Search results for: peripheral nerve regeneration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1071

Search results for: peripheral nerve regeneration

1071 Bi-Layer Electro-Conductive Nanofibrous Conduits for Peripheral Nerve Regeneration

Authors: Niloofar Nazeri, Mohammad Ali Derakhshan, Reza Faridi Majidi, Hossein Ghanbari

Abstract:

Injury of peripheral nervous system (PNS) can lead to loss of sensation or movement. To date, one of the challenges for surgeons is repairing large gaps in PNS. To solve this problem, nerve conduits have been developed. Conduits produced by means of electrospinning can mimic extracellular matrix and provide enough surface for further functionalization. In this research, a conductive bilayer nerve conduit with poly caprolactone (PCL), poly (lactic acid co glycolic acid) (PLGA) and MWCNT for promoting peripheral nerve regeneration was fabricated. The conduit was made of longitudinally aligned PLGA nanofibrous sheets in the lumen to promote nerve regeneration and randomly oriented PCL nanofibers on the outer surface for mechanical support. The intra-luminal guidance channel was made out of conductive aligned nanofibrous rolled sheets which are coated with laminin via dopamine. Different properties of electrospun scaffolds were investigated by using contact angle, mechanical strength, degradation time, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM analysis was shown that size range of nanofibrous mat were about 600-750 nm and MWCNTs deposited between nanofibers. The XPS result was shown that laminin attached to the nanofibers surface successfully. The contact-angle and tensile tests analysis revealed that scaffolds have good hydrophilicity and enough mechanical strength. In vitro studies demonstrated that this conductive surface was able to enhance the attachment and proliferation of PC12 and Schwann cells. We concluded that this bilayer composite conduit has good potential for nerve regeneration.

Keywords: conductive, conduit, laminin, MWCNT

Procedia PDF Downloads 166
1070 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques.

Keywords: Close Loop Control (CLC), constant current, nerve locator, rheobase

Procedia PDF Downloads 226
1069 A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge

Authors: Esmaeil Biazar

Abstract:

A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model.

Keywords: sciatic regeneration, Schwann cell, artificial conduit, nanofibrous PHBV, histological assessments

Procedia PDF Downloads 298
1068 Peripheral Nerves Cross-Sectional Area for the Diagnosis of Diabetic Polyneuropathy: A Meta-Analysis of Ultrasonographic Measurements

Authors: Saeed Pourhassan, Nastaran Maghbouli

Abstract:

1) Background It has been hypothesized that, in individuals with diabetes mellitus, the peripheral nerve is swollen due to sorbitol over-accumulation. Additionally growing evidence supported electro diagnostic study of diabetes induced neuropathy as a method having some challenges. 2) Objective To examine the performance of sonographic cross-sectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN). 3) Data Sources Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020. 4) Study Selection Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included. 5) Data Extraction Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement. 6) Data Synthesis Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from five studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and mid-arm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from two studies for Sural nerve were 0.78 (95% CI, 0.68–0.89), and 0.68 (95% CI, 0.53–0.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve. 7) Conclusions The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24 mm2, this value can be considered as a cutoff point for diagnosing DPN.

Keywords: diabetes, diagnosis, polyneuropathy, ultrasound

Procedia PDF Downloads 98
1067 Bio-Functionalized Silk Nanofibers for Peripheral Nerve Regeneration

Authors: Kayla Belanger, Pascale Vigneron, Guy Schlatter, Bernard Devauchelle, Christophe Egles

Abstract:

