicated the strength of pure GG membrane can be obviously improved by cross-linked with γ-PGA (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 w/v%). Besides, blending with glycerol (0, 1.0, 2.0, 3.0 w/v%) can significantly improve membrane toughness that corresponds to practical use. The innovative composited hydrogel made of GG, γ-PGA, and glycerol is attested with neat results including elongation and biocompatibility that take the advantage of extension covering major trauma. Recommendations are made for treatment to build up the foundation of bone tissue that would help patients to escape from the suffering and shorten the amount of time in recovery.

Keywords: bone tissue, gellan gum, regeneration, toughness

Procedia PDF Downloads 114
1833 Mechanical Characterization of Brain Tissue in Compression

Authors: Abbas Shafiee, Mohammad Taghi Ahmadian, Maryam Hoviattalab

Abstract:

The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the USA. The appropriate coefficients for injury prediction can be evaluated using experimental data. In this study, an experimental setup on brain soft tissue was developed to perform unconfined compression tests at quasistatic strain rates ∈0.0004 s-1 and 0.008 s-1 and 0.4 stress relaxation test under unconfined uniaxial compression with ∈ 0.67 s-1 ramp rate. The fitted visco-hyperelastic parameters were utilized by using obtained stress-strain curves. The experimental data was validated using finite element analysis (FEA) and previous findings. Also, influence of friction coefficient on unconfined compression and relaxation test and effect of ramp rate in relaxation test is investigated. Results of the findings are implemented on the analysis of a human brain under high acceleration due to impact.

Keywords: brain soft tissue, visco-hyperelastic, finite element analysis (FEA), friction, quasistatic strain rate

Procedia PDF Downloads 631
1832 The Influence of Polymorphisms of NER System Genes on the Risk of Colorectal Cancer in the Polish Population

Authors: Ireneusz Majsterek, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Jacek Kabzinski

Abstract:

Colorectal cancer (CRC) is one of the deadliest cancers. Every year we see an increase in the number of cases, and in spite of intensive research etiology of the disease remains unknown. For many years, researchers are seeking to associate genetic factors with an increased risk of CRC, so far it has proved to be a compelling link between the MMR system of DNA repair and hereditary nonpolyposis colorectal cancers (HNPCC). Currently, research is focused on finding the relationship between the remaining DNA repair systems and an increased risk of developing colorectal cancer. The aim of the study was to determine the relationship between gene polymorphisms Ser835Ser of XPF gene and Gly23Ala of XPA gene–elements of NER DNA repair system, and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 23Gly/Ala of XPA gene is associated with an increased risk of colorectal cancer, while 23Ala/Ala as well as TCT allele of Ser835Ser of XPF gene may reduce the risk of CRC.

Keywords: NER, colorectal cancer, XPA, XPF, polymorphisms

Procedia PDF Downloads 536
1831 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 429
1830 Accumulation of Phlorotannins in Abalone Haliotis discus Hannai after Feeding with Eisenia bicyclis

Authors: Bangoura Issa, Ji-Young Kang, M. T. H. Chowdhury, Ji-Eun Lee, Yong-Ki Hong

Abstract:

Investigation was carried out for the production of value-added abalone Haliotis discus hannai containing bioactive phlorotannin by feeding phlorotannin-rich seaweed Eisenia bicyclis 2 weeks prior to harvesting. Accumulation of phlorotannins was proceded by feeding with E. bicyclis after 4 days of starvation. HPLC purification afforded two major phlorotannins. Mass spectrometry and 1H-nuclear magnetic resonance analysis clarified their structures to be as 7-phloroeckol and eckol. Throughout the feeding period of 20 days, 7-phloroeckolol was accumulated in the muscle (foot muscle tissue) up to 0.18±0.12 mg g-1 dry weight of tissue after 12 days. Eckol reached 0.21±0.03 mg g-1 dry weight of tissue after 18 days. By feeding Laminaria japonica as reference, abalone showed no detection of phlorotannins in the muscle tissue. Seaweed consumption and growth rate of abalone revealed almost similar when feed with E. bicyclis or L. japonicain 20 days. Phlorotannins reduction to half-maximal accumulation values took 1.0 day and 2.7 days for 7-phloroeckol and eckol respectively, after replacing the feed to L. japonica.

Keywords: abalone, accumulation, eisenia bicyclis, phlorotannins

Procedia PDF Downloads 356
1829 Investigation of Astrocyte Physiology on Stiffness-Controlled Cellulose Acetate Nanofiber as a Tissue Scaffold

Authors: Sun Il Yu, Jung Hyun Joo, Hwa Sung Shin

Abstract:

Astrocytes are known as dominant cells in CNS and play a role as a supporter of CNS activity and regeneration. Recently, three-dimensional culture of astrocytes were actively applied to understand in vivo astrocyte works. Electrospun nanofibers are attractive for 3D cell culture system because they have a high surface to volume ratio and porous structure, and have already been used for 3D astrocyte cultures. In this research, the stiffness of cellulose acetate (CA) nanofiber was controlled by heat treatment. As stiffness increased, astrocyte cell viability and adhesion increased. Reactivity of astrocyte was also upregulated in stiffer CA nanofiber in terms of GFAP, an intermediate filament protein. Finally, we demonstrated that stiffness-controllable CA is attractive for astrocyte tissue engineering.

Keywords: astrocyte, cellulose acetate, nanofiber, tissue scaffold

Procedia PDF Downloads 325
1828 When and Why Unhappy People Avoid Enjoyable Experiences

Authors: Hao Shen, Aparna Labroo

Abstract:

Across four studies, we show people in a negative mood avoid anticipated enjoyable experiences because of the subjective difficulty in simulating those experiences, and they misattribute these feelings of difficulty to reduced pleasantness of the anticipated experience. We observe the avoidance of enjoyable experiences only for anticipated experiences that involve smile-like facial-muscular simulation. When the need for facial-muscular simulation is attenuated, or when the anticipated experience relies on facial-muscular simulation to a lesser extent, people in a negative mood no longer avoid enjoyable experiences, but rather seek such experiences because they fit better with their ongoing mood-repair goals.

Keywords: emotion regulation, mood repair, embodiment, anticipated experiences

Procedia PDF Downloads 391
1827 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 491
1826 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury

Procedia PDF Downloads 238
1825 The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model

Authors: Maryam Radan, Fereshteh Nejad Dehbashi, Vahid Bayati, Mahin Dianat, Seyyed Ali Mard, Zahra Mansouri

Abstract:

Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs.

Keywords: mesenchymal stem cell, emphysema, Intratracheal, systemic

Procedia PDF Downloads 180
1824 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair

Authors: Dafna Knani, Sarit S. Sivan

Abstract:

Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.

Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling

Procedia PDF Downloads 43