Search results for: thermostatically controlled appliances
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2482

Search results for: thermostatically controlled appliances

2332 Localization of Near Field Radio Controlled Unintended Emitting Sources

Authors: Nurbanu Guzey, S. Jagannathan

Abstract:

Locating radio controlled (RC) devices using their unintended emissions has a great interest considering security concerns. Weak nature of these emissions requires near field localization approach since it is hard to detect these signals in far field region of array. Instead of only angle estimation, near field localization also requires range estimation of the source which makes this method more complicated than far field models. Challenges of locating such devices in a near field region and real time environment are analyzed in this paper. An ESPRIT like near field localization scheme is utilized for both angle and range estimation. 1-D search with symmetric subarrays is provided. Two 7 element uniform linear antenna arrays (ULA) are employed for locating RC source. Experiment results of location estimation for one unintended emitting walkie-talkie for different positions are given.

Keywords: localization, angle of arrival (AoA), range estimation, array signal processing, ESPRIT, Uniform Linear Array (ULA)

Procedia PDF Downloads 493
2331 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 18
2330 Impact of Pharmacist-Led Care on Glycaemic Control in Patients with Type 2 Diabetes: A Randomised-Controlled Trial

Authors: Emmanuel A. David, Rebecca O. Soremekun, Roseline I. Aderemi-Williams

Abstract:

Background: The complexities involved in the management of diabetes mellitus require a multi-dimensional, multi-professional collaborative and continuous care by health care providers and a substantial self-care by the patients in order to achieve desired treatment outcomes. The effect of pharmacists’ care in the management of diabetes in resource-endowed nations is well documented in literature, but randomised-controlled assessment of the impact of pharmacist-led care among patients with diabetes in resource-limited settings like Nigeria and sub-Saharan Africa countries is scarce. Objective: To evaluate the impact of Pharmacist-led care on glycaemic control in patients with uncontrolled type 2 diabetes, using a randomised-controlled study design Methods: This study employed a prospective randomised controlled design, to assess the impact of pharmacist-led care on glycaemic control of 108 poorly controlled type 2 diabetic patients. A total of 200 clinically diagnosed type 2 diabetes patients were purposively selected using fasting blood glucose ≥ 7mmol/L and tested for long term glucose control using Glycated haemoglobin measure. One hundred and eight (108) patients with ≥ 7% Glycated haemoglobin were recruited for the study and assigned unique identification numbers. They were further randomly allocated to intervention and usual care groups using computer generated random numbers, with each group containing 54 subjects. Patients in the intervention group received pharmacist-structured intervention, including education, periodic phone calls, adherence counselling, referral and 6 months follow-up, while patients in usual care group only kept clinic appointments with their physicians. Data collected at baseline and six months included socio-demographic characteristics, fasting blood glucose, Glycated haemoglobin, blood pressure, lipid profile. With an intention to treat analysis, Mann-Whitney U test was used to compared median change from baseline in the primary outcome (Glycated haemoglobin) and secondary outcomes measure, effect size was computed and proportion of patients that reached target laboratory parameter were compared in both arms. Results: All enrolled participants (108) completed the study, 54 in each study. Mean age was 51±11.75 and majority were female (68.5%). Intervention patients had significant reduction in Glycated haemoglobin (-0.75%; P<0.001; η2 = 0.144), with greater proportion attaining target laboratory parameter after 6 months of care compared to usual care group (Glycated haemoglobin: 42.6% vs 20.8%; P=0.02). Furthermore, patients who received pharmacist-led care were about 3 times more likely to have better glucose control (AOR 2.718, 95%CI: 1.143-6.461) compared to usual care group. Conclusion: Pharmacist-led care significantly improved glucose control in patients with uncontrolled type 2 diabetes mellitus and should be integrated in the routine management of diabetes patients, especially in resource-limited settings.

Keywords: glycaemic control , pharmacist-led care, randomised-controlled trial , type 2 diabetes mellitus

Procedia PDF Downloads 93
2329 Reduction Shrinkage of Concrete without Use Reinforcement

Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad

Abstract:

Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.

Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash

Procedia PDF Downloads 162
2328 Motivation for Therapy in Clinical Social Work in Kuwait

Authors: Hend Almaseb

Abstract:

​The motivational model proposed by Self-Determination Theory provided an explanation for clients’ motivation for therapy. Among a sample of 78 inpatient residents in the Addiction Treatment Center, this study examined the relationship between three types of motivation (Autonomous, Controlled, and Amotivation) and each of the following variables: Age, Marital Status, Educational Level of Participant, and Number of Years of Addiction. In addition, the study investigated whether or not the participants are motivated to receive therapy. The results showed 1) a significant relationship between Controlled Motivation and the following variables: Age, Marital Status, and Number of Years of Addiction; 2) a significant relationship between Autonomous Motivation and Number of Years of Addiction; and a significant relationship between Educational Level and Amotivation. The results also illustrated that the participants of this study were not motivated to seek therapy.

Keywords: addiction, clinical social work, motivation, self-determination

Procedia PDF Downloads 354
2327 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Authors: L. Ramirez, E. Guillén, J. Sánchez

Abstract:

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Keywords: analytics, telemedicine, internet of things, cloud computing

Procedia PDF Downloads 292
2326 Management of Postoperative Pain, Intercultural Differences Among Registered Nurses: Czech Republic and Kingdom of Saudi Arabia

Authors: Denisa Mackova, Andrea Pokorna

Abstract:

The management of postoperative pain is a meaningful part of quality care. The experience and knowledge of registered nurses in postoperative pain management can be influenced by local know-how. Therefore, the research helps to understand the cultural differences between two countries with the aim of evaluating the management of postoperative pain management among the nurses from the Czech Republic and the Kingdom of Saudi Arabia. Both countries have different procedures on managing postoperative pain and the research will provide an understanding of both the advantages and disadvantages of the procedures and also highlight the knowledge and experience of registered nurses in both countries. Between the Czech Republic and the Kingdom of Saudi Arabia, the expectation is for differing results in the usage of opioid analgesia for the patients postoperatively and in the experience of registered nurses with Patient Controlled Analgesia. The aim is to evaluate the knowledge and awareness of registered nurses and to merge the data with the postoperative pain management in the early postoperative period in the Czech Republic and the Kingdom of Saudi Arabia. Also, the aim is to assess the knowledge and experience of registered nurses by using Patient Controlled Analgesia and epidural analgesia treatment in the early postoperative period. The criteria for those providing input into the study, are registered nurses, working in surgical settings (standard departments, post-anesthesia care unit, day care surgery or ICU’s) caring for patients in the postoperative period. Method: Research is being conducted by questionnaires. It is a quantitative research, a comparative study of registered nurses in the Czech Republic and the Kingdom of Saudi Arabia. Questionnaire surveys were distributed through an electronic Bristol online survey. Results: The collection of the data in the Kingdom of Saudi Arabia has been completed successfully, with 550 respondents, 77 were excluded and 473 respondents were included for statistical data analysis. The outcome of the research is expected to highlight the differences in treatment through Patient Controlled Analgesia, with more frequent use in the Kingdom of Saudi Arabia. A similar assumption is expected for treatment conducted by analgesia. We predict that opioids will be used more regularly in the Kingdom of Saudi Arabia, whilst therapy through NSAID’s being the most common approach in the Czech Republic. Discussion/Conclusion: The majority of respondents from the Kingdom of Saudi Arabia were female registered nurses from a multitude of nations. We are expecting a similar split in gender between the Czech Republic respondents; however, there will be a smaller number of nationalities. Relevance for research and practice: Output from the research will assess the knowledge, experience and practice of patient controlled analgesia and epidural analgesia treatment. Acknowledgement: This research was accepted and affiliated to the project: Postoperative pain management, knowledge and experience registered nurses (Czech Republic and Kingdom of Saudi Arabia) – SGS05/2019-2020.

Keywords: acute postoperative pain, epidural analgesia, nursing care, patient controlled analgesia

Procedia PDF Downloads 151
2325 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.

Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis

Procedia PDF Downloads 372
2324 Sliding Mode Speed Controller of Photovoltaic Pumping System

Authors: Kessal Abdelhalim, Zebiri Fouad, Rahmani Lazhar

Abstract:

This paper presents an analysis by which the dynamic performances of a permanent magnet brushless DC (PMBLDC) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the photovoltaic pumping drive system with sliding mode speed controllers are presented. The proposed structure is constituted of photovoltaic generator associated to DC-DC converter controlled by fuzzy logic to ensure the maximum power point tracking. The PWM signals are generated by the interaction of the motor speed closed-loop system and the current hysteresis. The motor reference current is compared with the motor speed feedback signal. The considered model has been implemented in Matlab/Simpower environment. The results show the effectiveness of the proposed method to increase the performance of the water pumping system.

Keywords: photovoltaic, permanent magnet brushless DC (PMBLDC) motor, MPPT, speed control, fuzzy, sliding mode

Procedia PDF Downloads 652
2323 Controlled Digital Lending, Equitable Access to Knowledge and Future Library Services

Authors: Xuan Pang, Alvin L. Lee, Peggy Glatthaar

Abstract:

Libraries across the world have been an innovation engine of creativity and opportunityin many decades. The on-going global epidemiology outbreak and health crisis experience illuminates potential reforms, rethinking beyond traditional library operations and services. Controlled Digital Lending (CDL) is one of the emerging technologies libraries used to deliver information digitally in support of online learning and teachingand make educational materials more affordable and more accessible. CDL became a popular term in the United States of America (USA) as a result of a white paper authored by Kyle K. Courtney (Harvard University) and David Hansen (Duke University). The paper gave the legal groundwork to explore CDL: Fair Use, First Sale Doctrine, and Supreme Court rulings. Library professionals implemented this new technology to fulfill their users’ needs. Three libraries in the state of Florida (University of Florida, Florida Gulf Coast University, and Florida A&M University) started a conversation about how to develop strategies to make CDL work possible at each institution. This paper shares the stories of piloting and initiating a CDL program to ensure students have reliable, affordable access to course materials they need to be successful. Additionally, this paper offers an overview of the emerging trends of Controlled Digital Lending in the USA and demonstrates the development of the CDL platforms, policies, and implementation plans. The paper further discusses challenges and lessons learned and how each institution plans to sustain the program into future library services. The fundamental mission of the library is providing users unrestricted access to library resources regardless of their physical location, disability, health status, or other circumstances. The professional due diligence of librarians, as information professionals, is to makeeducational resources more affordable and accessible.CDL opens a new frontier of library services as a mechanism for library practice to enhance user’s experience of using libraries’ services. Libraries should consider exploring this tool to distribute library resources in an effective and equitable way. This new methodology has potential benefits to libraries and end users.

Keywords: controlled digital lending, emerging technologies, equitable access, collaborations

Procedia PDF Downloads 104
2322 Active Power Flow Control Using a TCSC Based Backstepping Controller in Multimachine Power System

Authors: Naimi Abdelhamid, Othmane Abdelkhalek

Abstract:

With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).

Keywords: FACTS, thyristor controlled series capacitor (TCSC), backstepping, BPFC, PIPFC

Procedia PDF Downloads 486
2321 Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 103
2320 Biodegradable Polymer Composites of MOF-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila A. M. Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 98
2319 Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process

Authors: A. Hilsana, Vinay U. Rao, M. Sudhakar

Abstract:

Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation.

Keywords: NSAIDs, controlled delivery, target product profile, melt granulation

Procedia PDF Downloads 303
2318 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 606
2317 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control

Authors: Bogusław Schreyer

Abstract:

The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.

Keywords: select-high, select-low, torque distribution, wheeled robots

Procedia PDF Downloads 95
2316 Reducing Antimicrobial Resistance Using Biodegradable Polymer Composites of Mof-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmound, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs, and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 50
2315 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique

Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar

Abstract:

A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.

Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique

Procedia PDF Downloads 515
2314 Assets Integrity Management in Oil and Gas Production Facilities through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield

Authors: Iftikhar Ahmad, Youssef Elkezza

Abstract:

Sarir oilfield is in North Africa. It has facilities for oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) well bore and wellheads; (ii) vessels such as separators, desalters, and gas processing facilities; (iii) pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection.

Keywords: assets integrity management, corrosion prevention in oilfield assets, corrosion management in oilfield, corrosion prevention, inspection activities

Procedia PDF Downloads 50
2313 The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials

Authors: Simin Shahvazi, Sepideh Soltani, Seyed Mehdi Ahmadi, Russell J. De Souza, Amin Salehi-Abargouei

Abstract:

Background and Objectives: Vitamin D has received attention for its potential to disrupt cancer processes such as attenuating cell proliferation and exacerbating differentiation and apoptosis. However, whether there exists a role for vitamin D in the treatment of prostate cancer specifically remains controversial. We systematically review the literature to assess whether supplementation with vitamin D influences PSA response and overall survival in patients with prostate cancer. Methods: We searched PubMed, Scopus, ISI Web of Science and Google scholar from inception through up to 10 September 2017 for both before-and-after and randomized trials that evaluated the effect of vitamin D supplementation on the prostate specific antigen (PSA) response rate in participants with prostate cancer. The DerSimonian and Laird, inverse-weighted random-effects model was used to pool effect estimates from the studies. Heterogeneity and potential publication bias were evaluated. Subgroup analyses were also performed. Results: Twenty-two studies (16 before-after and 6 randomized controlled trials) were found and included in meta-analysis. The analysis on controlled clinical trials revealed that PSA change from baseline [weighted mean difference (WMD) = -1.66 ng/ml, 95%CI: -0.69, 0.36, P= 0.543)], PSA response (RR=1.18, 95%CI: 0.97, 1.45, P=0.104) and mortality rate (risk ratio (RR) = 1.05, 95% CI: 0.81-1.36; P=0.713) was not significantly different between vitamin D supplementation and placebo groups. Single arm trials revealed that vitamin D supplementation had had a modest effect on PSA response rate: 19% of those enrolled had at least a 50% reduction in PSA by the end of treatment (95% CI: 7% to 31%; p=0.002). Conclusion: We found that vitamin D modestly increases the PSA response rate in single arm studies. No effect on serum PSA levels, PSA response and mortality was seen in randomized controlled clinical trials. It does not seem patients with prostate cancer benefit from vitamin D supplementation.

Keywords: mortality, prostatic neoplasms, PSA response, vitamin D

Procedia PDF Downloads 167
2312 Speed Control of Brushless DC Motor Using PI Controller in MATLAB Simulink

Authors: Do Chi Thanh, Dang Ngoc Huy

Abstract:

Nowadays, there are more and more variable speed drive systems in small-scale and large-scale applications such as the electric vehicle industry, household appliances, medical equipment, and other industrial fields led to the development of BLDC (Brushless DC) motors. BLDC drive has many advantages, such as higher efficiency, better speed torque characteristics, high power density, and low maintenance cost compared to other conventional motors. Most BLDC motors use a proportional-integral (PI) controller and a pulse width modulation (PWM) scheme for speed control. This article describes the simulation model of BLDC motor drive control with the help of MATLAB - SIMULINK simulation software. The built simulation model includes a BLDC motor dynamic block, Hall sensor signal generation block, inverter converter block, and PI controller.

Keywords: brushless DC motor, BLDC, six-step inverter, PI speed

Procedia PDF Downloads 43
2311 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 138
2310 Ceramide-PLGA Nanoparticle Formation to Apply to Atopic Dermatitis

Authors: Sang-Myung Jung, Gwang Heum Yoon, Hoo Chul Lee, Hwa Sung Shin

Abstract:

Ceramide, a component of stratum corneum at epidermis, helps to construct a rigid and dense skin barrier to prevent pathogens that cause atopic dermatitis. However, ceramide was too hydrophobic to be directly absorbed into stratum corneum and has risks of side effects by excessive treatment. To overcome the obstacles, ceramide was embedded into PLGA nanoparticles coated with chitosan. PLGA and chitosan have been known as biocompatible materials. PLGA was squeezed when faced with water and pumped ceramide out of PLGA nanoparticle. In addition, the chitosan coating layer helped initial adherence of nanoparticles to skin and regulate ceramide release until removed. This coating was degraded at weakly acid state like skin surface, finally ceramide release could be controlled. Finally, the nanoparticle was demonstrated to be non-cytotoxic and regenerate stratum corneum of atopic dermatitis model. Overall the nanoparticle is suggested as a novel and effective nanodrug to apply atopic dermatitis.