A severe injury to a peripheral nerve leads to its degeneration and the loss of sensory and motor function. To this day, there still lacks a more effective alternative to the autograft which has long been considered the gold standard for nerve repair. In order to overcome the numerous drawbacks of the autograft, tissue engineered biomaterials may be effective alternatives. Silk fibroin is a favorable biomaterial due to its many advantageous properties such as its biocompatibility, its biodegradability, and its robust mechanical properties. In this study, bio-mimicking multi-channeled nerve guidance conduits made of aligned nanofibers achieved by electrospinning were functionalized with signaling biomolecules and were tested in vitro and in vivo for nerve regeneration support. Silk fibroin (SF) extracted directly from silkworm cocoons was put in solution at a concentration of 10wt%. Poly(ethylene oxide) (PEO) was added to the resulting SF solution to increase solution viscosity and the following three electrospinning solutions were made: (1) SF/PEO solution, (2) SF/PEO solution with nerve growth factor and ciliary neurotrophic factor, and (3) SF/PEO solution with nerve growth factor and neurotrophin-3. Each of these solutions was electrospun into a multi-layer architecture to obtain mechanically optimized aligned nanofibrous mats. For in vitro studies, aligned fibers were treated to induce β-sheet formation and thoroughly rinsed to eliminate presence of PEO. Each material was tested using rat embryo neuron cultures to evaluate neurite extension and the interaction with bio-functionalized or non-functionalized aligned fibers. For in vivo studies, the mats were rolled into 5mm long multi-, micro-channeled conduits then treated and thoroughly rinsed. The conduits were each subsequently implanted between a severed rat sciatic nerve. The effectiveness of nerve repair over a period of 8 months was extensively evaluated by cross-referencing electrophysiological, histological, and movement analysis results to comprehensively evaluate the progression of nerve repair. In vitro results show a more favorable interaction between growing neurons and bio-functionalized silk fibers compared to pure silk fibers. Neurites can also be seen having extended unidirectionally along the alignment of the nanofibers which confirms a guidance factor for the electrospun material. The in vivo study has produced positive results for the regeneration of the sciatic nerve over the length of the study, showing contrasts between the bio-functionalized material and the non-functionalized material along with comparisons to the experimental control. Nerve regeneration has been evaluated not only by histological analysis, but also by electrophysiological assessment and motion analysis of two separate natural movements. By studying these three components in parallel, the most comprehensive evaluation of nerve repair for the conduit designs can be made which can, therefore, more accurately depict their overall effectiveness. This work was supported by La Région Picardie and FEDER.

Keywords: electrospinning, nerve guidance conduit, peripheral nerve regeneration, silk fibroin

Procedia PDF Downloads 216
1066 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 229
1065 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 70
1064 Solitary Fibrous Tumor Presumed to Be a Peripheral Nerve Sheath Tumor Involving Right Branchial Plexus

Authors: Daniela Proca, Yuan Rong, Salvatore Luceno, Jalil Nasibli

Abstract:

Introduction: Solitary Fibrous Tumors (SFT) have many histologic mimickers and the only way to diagnose it, particularly in an unusual location, such as peripheral nerve trunks, is to use a comprehensive immunohistochemical staining panel. Monoclonal STAT6 immunostain is highly sensitive and specific for SFTs and particularly useful in the diagnosis of difficult SFT cases. Methods: We describe a solitary fibrous tumor (SFT) involving the right branchial plexus in a 66 yo female with 4-year history of slowly growing chest wall mass with recent dysesthesias in fingers 4th and 5th. MRI showed a well-circumscribed heterogenous mass measuring 5.4 x 3.8 x 4.0 cm and encircling peripheral nerves of the branchial plexus; no involvement of the bone or muscle was noted. A biopsy showed a bland spindled and epithelioid proliferation with no significant mitotic activity, no necrosis, and no atypia; peripheral nerve fascicles were encircled by the lesion. The main clinical and pathologic differential diagnosis included peripheral nerve sheath tumor, particularly schwannoma; HE microscopy didn’t show the classic Antoni A and B areas but showed focal subtle nuclear palisading, as well as prominent vessels with hyalinization. Immunohistochemical stains showed focal, weak cytoplasmic S100 positivity in the lesion; CD 34 and Vimentin were strongly and diffusely positive; the neoplastic cells were negative with AE1/AE3, EMA, CD31, SMA, Desmin, Calretinin, HMB-45, Melan A, PAX-8, NSE. The immunohistochemical and histologic pattern was not typical of peripheral nerve sheath tumor. On additional stains, the tumor was positive with STAT-6 and bcl-2 and focally positive with CD99. Given this profile, the final diagnosis was that of a solitary fibrous tumor. Results: NA Conclusion: Very few SFTs involving peripheral nerves and mimicking a peripheral nerve sheath tumor are described in the literature. Although histologically benign on this biopsy, long-term follow-up is required because of the risk of recurrence of these tumors and their uncertain biological behavior.

