Search results for: thermal resistance of special garments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8486

Search results for: thermal resistance of special garments

296 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 187
295 Varieties of Capitalism and Small Business CSR: A Comparative Overview

Authors: Stéphanie Looser, Walter Wehrmeyer

Abstract:

Given the limited research on Small and Mediumsized Enterprises’ (SMEs) contribution to Corporate Social Responsibility (CSR) and even scarcer research on Swiss SMEs, this paper helps to fill these gaps by enabling the identification of supranational SME parameters and to make a contribution to the evolving field of these topics. Thus, the paper investigates the current state of SME practices in Switzerland and across 15 other countries. Combining the degree to which SMEs demonstrate an explicit (or business case) approach or see CSR as an implicit moral activity with the assessment of their attributes for “variety of capitalism” defines the framework of this comparative analysis. According to previous studies, liberal market economies, e.g. in the United States (US) or United Kingdom (UK), are aligned with extrinsic CSR, while coordinated market systems (in Central European or Asian countries) evolve implicit CSR agendas. To outline Swiss small business CSR patterns in particular, 40 SME owner-managers were interviewed. The transcribed interviews were coded utilising MAXQDA for qualitative content analysis. A secondary data analysis of results from different countries (i.e., Australia, Austria, Chile, Cameroon, Catalonia (notably a part of Spain that seeks autonomy), China, Finland, Germany, Hong Kong (a special administrative region of China), Italy, Netherlands, Singapore, Spain, Taiwan, UK, US) lays groundwork for this comparative study on small business CSR. Applying the same coding categories (in MAXQDA) for the interview analysis as well as for the secondary data research while following grounded theory rules to refine and keep track of ideas generated testable hypotheses and comparative power on implicit (and the lower likelihood of explicit) CSR in SMEs retrospectively. The paper identifies Swiss small business CSR as deep, profound, “soul”, and an implicit part of the day-to-day business. Similar to most Central European, Mediterranean, Nordic, and Asian countries, explicit CSR is still very rare in Swiss SMEs. Astonishingly, also UK and US SMEs follow this pattern in spite of their strong and distinct liberal market economies. Though other findings show that nationality matters this research concludes that SME culture and its informal CSR agenda are strongly formative and superseding even forces of market economies, nationally cultural patterns, and language. In a world of “big business”, explicit “business case” CSR, and the mantra that “CSR must pay”, this study points to a distinctly implicit small business CSR model built on trust, physical closeness, and virtues that is largely detached from the bottom line. This pattern holds for different cultural contexts and it is concluded that SME culture is stronger than nationality leading to a supra-national, monolithic SME CSR approach. Hence, classifications of countries by their market system or capitalism, as found in the comparative capitalism literature, do not match the CSR practices in SMEs as they do not mirror the peculiarities of their business. This raises questions on the universality and generalisability of management concepts.

Keywords: CSR, comparative study, cultures of capitalism, small, medium-sized enterprises

Procedia PDF Downloads 400
294 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals

Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova

Abstract:

Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.

Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk

Procedia PDF Downloads 218
293 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures

Procedia PDF Downloads 196
292 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract

Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap

Abstract:

Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.

Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases

Procedia PDF Downloads 205
291 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 258
290 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 248
289 Detection and Identification of Antibiotic Resistant UPEC Using FTIR-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have played an indispensable role in controlling illness and death associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global healthcare problem. Many antibiotics had lost their effectiveness since the beginning of the antibiotic era because many bacteria have adapted defenses against these antibiotics. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing require the isolation of the pathogen from a clinical specimen by culturing on the appropriate media (this culturing stage lasts 24 h-first culturing). Then, chosen colonies are grown on media containing antibiotic(s), using micro-diffusion discs (second culturing time is also 24 h) in order to determine its bacterial susceptibility. Other methods, genotyping methods, E-test and automated methods were also developed for testing antimicrobial susceptibility. Most of these methods are expensive and time-consuming. Fourier transform infrared (FTIR) microscopy is rapid, safe, effective and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria; nonetheless, its true potential in routine clinical diagnosis has not yet been established. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The UTI E.coli bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 700 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 90% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E.coli, FTIR, multivariate analysis, susceptibility, UTI

Procedia PDF Downloads 153
288 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters

Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng

Abstract:

Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.

Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum

Procedia PDF Downloads 137
287 Dietary Intake and Nutritional Inadequacy Leading to Malnutrition among Children Residing in Shelter Home, Rural Tamil Nadu, India

Authors: Niraimathi Kesavan, Sangeeta Sharma, Deepa Jagan, Sridhar Sukumar, Mohan Ramachandran, Vidhubala Elangovan

Abstract:

Background: Childhood is a dynamic period for growth and development. Optimum nutrition during this period forms a strong foundation for growth, development, resistance to infections, long-term good health, cognition, educational achievements, and work productivity in a later phase of life. Underprivileged children living in a resource constraint settings like shelter homes are at high risk of malnutrition due to poor quality diet and nutritional inadequacy. In low-income countries, underprivileged children are vulnerable to being deprived of nutritious food, which stands as a major challenge in the health sector. The present aims to assess the dietary intake, nutritional status, and nutritional inadequacy and their association with malnutrition among children residing in shelter homes in rural Tamil Nadu. Methods: The study was a descriptive survey conducted among all the children aged between 8-18 years residing in two selected shelter homes (Anbu illam, a home for female children, and Amaidhi illam, a home for male children), rural Tirunelveli, Tamil Nadu, India. A total of 57 children were recruited, including 18 boys and 39 girls, for the study. Dietary intake was measured using seven days 24 hours recall. The average nutrient intake was considered for further analysis. Results: Of the 57 children, about 60% (n=35) were undernutrition. The mean daily energy intake was 1298 (SD 180) kcal for boys and 952 (SD155) kcal for girls. The total calorie intake was 55-60% below the estimated average requirement (EAR) for adolescent boys and girls in the age group 13-15 years and 16-18 years. Carbohydrates were the major source of energy (boys 53% and girls 51%), followed by fat (boys 31.5% and girls 34.5%) and protein (boys 14% and girls 12.9%). Dairy intake (<200ml/day) was less than the recommendation (500ml/day). Micro-nutrient-rich foods such as fruits, vegetables, and green leafy vegetables in the diet were <200g/day, which was far less than the recommended dietary guidelines of 400g- 600g/day for the age group of 7-18 years. Nearly 26% of girls reported experiencing menstrual problems. The majority (76.9%) of the children exhibited nutrient deficiency-related signs and symptoms. Conclusion: The total energy, minerals, and micro-nutrient intake were inadequate and below the Recommended Dietary Allowance for children and adolescents. The diet predominantly consists of refined cereals, rice, semolina, and vermicelli. Consumption of whole grains, milk, fruits, vegetables, and leafy vegetables was far below the recommended dietary guidelines. Dietary inadequacies among these children pose a serious concern for their overall health status and its consequences in the later phase of life.

Keywords: adolescents, children, dietary intake, malnutrition, nutritional inadequacy, shelter home

Procedia PDF Downloads 58
286 Innovative Strategies for Chest Wall Reconstruction Following Resection of Recurrent Breast Carcinoma

Authors: Sean Yao Zu Kong, Khong Yik Chew

Abstract:

Introduction: We described a case report of the successful use of advanced surgical techniques in a patient with recurrent breast cancer who underwent a wide resection including the hemi-sternum, clavicle, multiple ribs, and a lobe of the lung due to tumor involvement. This extensive resection exposed critical structures, requiring a creative approach to reconstruction. To address this complex chest wall reconstruction, a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap were successfully utilized. The use of a free vascularized bone flap allowed for rapid osteointegration and resistance against osteoradionecrosis after adjuvant radiation, while a four-zone tram flap allowed for reconstruction of both the chest wall and breast mound. Although limited recipient vessels made free flaps challenging, the free fibula flap served as both a bony reconstruction and vascular conduit, supercharged with the distal peroneal artery and veins of the peroneal artery from the fibula graft. Our approach highlights the potential of advanced surgical techniques to improve outcomes in complex cases of chest wall reconstruction in patients with recurrent breast cancer, which is becoming increasingly relevant as breast cancer incidence rates increases. Case presentation: This report describes a successful reconstruction of a patient with recurrent breast cancer who required extensive resection, including the anterior chest wall, clavicle, and sternoclavicular joint. Challenges arose due to the loss of accessory muscles and the non-rigid rib cage, which could lead to compromised ventilation and instability. A free fibula osteocutaneous flap and a four-zone TRAM flap with vascular supercharging were utilized to achieve long-term stability and function. The patient has since fully recovered, and during the review, both flaps remained viable, and chest mound reconstruction was satisfactory. A planned nipple/areolar reconstruction was offered pending the patient’s decision after adjuvant radiotherapy. Conclusion: In conclusion, this case report highlights the successful use of innovative surgical techniques in addressing a complex case of recurrent breast cancer requiring extensive resection and radical reconstruction. Our approach, utilized a combination of a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap, demonstrates the potential for advanced techniques in chest wall reconstruction to minimize complications and ensure long-term stability and function. As the incidence of breast cancer continues to rise, it is crucial that healthcare professionals explore and utilize innovative techniques to improve patient outcomes and quality of life.