Keywords: nanoparticle, controlled release, atopic dermatitis, chitosan coating, ceramide

Procedia PDF Downloads 367
2309 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes

Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai

Abstract:

This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.

Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence

Procedia PDF Downloads 478
2308 Mechanical Prosthesis Controlled by Brain-Computer Interface

Authors: Tianyu Cao, KIRA (Ruizhi Zhao)

Abstract:

The purpose of our research is to study the possibility of people with physical disabilities manipulating mechanical prostheses through brain-computer interface (BCI) technology. The brain-machine interface (BCI) of the neural prosthesis records signals from neurons and uses mathematical modeling to decode them, converting desired movements into body movements. In order to improve the patient's neural control, the prosthesis is given a natural feeling. It records data from sensitive areas from the body to the prosthetic limb and encodes signals in the form of electrical stimulation to the brain. In our research, the brain-computer interface (BCI) is a bridge connecting patients’ cognition and the real world, allowing information to interact with each other. The efficient work between the two is achieved through external devices. The flow of information is controlled by BCI’s ability to record neuronal signals and decode signals, which are converted into device control. In this way, we could encode information and then send it to the brain through electrical stimulation, which has significant medical application.

Keywords: biomedical engineering, brain-computer interface, prosthesis, neural control

Procedia PDF Downloads 140
2307 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance

Authors: Qian Zhang, Dongkai Shen, Yan Shi

Abstract:

A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.

Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design

Procedia PDF Downloads 575
2306 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 235
2305 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 247
2304 The Production, Negotiation and Resistance of Short Video Producers

Authors: Cui Li, Xu Yuping

Abstract:

Based on the question of, "Are short video creators who are digital workers controlled by platform rules?" this study discusses the specific ways of platform rules control and the impact on short video creators. Based on the theory of digital labor, this paper adopts the method of in-depth interview and participant observation and chooses 24 producers of short video content of Tiktok to conduct in-depth interview. At the same time, through entering the short video creation field, the author carries on the four-month field investigation, obtains the creation process related data, and analyzes how the short video creator, as the digital labor, is controlled by the platform rule, as well as the creator in this process of compromise and resistance, a more comprehensive presentation of the short video creators of the labor process. It is found that the short video creators are controlled by the platform rules, mainly in the control of traffic rules, and the creators create content, compromise and resist under the guidance of traffic. First, while the platform seems to offer a flexible and autonomous way for creators to monetize, the threshold for participating in the event is actually very high for creators, and the rules for monetizing the event are vague. Under the influence of the flow rule, the creator is faced unstable incomes and high costs. Therefore, creators have to follow the rules of traffic to guide their own creation, began to flow-oriented content production, mainly reflected in the need to keep up-to-date, the pursuit of traffic to ride on the hot spots, in order to flow regardless, set up people "Born for the show", by the label solidified content creation. Secondly, the irregular working hours lead to the extension and overwork of the working hours, which leads to the internal friction of the short video creators at the spiritual level, and finally leads to the Rat Race of video creation. Thirdly, the video creator has completed the internalization and compromise of the platform rules in practice, which promotes the creator to continue to create independently, and forms the intrinsic motive force of the creator. Finally, the rule-controlled short video creators resist and fight in flexible ways, make use of the mechanism and rules of the platform to carry on the second creation, carry on the routine production, purchase the false flow, transfer the creation position to maintain own creation autonomy.

Keywords: short videos, tiktok, production, digital labors

Procedia PDF Downloads 34
2303 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images

Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy

Abstract:

Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.

Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms

Procedia PDF Downloads 353