Keywords: solitary fibrous tumor, pathology, diagnosis, immunohistochemistry

Procedia PDF Downloads 157
1063 Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study

Authors: Suchana Marahatta, Sabina Bhattarai, Bishnu Hari Paudel, Dilip Thakur

Abstract:

Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies.

Keywords: leprosy, nerve function impairment, neuropathy, nerve conduction study

Procedia PDF Downloads 287
1062 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 72
1061 Peripheral Neuropathiy After Locoregional Anesthesia

Authors: Dalila Chaid, Yacine Houmel, Mohamed Lamine Belloulou

Abstract:

Peripheral neuropathy is a rare but worrying complication of peripheral local anaesthesia. It is caused either by needle contact with the nerve root or by the direct toxicity of local anaesthetics, leading to nerve damage, injury or irritation. Although uncommon, it remains a major concern for anaesthetists. The aim of the study was to assess the prevalence of nerve block-associated neuropathy in knee surgery and to identify the contributing factors in order to minimise the occurrence of this complication. The study also assessed the severity and evolution of lesions, as well as the factors leading to neuropathic pain. Methodology: It is a retrospective observational study on cases of neuropathy related to nerve blocks of the lower limb for knee surgery over a period of seven years (2016-2022). The study included a total of 6,000 patients Analyse the anaesthetic and neuropathic pain-related parameters received from these patients to determine the prevalence and severity of neuropathy. Findings: the prevalence of nerve block-related neuropathy in our study is 5.8‰ for the sciatic nerve and 0.9‰ for the femoral nerve. This was higher compared to the reported rates in the literature, which were between 0.0 to 5‰ for the Sciatic nerve and 0.0 to 3.4‰ for the femoral nerve. These findings highlight the importance of identifying and implementing an ideal anesthesia procedure to reduce the risk of neuropathy associated with nerve blocks. Theoretical Importance: The findings of this study contribute to the existing literature on peripheral neuropathy following locoregional anesthesia. By identifying the prevalence and severity of neuropathy related to nerve blocks, as well as the underlying factors, we provide valuable insights for anesthetists to improve patient safety. This study also emphasizes the need for compliance with technical safety rules to minimize the occurrence of neuropathy. Data Collection and Analysis Procedures: For this study, 25 clinics with retrospective data were collected of neuropathy associated with nerve blocks for knee surgery over a span of seven years. Parameters related to anaesthesia and neuropathic pain were analysed to determine prevalence,severity, and progression of neuropathy. Comparison of our results with the existing literature in order to assess their significance. Questions Addressed: This study aims to define the following points: 1. The prevalence of neuropathy associated with nerve blocks for knee surgery. 2. The factors underlying the development of neuropathy after nerve blocks. 3. Reducing the risk of neuropathy by complying with technical safety rules. 4. Assessing the severity and evolution of neuropathic pain in these cases. Conclusion: this study highlights the need for careful consideration and implementation of anesthesia procedures during nerve blocks for knee surgery. The prevalence of neuropathy linked to these blocks was higher compared to the literature, emphasizing the importance of identifying and minimizing contributing factors. Compliance with technical safety rules is crucial to reduce the risk of peripheral neuropathy. This study provides valuable insights to anesthetists and contributes to improving patient safety in the field of locoregional anesthesia.