Keywords: free fibula flap, rectus abdominis musculocutaneous flap, post-adjuvant radiotherapy, reconstructive surgery, malignancy

Procedia PDF Downloads 45
285 Urban Stratification as a Basis for Analyzing Political Instability: Evidence from Syrian Cities

Authors: Munqeth Othman Agha

Abstract:

The historical formation of urban centres in the eastern Arab world was shaped by rapid urbanization and sudden transformation from the age of the pre-industrial to a post-industrial economy, coupled with uneven development, informal urban expansion, and constant surges in unemployment and poverty rates. The city was stratified accordingly as overlapping layers of division and inequality that have been built on top of each other, creating complex horizontal and vertical divisions based on economic, social, political, and ethno-sectarian basis. This has been further exacerbated during the neoliberal era, which transferred the city into a sort of dual city that is inhabited by heterogeneous and often antagonistic social groups. Economic deprivation combined with a growing sense of marginalization and inequality across the city planted the seeds of political instability, outbreaking in 2011. Unlike other popular uprisings that occupy central squares, as in Egypt and Tunisia, the Syrian uprising in 2011 took place mainly within inner streets and neighborhood squares, mobilizing primarily on more or less upon the lines of stratification. This has emphasized the role of micro-urban and social settings in shaping mobilization and resistance tactics, which necessitates us to understand the way the city was stratified and place it at the center of the city-conflict nexus analysis. This research aims to understand to what extent pre-conflict urban stratification lines played a role in determining the different trajectories of three cities’ neighborhoods (Homs, Dara’a and Deir-ez-Zor). The main argument of the paper is that the way the Syrian city has been stratified creates various social groups within the city who have enjoyed different levels of accessibility to life chances, material resources and social statuses. This determines their relationship with other social groups in the city and, more importantly, their relationship with the state. The advent of a political opportunity will be depicted differently across the city’s different social groups according to their perceived interests and threats, which consequently leads to either political mobilization or demobilization. Several factors, including the type of social structures, built environment, and state response, determine the ability of social actors to transfer the repertoire of contention to collective action or transfer from social actors to political actors. The research uses urban stratification lines as the basis for understanding the different patterns of political upheavals in urban areas while explaining why neighborhoods with different social and urban environment settings had different abilities and capacities to mobilize, resist state repression and then descend into a military conflict. It particularly traces the transformation from social groups to social actors and political actors by applying the Explaining-outcome Process-Tracing method to depict the causal mechanisms that led to including or excluding different neighborhoods from each stage of the uprising, namely mobilization (M1), response (M2), and control (M3).

Keywords: urban stratification, syrian conflict, social movement, process tracing, divided city

Procedia PDF Downloads 47
284 Improvement of Autism Diagnostic Observation Schedule Scores after Comprehensive Intensive Early Interventions in a Clinical Setting

Authors: Nils Haglund, Svenolof Dahlgren, Maria Rastam, Peik Gustafsson, Karin Kalien

Abstract:

In Sweden, like in most developed countries, there is a substantial increase of children diagnosed with autism and other conditions within the autism spectrum (ASD). The rapid increase of ASD rates stresses the importance of developing care programs to provide support and comprehensive interventions for affected families. The current observational study was conducted in order to evaluate an ongoing Comprehensive Intensive Early Intervention (CIEI) program for children with autism in southern Sweden. The change in autism symptoms among children participating in CIEI (intervention group, n=67) was compared with children who received traditional habilitation services only (comparison group, n=27). Children of parents who accepted the offered CIEI-program, constituted the intervention group, whereas children, whose parents (for some reason) were not interested in the offered CIEI-program, constituted the comparison group. The CIEI-program was individualized to each child by experienced applied behavior analysis (ABA) specialists with different backgrounds as psychologists, speech pathologists or special education teachers, in cooperation with parents and preschool staff. Due to the individualization, the intervention could vary in intensity and techniques. The intensity was calculated to 15-25 hours each week at home and the preschool altogether. Each child was assigned one 'trainer', who was often employed as a preschool teacher but could have another educational background. An agreement between supervisor- parents and preschool staff was reached to confirm the intensity and content of the CIEI- program over an approximately two-year intervention period. Symptom changes were measured as evaluation-ADOS-2-scores, total- and severity-scores, minus the corresponding baseline-scores, divided by the time between baseline and evaluation. The difference between the study-groups regarding change of ADOS-2-scores was estimated using ANCOVA. In the current study, children in the CIEI-group improved their ADOS-2-total scores between baseline and evaluation (-0.8 scores per year; 95%CI: -1.2 to -0.4), whereas no such improvement was detected in the comparison group (+0.1 scores per year; 95%CI: -0.7 to +0.9). The change difference (change in the CIEI-group vs. change in the comparison group) was statistically significant, both crude and after adjusting for possible confounders (-1.1; 95%CI -1.9 to -0.4). Children in the CIEI-group also significantly improved their ADOS-calibrated severity scores, but not significantly differently so from the comparison group. The results from the current study indicate that the CIEI program significantly improves social and communicative skills among children with autism and that children with developmental delay could benefit to a similar degree as other children. The results support earlier studies reporting on the improvement of autism symptoms after early intensive interventions. The results from observational studies are difficult to interpret, but it is nevertheless of uttermost importance to evaluate costly autism intervention programs. Such results may be of immediate importance to healthcare organizations when allocating the already strained resources to different patient groups. Albeit the obvious limitation of the current naturalistic study, the results support previous positive studies and indicate that children with autism benefit from participating in early comprehensive, intensive programs and that investments in these programs may be highly justifiable.

Keywords: autism symptoms, ADOS-scores, evaluation, intervention program

Procedia PDF Downloads 120
283 University Curriculum Policy Processes in Chile: A Case Study

Authors: Victoria C. Valdebenito

Abstract:

Located within the context of accelerating globalization in the 21st-century knowledge society, this paper focuses on one selected university in Chile at which radical curriculum policy changes have been taking place, diverging from the traditional curriculum in Chile at the undergraduate level as a section of a larger investigation. Using a ‘policy trajectory’ framework, and guided by the interpretivist approach to research, interview transcripts and institutional documents were analyzed in relation to the meso (university administration) and the micro (academics) level. Inside the case study, participants from the university administration and academic levels were selected both via snow-ball technique and purposive selection, thus they had different levels of seniority, with some participating actively in the curriculum reform processes. Guided by an interpretivist approach to research, documents and interview transcripts were analyzed to reveal major themes emerging from the data. A further ‘bigger picture’ analysis guided by critical theory was then undertaken, involving interrogation of underlying ideologies and how political and economic interests influence the cultural production of policy. The case-study university was selected because it represents a traditional and old case of university setting in the country, undergoing curriculum changes based on international trends such as the competency model and the liberal arts. Also, it is representative of a particular socioeconomic sector of the country. Access to the university was gained through email contact. Qualitative research methods were used, namely interviews and analysis of institutional documents. In all, 18 people were interviewed. The number was defined by when the saturation criterion was met. Semi-structured interview schedules were based on the four research questions about influences, policy texts, policy enactment and longer-term outcomes. Triangulation of information was used for the analysis. While there was no intention to generalize the specific findings of the case study, the results of the research were used as a focus for engagement with broader themes, often evident in global higher education policy developments. The research results were organized around major themes in three of the four contexts of the ‘policy trajectory’. Regarding the context of influences and the context of policy text production, themes relate to hegemony exercised by first world countries’ universities in the higher education field, its associated neoliberal ideology, with accountability and the discourse of continuous improvement, the local responses to those pressures, and the value of interdisciplinarity. Finally, regarding the context of policy practices and effects (enactment), themes emerged around the impacts of the curriculum changes on university staff, students, and resistance amongst academics. The research concluded with a few recommendations that potentially provide ‘food for thought’ beyond the localized settings of this study, as well as possibilities for further research.