Keywords: phantom limb, neuropathic pain, lower limb amputee, ultrasound-guided locoreginal anesthesia

Procedia PDF Downloads 32
1060 Peripheral Facial Nerve Palsy after Lip Augmentation

Authors: Sana Ilyas, Kishalaya Mukherjee, Suresh Shetty

Abstract:

Lip Augmentation has become more common in recent years. Patients do not expect to experience facial palsy after having lip augmentation. This poster will present the findings of such a presentation and will discuss the possible pathophysiology and management. (This poster has been published as a paper in the dental update, June 2022) Aim: The aim of the study was to explore the link between facial nerve palsy and lip fillers, to explore the literature surrounding facial nerve palsy, and to discuss the case of a patient who presented with facial nerve palsy with seemingly unknown cause. Methodology: There was a thorough assessment of the current literature surrounding the topic. This included published papers in journals through PubMed database searches and printed books on the topic. A case presentation was discussed in detail of a patient presenting with peripheral facial nerve palsy and associating it with lip augmentation that she had a day prior. Results and Conclusion: Even though the pathophysiology may not be clear for this presentation, it is important to highlight uncommon presentations or complications that may occur after treatment. This can help with understanding and managing similar cases, should they arise.It is also important to differentiate cause and association in order to make an accurate diagnosis. This may be difficult if there is little scientific literature. Therefore, further research can help to improve the understanding of the pathophysiology of similar presentations. This poster has been published as a paper in dental update, June 2022, and therefore shares a similar conclusiom.

Keywords: facial palsy, lip augmentation, causation and correlation, dental cosmetics

Procedia PDF Downloads 115
1059 The Effect of Vitamin "E" on the Peripheral Neurotoxicity of Antimony in Adult Male Albino Rat

Authors: Pymaneh Bairami Rad

Abstract:

The present work was planned with the aim to study the histological changes that might occur in the sciatic nerve of adult male albino rat following antimony trioxide exposure and to throw more light on the protective role of vitamin "E" on the peripheral neurotoxicity induced by this environmental toxin Sixty adult male albino rats, weighing 183 - 235 grams, were utilized in this work. The animals were divided into 3 groups; each of 20 rats: animals of group I served as control, animals of group II received antimony trioxide daily for 12 successive weeks , animals of group III received antimony trioxide and vitamin "E" daily for the same duration. Antimony trioxide was given in a daily dose of 500 mg/ kg body weight which represents 1/40 of the known LD50 and vitamin "E" was administered in a daily dose of 300 mg/kg body weight. Both antimony trioxide and vitamin "E" were given to the animals by gastric intubation. This research revealed many histological changes in the sciatic nerve, following exposure to antimony trioxide, including Wallerian degeneration in most myelinated nerve fibers with pleomorphic destruction, fragmentation, loss of normal lamination and rupture of myelin sheaths. The axoplasms of these nerve fibers were irregular, degenerated and contained myelin fragments with loss of neurofibrils. Obvious increase in endoneurium was also observed. Concomitant administration of vitamin "E" with antimony trioxide resulted in marked improvement in the histological changes observed in the sciatic nerve.

Keywords: neurotoxicity, antimony, vitamin e, anatomy, histology

Procedia PDF Downloads 402
1058 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 142
1057 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 100
1056 Biocompatibility Tests for Chronic Application of Sieve-Type Neural Electrodes in Rats

Authors: Jeong-Hyun Hong, Wonsuk Choi, Hyungdal Park, Jinseok Kim, Junesun Kim

Abstract:

Identifying the chronic functions of an implanted neural electrode is an important factor in acquiring neural signals through the electrode or restoring the nerve functions after peripheral nerve injury. The purpose of this study was to investigate the biocompatibility of the chronic implanted neural electrode into the sciatic nerve. To do this, a sieve-type neural electrode was implanted at proximal and distal ends of a transected sciatic nerve as an experimental group (Sieve group, n=6), and the end-to-end epineural repair was operated with the cut sciatic nerve as a control group (reconstruction group, n=6). All surgeries were performed on the sciatic nerve of the right leg in Sprague Dawley rats. Behavioral tests were performed before and 1, 4, 7, 10, 14, and weekly days until 5 months following surgery. Changes in sensory function were assessed by measuring paw withdrawal responses to mechanical and cold stimuli. Motor function was assessed by motion analysis using a Qualisys program, which showed a range of motion (ROM) related to the joints. Neurofilament-heavy chain and fibronectin expression were detected 5 months after surgery. In both groups, the paw withdrawal response to mechanical stimuli was slightly decreased from 3 weeks after surgery and then significantly decreased at 6 weeks after surgery. The paw withdrawal response to cold stimuli was increased from 4 days following surgery in both groups and began to decrease from 6 weeks after surgery. The ROM of the ankle joint was showed a similar pattern in both groups. There was significantly increased from 1 day after surgery and then decreased from 4 days after surgery. Neurofilament-heavy chain expression was observed throughout the entire sciatic nerve tissues in both groups. Especially, the sieve group was showed several neurofilaments that passed through the channels of the sieve-type neural electrode. In the reconstruction group, however, a suture line was seen through neurofilament-heavy chain expression up to 5 months following surgery. In the reconstruction group, fibronectin was detected throughout the sciatic nerve. However, in the sieve group, the fibronectin was observed only in the surrounding nervous tissues of an implanted neural electrode. The present results demonstrated that the implanted sieve-type neural electrode induced a focal inflammatory response. However, the chronic implanted sieve-type neural electrodes did not cause any further inflammatory response following peripheral nerve injury, suggesting the possibility of the chronic application of the sieve-type neural electrodes. This work was supported by the Basic Science Research Program funded by the Ministry of Science (2016R1D1A1B03933986), and by the convergence technology development program for bionic arm (2017M3C1B2085303).

Keywords: biocompatibility, motor functions, neural electrodes, peripheral nerve injury, sensory functions

Procedia PDF Downloads 110
1055 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors

Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran

Abstract:

Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.

Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold

Procedia PDF Downloads 209
1054 Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study

Authors: Oya Umit Yemisci, Nur Saracgil Cosar, Tubanur Ozturk Sisman, Selin Ozen

Abstract:

Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT.

Keywords: sympathetic skin response, simple reaction time, chronic autoimmune thyroiditis

Procedia PDF Downloads 113
1053 Optic Nerve Sheath Measurement in Children with Head Trauma

Authors: Sabiha Sahin, Kursad Bora Carman, Coskun Yarar

Abstract:

Introduction: Measuring the diameter of the optic nerve sheath is a noninvasive and easy to use imaging technique to predict intracranial pressure in children and adults. The aim was to measure the diameter of the optic nerve sheath in pediatric head trauma. Methods: The study group consisted of 40 children with healthy and 40 patients with head trauma. Transorbital sonographic measurement of the optic nerve sheath diameter was performed. Conclusion: The mean diameters of the optic nerve sheath of right and left eyes were 0.408 ± 0.064 mm and 0.417 ± 0.065 mm, respectively, in the trauma group. These results were higher in patients than in control group. There was a negative correlation between optic nerve sheath diameters and Glasgow Coma Scales in patients with head trauma (p < 0.05). There was a positive correlation between optic nerve sheath diameters and positive CT findings, systolic blood pressure in patients with head trauma. The clinical status of the patients at admission, blood pH and lactate level were related to the optic nerve sheath diameter. Conclusion: Measuring the diameter of the optic nerve sheath is not an invasive technique and can be easily used to predict increased intracranial pressure and to prevent secondary brain injury.

Keywords: head trauma, intracranial pressure, optic nerve, sonography

Procedia PDF Downloads 120
1052 Comparison of Regional and Local Indwelling Catheter Techniques to Prolong Analgesia in Total Knee Arthroplasty Procedures: Continuous Peripheral Nerve Block and Continuous Periarticular Infiltration

Authors: Jared Cheves, Amanda DeChent, Joyce Pan

Abstract:

Total knee replacements (TKAs) are one of the most common but painful surgical procedures performed in the United States. Currently, the gold standard for postoperative pain management is the utilization of opioids. However, in the wake of the opioid epidemic, the healthcare system is attempting to reduce opioid consumption by trialing innovative opioid sparing analgesic techniques such as continuous peripheral nerve blocks (CPNB) and continuous periarticular infiltration (CPAI). The alleviation of pain, particularly during the first 72 hours postoperatively, is of utmost importance due to its association with delayed recovery, impaired rehabilitation, immunosuppression, the development of chronic pain, the development of rebound pain, and decreased patient satisfaction. While both CPNB and CPAI are being used today, there is limited evidence comparing the two to the current standard of care or to each other. An extensive literature review was performed to explore the safety profiles and effectiveness of CPNB and CPAI in reducing reported pain scores and decreasing opioid consumption. The literature revealed the usage of CPNB contributed to lower pain scores and decreased opioid use when compared to opioid-only control groups. Additionally, CPAI did not improve pain scores or decrease opioid consumption when combined with a multimodal analgesic (MMA) regimen. When comparing CPNB and CPAI to each other, neither unanimously lowered pain scores to a greater degree, but the literature indicates that CPNB decreased opioid consumption more than CPAI. More research is needed to further cement the efficacy of CPNB and CPAI as standard components of MMA in TKA procedures. In addition, future research can also focus on novel catheter-free applications to reduce the complications of continuous catheter analgesics.

Keywords: total knee arthroplasty, continuous peripheral nerve blocks, continuous periarticular infiltration, opioid, multimodal analgesia

Procedia PDF Downloads 54
1051 A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording

Authors: Ning Xue, Srinivas Merugu, Ignacio Delgado Martinez, Tao Sun, John Tsang, Shih-Cheng Yen

Abstract:

We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals.

Keywords: impedance, neural interface, split-ring electrode, neural signal recording

Procedia PDF Downloads 338
1050 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics

Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh

Abstract:

Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.

Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters

Procedia PDF Downloads 527
1049 Examining the Change of Power Transmission Line in Urban Regeneration with Geographical Information System

Authors: C. Yagci, F. Iscan

Abstract:

In this study, spatial differences of Power Transmission Line (PTL) and effects of the situation before and after the urban regeneration are studied by using Geographical Information System (GIS). In addition, a questionable and analyzable structure is acquired by developed system. In the study area many parcels on the PTL were analyzed. The amount of the parcels, which are affected by the negativity of PTL is clearly seen with the aid of generated maps. Some kind of changes are exhibited in the system, which are created by GIS, for instance before urban regeneration PTL was very close to people’s private properties and huge parts of PTL were among the buildings, however; after urban regeneration electricity lines were changed their locations to the underground. According to the results, GIS can be used as a device in planning and managing of PTL in urban regeneration projects and can be used for analyses. By the help of GIS technology, necessary investigations should be carried out in urban regeneration applications for creating sustainable cities.

Keywords: GIS, power transmission line, technology, urban regeneration

Procedia PDF Downloads 734
1048 Comparison of Urban Regeneration Strategies in Asia and the Development of Neighbourhood Regeneration in Malaysia

Authors: Wan Jiun Tin

Abstract:

Neighborhood regeneration has gained its popularity despite market-led urban redevelopment is still the main strategy in most of the countries in Asia. Area-based approach of neighborhood regeneration with the focus on people, place and system which covers the main sustainable aspects shall be studied as part of the solution. Project implementation in small scale without fully depending on the financial support from the government and main stakeholders is the advantage of neighborhood regeneration. This enables the improving and upgrading of living conditions to be ongoing even during the economy downturn. In addition to that, there will be no specific selection on the development areas as the entire nation share the similar opportunity to upgrade and to improve their neighborhood. This is important to narrow the income disparities in urban. The objective of this paper is to review and to summarize the urban regeneration in developed countries with the focus on Korea, Singapore and Hong Kong. The aim is to determine the direction of sustainable urban regeneration in Malaysia for post-Vision 2020 through the introduction of neighborhood regeneration. This paper is conducted via literature review and observations in those selected countries. In conclusion, neighborhood regeneration shall be one of the approach of sustainable urban regeneration in Malaysia. A few criteria have been identified and to be recommended for the adaptation in Malaysia.