Keywords: curriculum, global-local dynamics, higher education, policy, sociology of education

Procedia PDF Downloads 52
282 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 560
281 Stakeholder-Driven Development of a One Health Platform to Prevent Non-Alimentary Zoonoses

Authors: A. F. G. Van Woezik, L. M. A. Braakman-Jansen, O. A. Kulyk, J. E. W. C. Van Gemert-Pijnen

Abstract:

Background: Zoonoses pose a serious threat to public health and economies worldwide, especially as antimicrobial resistance grows and newly emerging zoonoses can cause unpredictable outbreaks. In order to prevent and control emerging and re-emerging zoonoses, collaboration between veterinary, human health and public health domains is essential. In reality however, there is a lack of cooperation between these three disciplines and uncertainties exist about their tasks and responsibilities. The objective of this ongoing research project (ZonMw funded, 2014-2018) is to develop an online education and communication One Health platform, “eZoon”, for the general public and professionals working in veterinary, human health and public health domains to support the risk communication of non-alimentary zoonoses in the Netherlands. The main focus is on education and communication in times of outbreak as well as in daily non-outbreak situations. Methods: A participatory development approach was used in which stakeholders from veterinary, human health and public health domains participated. Key stakeholders were identified using business modeling techniques previously used for the design and implementation of antibiotic stewardship interventions and consisted of a literature scan, expert recommendations, and snowball sampling. We used a stakeholder salience approach to rank stakeholders according to their power, legitimacy, and urgency. Semi-structured interviews were conducted with stakeholders (N=20) from all three disciplines to identify current problems in risk communication and stakeholder values for the One Health platform. Interviews were transcribed verbatim and coded inductively by two researchers. Results: The following key values were identified (but were not limited to): (a) need for improved awareness of veterinary and human health of each other’s fields, (b) information exchange between veterinary and human health, in particularly at a regional level; (c) legal regulations need to match with daily practice; (d) professionals and general public need to be addressed separately using tailored language and information; (e) information needs to be of value to professionals (relevant, important, accurate, and have financial or other important consequences if ignored) in order to be picked up; and (f) need for accurate information from trustworthy, centrally organised sources to inform the general public. Conclusion: By applying a participatory development approach, we gained insights from multiple perspectives into the main problems of current risk communication strategies in the Netherlands and stakeholder values. Next, we will continue the iterative development of the One Health platform by presenting key values to stakeholders for validation and ranking, which will guide further development. We will develop a communication platform with a serious game in which professionals at the regional level will be trained in shared decision making in time-critical outbreak situations, a smart Question & Answer (Q&A) system for the general public tailored towards different user profiles, and social media to inform the general public adequately during outbreaks.

Keywords: ehealth, one health, risk communication, stakeholder, zoonosis

Procedia PDF Downloads 258
280 Financial Policies in the Process of Global Crisis: Case Study Kosovo, Case Kosovo

Authors: Shpetim Rezniqi

Abstract:

Financial Policies in the process of global crisis the current crisis has swept the world with special emphasis, most developed countries, those countries which have most gross -product world and you have a high level of living.Even those who are not experts can describe the consequences of the crisis to see the reality that is seen, but how far will it go this crisis is impossible to predict. Even the biggest experts have conjecture and large divergence, but agree on one thing: - The devastating effects of this crisis will be more severe than ever before and can not be predicted.Long time, the world was dominated economic theory of free market laws. With the belief that the market is the regulator of all economic problems. The market, as river water will flow to find the best and will find the necessary solution best. Therefore much less state market barriers, less state intervention and market itself is an economic self-regulation. Free market economy became the model of global economic development and progress, it transcends national barriers and became the law of the development of the entire world economy. Globalization and global market freedom were principles of development and international cooperation. All international organizations like the World Bank, states powerful economic, development and cooperation principles laid free market economy and the elimination of state intervention. The less state intervention much more freedom of action was this market- leading international principle. We live in an era of financial tragic. Financial markets and banking in particular economies are in a state of thy good, US stock markets fell about 40%, in other words, this time, was one of the darkest moments 5 since 1920. Prior to her rank can only "collapse" of the stock of Wall Street in 1929, technological collapse of 2000, the crisis of 1973 after the Yom Kippur war, while the price of oil quadrupled and famous collapse of 1937 / '38, when Europe was beginning World war II In 2000, even though it seems like the end of the world was the corner, the world economy survived almost intact. Of course, that was small recessions in the United States, Europe, or Japan. Much more difficult the situation was at crisis 30s, or 70s, however, succeeded the world. Regarding the recent financial crisis, it has all the signs to be much sharper and with more consequences. The decline in stock prices is more a byproduct of what is really happening. Financial markets began dance of death with the credit crisis, which came as a result of the large increase in real estate prices and household debt. It is these last two phenomena can be matched very well with the gains of the '20s, a period during which people spent fists as if there was no tomorrow. All is not away from the mouth of the word recession, that fact no longer a sudden and abrupt. But as much as the financial markets melt, the greater is the risk of a problematic economy for years to come. Thus, for example, the banking crisis in Japan proved to be much more severe than initially expected, partly because the assets which were based more loans had, especially the land that falling in value. The price of land in Japan is about 15 years that continues to fall. (ADRI Nurellari-Published in the newspaper "Classifieds"). At this moment, it is still difficult to çmosh to what extent the crisis has affected the economy and what would be the consequences of the crisis. What we know is that many banks will need more time to reduce the award of credit, but banks have this primary function, this means huge loss.

Keywords: globalisation, finance, crisis, recomandation, bank, credits

Procedia PDF Downloads 360
279 High Prevalence of Asymptomatic Dengue among Healthy Adults in Southern Malaysia: A Longitudinal Prospective Study

Authors: Nowrozy Jahan, Sharifah Syed Hassan, Daniel Reidpath

Abstract:

In recent decades, Malaysia has become a dengue hyper-endemic country with the co-circulation of the four-dengue virus (DENV) serotypes. The number of symptomatic dengue cases is maintaining an increasing trend since 1995 and sharply increased in 2014. The four DENV serotypes have been co-circulating since 2000, and this pattern of cyclical dominance of sub-types contributed to the development of frequent major dengue epidemics in Malaysia. Since 2012, different Malaysian state was dominated by different serotypes. The study aims to estimate the burden of asymptomatic dengue in a healthy adult population which may act as a potential source of further symptomatic dengue infection. It also aims to identify the predominant DENV serotypes which are circulating at the community level. A longitudinal prospective community-based study was conducted in the Segamat district of Johor State, southern part of Malaysia where the number of reported dengue cases has steadily increased over the last three years (2013-2015). More specifically, the study was conducted in and around of Kampung Abdullah of Sungai Segamat sub-district which was identified as a hot spot area over the period of 2013-2015. This community-based study has been conducted by Southeast Asia Community Observatory (SEACO), an ISO-certified research platform in collaboration of the Ministry of Health Malaysia and Monash University Malaysia. It was conducted from May 2015 to May 2016. In this study, 277 apparently looking healthy respondents joined who were followed up as a cohort for four times during the one-year study period. Blood was collected to detect the serological marker of dengue at each round of follow-up. Among 277, 184 respondents (66%) joined all four rounds. Half of the study respondents were at the age-group of 45-64 years, slightly more than half of the respondents (59%) were female, and the most (69%) of them were Malay; only 35% lived in urban areas. During the baseline, the study found a very high prevalence of exposure to dengue virus; 89% of the study respondents had serological evidence of previous asymptomatic dengue infection; the majority of them did not know about it as they did not develop any symptom of dengue fever; only 13% knew as they developed symptoms. At the end of the one-year study period, 19% of respondents developed recent secondary dengue infection which was also identified by the serological marker as they did not develop any symptom (asymptomatic cases). The asymptomatic dengue incidence was higher during the rainy season compared to the dry season. All four dengue serotypes were identified in the serum of the infected respondents; among them, DENV-2 was the most prominent. Further genetic analysis is going on to identify the association of HLA-B*46 and HLA-DRB1*08 with dengue resistance. This study provides evidence for the policymakers to be aware of asymptomatic dengue infection, to develop a useful tool for raising awareness about asymptomatic dengue infection among the general population, to monitor the community participation to strengthen the individual and community level dengue prevention and control measures when neither there is vaccine nor particular treatment for dengue.