Keywords: area-based regeneration, public participation, sustainable urban regeneration, urban redevelopment

Procedia PDF Downloads 241
1047 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 456
1046 Evaluating the Logistic Performance Capability of Regeneration Processes

Authors: Thorben Kuprat, Julian Becker, Jonas Mayer, Peter Nyhuis

Abstract:

For years now, it has been recognized that logistic performance capability contributes enormously to a production enterprise’s competitiveness and as such is a critical control lever. In doing so, the orientation on customer wishes (e.g. delivery dates) represents a key parameter not only in the value-adding production but also in product regeneration. Since production and regeneration processes have different characteristics, production planning and control measures cannot be directly transferred to regeneration processes. As part of a special research project, the Institute of Production Systems and Logistics Hannover is focused on increasing the logistic performance capability of regeneration processes for complex capital goods. The aim is to ensure logistic targets are met by implementing a model specifically designed to align the capacities and load in regeneration processes.

Keywords: capacity planning, complex capital goods, logistic performance, regeneration process

Procedia PDF Downloads 456
1045 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome and Effect on Median Ersus Ulnar Comparative Studies

Authors: Emmanuel K. Aziz Saba, Sarah S. El-Tawab

Abstract:

Objectives: Carpal tunnel syndrome (CTS) was found to be associated with high pressure within the Guyon’s canal. The aim of this study was to assess the involvement of sensory and/or motor ulnar nerve fibers in patients with CTS and whether this affects the accuracy of the median versus ulnar sensory and motor comparative tests. Patients and methods: The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done for all patients. The following tests were done for the patients and control: (1) Sensory conduction studies: median nerve, ulnar nerve, dorsal ulnar cutaneous nerve and median versus ulnar digit (D) four sensory comparative study; (2) Motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. Results: There were no statistically significant differences between patients and control group as regards parameters of ulnar motor study and dorsal ulnar cutaneous sensory conduction study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were statistically significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. There were statistically significant positive correlations between median sensory conduction velocity and both ulnar sensory nerve action potential amplitude recording D5 and D4. Conclusions: There is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. The presence of abnormalities in ulnar nerve occurs in moderate and severe degrees of CTS. This does not affect the median versus ulnar sensory and motor comparative tests accuracy and validity for use in electrophysiological diagnosis of CTS.

Keywords: carpal tunnel syndrome, ulnar nerve, median nerve, median versus ulnar comparative study, dorsal ulnar cutaneous nerve

Procedia PDF Downloads 534
1044 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device

Authors: Won Jun Jo, Man Young Kim

Abstract:

To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.

Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics

Procedia PDF Downloads 261
1043 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome Not Affecting Median versus Ulnar Comparative Studies

Authors: Emmanuel Kamal Aziz Saba, Sarah Sayed El-Tawab

Abstract:

The present study was conducted to assess the involvement of ulnar sensory and/or motor nerve fibers in patients with carpal tunnel syndrome (CTS) and whether this affects the accuracy of the median versus ulnar comparative tests. The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done. The following tests were done: Sensory conduction studies: median, ulnar and dorsal ulnar cutaneous nerves; and median versus ulnar digit (D) four sensory comparative study; and motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. In conclusion, there is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. This does not affect the median versus ulnar sensory and motor comparative tests accuracy for use in CTS.

Keywords: median nerve, motor comparative study, sensory comparative study, ulnar nerve

Procedia PDF Downloads 400
1042 Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media

Authors: Nour Ismail, Sahar El Kardawy, Bassant Badwy

Abstract:

Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in a nonhomogenous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and nonhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of a nonhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size.

Keywords: finite element model, nerve lesioning, pain relief, radiofrequency lesion

Procedia PDF Downloads 379