Keywords: asymptomatic, dengue, health adults, prospective study

Procedia PDF Downloads 106
278 The Challenges of Citizen Engagement in Urban Transformation: Key Learnings from Three European Cities

Authors: Idoia Landa Oregi, Itsaso Gonzalez Ochoantesana, Olatz Nicolas Buxens, Carlo Ferretti

Abstract:

The impact of citizens in urban transformations has become increasingly important in the pursuit of creating citizen-centered cities. Citizens at the forefront of the urban transformation process are key to establishing resilient, sustainable, and inclusive cities that cater to the needs of all residents. Therefore, collecting data and information directly from citizens is crucial for the sustainable development of cities. Within this context, public participation becomes a pillar for acquiring the necessary information from citizens. Public participation in urban transformation processes establishes a more responsive, equitable, and resilient urban environment. This approach cultivates a sense of shared responsibility and collective progress in building cities that truly serve the well-being of all residents. However, the implementation of public participation practices often overlooks strategies to effectively engage citizens in the processes, resulting in non-successful participatory outcomes. Therefore, this research focuses on identifying and analyzing the critical aspects of citizen engagement during the same participatory urban transformation process in different European contexts: Ermua (Spain), Elva (Estonia) and Matera (Italy). The participatory neighborhood regeneration process is divided into three main stages, to turn social districts into inclusive and smart neighborhoods: (i) the strategic level, (ii) the design level, and (iii) the implementation level. In the initial stage, the focus is on diagnosing the neighborhood and creating a shared vision with the community. The second stage centers around collaboratively designing various action plans to foster inclusivity and intelligence while pushing local economic development within the district. Finally, the third stage ensures the proper co-implementation of the designed actions in the neighborhood. To this date, the presented results critically analyze the key aspects of engagement in the first stage of the methodology, the strategic plan, in the three above-mentioned contexts. It is a multifaceted study that incorporates three case studies to shed light on the various perspectives and strategies adopted by each city. The results indicate that despite of the various cultural contexts, all cities face similar barriers when seeking to enhance engagement. Accordingly, the study identifies specific challenges within the participatory approach across the three cities such as the existence of discontented citizens, communication gaps, inconsistent participation, or administration resistance. Consequently, key learnings of the process indicate that a collaborative sphere needs to be cultivated, educating both citizens and administrations in the aspects of co-governance, giving these practices the appropriate space and their own communication channels. This study is part of the DROP project, funded by the European Union, which aims to develop a citizen-centered urban renewal methodology to transform the social districts into smart and inclusive neighborhoods.

Keywords: citizen-centred cities, engagement, public participation, urban transformation

Procedia PDF Downloads 28
277 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 110
276 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 104
275 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 227
274 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor

Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi

Abstract:

Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.

Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching

Procedia PDF Downloads 210
273 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 238
272 The Charge Exchange and Mixture Formation Model in the ASz-62IR Radial Aircraft Engine

Authors: Pawel Magryta, Tytus Tulwin, Paweł Karpiński

Abstract:

The ASz62IR engine is a radial aircraft engine with 9 cylinders. This object is produced by the Polish company WSK "PZL-KALISZ" S.A. This is engine is currently being developed by the above company and Lublin University of Technology. In order to provide an effective work of the technological development of this unit it was decided to made the simulation model. The model of ASz-62IR was developed with AVL BOOST software which is a tool dedicated to the one-dimensional modeling of internal combustion engines. This model can be used to calculate parameters of an air and fuel flow in an intake system including charging devices as well as combustion and exhaust flow to the environment. The main purpose of this model is the analysis of the charge exchange and mixture formation in this engine. For this purpose, the model consists of elements such: as air inlet, throttle system, compressor connector, charging compressor, inlet pipes and injectors, outlet pipes, fuel injection and model of fuel mixing and evaporation. The model of charge exchange and mixture formation was based on the model of mass flow rate in intake and exhaust pipes, and also on the calculation of gas properties values like gas constant or thermal capacity. This model was based on the equations to describe isentropic flow. The energy equation to describe flow under steady conditions was transformed into the mass flow equation. In the model the flow coefficient μσ was used, that varies with the stroke/valve opening and was determined in a steady flow state. The geometry of the inlet channels and other key components was mapped with reference to the technical documentation of the engine and empirical measurements of the structure elements. The volume of elements on the charge flow path between the air inlet and the exhaust outlet was measured by the CAD mapping of the structure. Taken from the technical documentation, the original characteristics of the compressor engine was entered into the model. Additionally, the model uses a general model for the transport of chemical compounds of the mixture. There are 7 compounds used, i.e. fuel, O2, N2, CO2, H2O, CO, H2. A gasoline fuel of a calorific value of 43.5 MJ/kg and an air mass fraction for stoichiometric mixture of 14.5 were used. Indirect injection into the intake manifold is used in this model. The model assumes the following simplifications: the mixture is homogenous at the beginning of combustion, accordingly, mixture stoichiometric coefficient A/F remains constant during combustion, combusted and non-combusted charges show identical pressures and temperatures although their compositions change. As a result of the simulation studies based on the model described above, the basic parameters of combustion process, charge exchange, mixture formation in cylinders were obtained. The AVL Boost software is very useful for the piston engine performance simulations. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: aviation propulsion, AVL Boost, engine model, charge exchange, mixture formation

Procedia PDF Downloads 294
271 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent

Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú

Abstract:

In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.

Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial

Procedia PDF Downloads 49
270 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 300
269 Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology

Authors: Moser Stephan, Lukasser Gerald, Weitlaner Robert

Abstract:

Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company.

Keywords: BIPV, building simulation, optimized control strategy, planning tool

Procedia PDF Downloads 81
268 Dragonflies (Odonata) Reflect Climate Warming Driven Changes in High Mountain Invertebrates Populations

Authors: Nikola Góral, Piotr Mikołajczuk, Paweł Buczyński

Abstract:

Much scientific research in the last 20 years has focused on the influence of global warming on the distribution and phenology of living organisms. Three potential responses to climate change are predicted: individual species may become extinct, adapt to new conditions in their existing range or change their range by migrating to places where climatic conditions are more favourable. It means not only migration to areas in other latitudes, but also different altitudes. In the case of dragonflies (Odonata), monitoring in Western Europe has shown that in response to global warming, dragonflies tend to change their range to a more northern one. The strongest response to global warming is observed in arctic and alpine species, as well as in species capable of migrating over long distances. The aim of the research was to assess whether the fauna of aquatic insects in high-mountain habitats has changed as a result of climate change and, if so, how big and what type these changes are. Dragonflies were chosen as a model organism because of their fast reaction to changes in the environment: they have high migration abilities and short life cycle. The state of the populations of boreal-mountain species and the extent to which lowland species entered high altitudes was assessed. The research was carried out on 20 sites in Western Sudetes, Southern Poland. They were located at an altitude of between 850 and 1250 m. The selected sites were representative of many types of valuable alpine habitats (subalpine raised bog, transitional spring bog, habitats associated with rivers and mountain streams). Several sites of anthropogenic origin were also selected. Thanks to this selection, a wide characterization of the fauna of the Karkonosze was made and it was compared whether the studied processes proceeded differently, depending on whether the habitat is primary or secondary. Both imagines and larvae were examined (by taking hydrobiological samples with a kick-net), and exuviae were also collected. Individual species dragonflies were characterized in terms of their reproductive, territorial and foraging behaviour. During each inspection, the basic physicochemical parameters of the water were measured. The population of the high-mountain dragonfly Somatochlora alpestris turned out to be in a good condition. This species was noted at several sites. Some of those sites were situated relatively low (995 m AMSL), which proves that the thermal conditions at the lower altitudes might be still optimal for this species. The protected by polish law species Somatochlora arctica, Aeshna subarctica and Leucorrhinia albifrons, as well as strongly associated with bogs Leucorrhinia dubia and Aeshna juncea bogs were observed. However, they were more frequent and more numerous in habitats of anthropogenic origin, which may suggest minor changes in the habitat preferences of dragonflies. The subject requires further research and observations over a longer time scale.

Keywords: alpine species, bioindication, global warming, habitat preferences, population dynamics

Procedia PDF Downloads 117
267 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 336