Search results for: the london times
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3633

Search results for: the london times

243 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach

Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh

Abstract:

Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.

Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling

Procedia PDF Downloads 17
242 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 76
241 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions

Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding

Abstract:

By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.

Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals

Procedia PDF Downloads 188
240 The Effect of a Multidisciplinary Spine Clinic on Treatment Rates and Lead Times to Care

Authors: Ishan Naidu, Jessica Ryvlin, Devin Videlefsky

Abstract:

Introduction: Back pain is a leading cause of years lived with disability and economic burden, exceeding over $20 billion in healthcare costs not including indirect costs such as absence from work and caregiving. The multifactorial nature of back pain leads to treatment modalities administered by a variety of specialists, which are often disjointed. Multiple studies have found that patients receiving delayed physical therapy for lower back pain had higher medical-related costs from increased health service utilization as well as a reduced improvement in pain severity compared to early management. Uncoordinated health care delivery can exacerbate the physical and economic toll of the chronic condition, thus improvements in interdisciplinary, shared decision-making may improve outcomes. Objective: To assess whether a multidisciplinary spine clinic (MSC), consisting of orthopedic surgery, neurosurgery, pain medicine, and physiatry, alters interventional and non-interventional planning and treatment compared to a traditional unidisciplinary spine clinic (USC) including only orthopedic surgery. Methods: We conducted a retrospective cohort study with patients initially presenting for spine care to orthopedic surgeons between July 1, 2018 to June 30, 2019. Time to treatment recommendation, time to treatment and rates of treatment recommendations were assessed, including physical therapy, injections and surgery. Treatment rates were compared between MSC and USC using Pearson’s chi-square test logistic regression. Time to treatment recommendation and time to treatment were compared using log-rank test and Cox proportional hazard regression. All analyses were repeated for the propensity score (PS) matched subsample. Results: This study included 1,764 patients, with 692 at MSC and 1,072 at USC. Patients in MSC were more likely to be recommended injection when compared to USC (8.5% vs. 5.4%, p=0.01). When adjusted for confounders, the likelihood of injection recommendation remained greater in MSC than USC (Odds ratio [OR]=2.22, 95% CI: (1.39, 3.53), p=0.001). MSC was also associated with a shorter time to receiving injection recommendation versus USC (median: 21 vs. 32 days, log-rank: p<0.001; hazard ratio [HR]=1.90, 95% CI: (1.25, 2.90), p=0.003). MSC was associated with a higher likelihood of injection treatment (OR=2.27, 95% CI: (1.39, 3.73), p=0.001) and shorter lead time (HR=1.98, 95% CI: (1.27, 3.09), p=0.003). PS-matched analyses yielded similar conclusions. Conclusions: Care delivered at a multidisciplinary spine clinic was associated with a higher likelihood of recommending injection and a shorter lead time to injection administration when compared to a traditional unidisciplinary spine surgery clinic. Multidisciplinary clinics may facilitate coordinated care amongst different specialties resulting in increased utilization of less invasive treatment modalities while also improving care efficiency. The multidisciplinary clinic model is an important advancement in care delivery and communication, which can be used as a powerful method of improving patient outcomes as treatment guidelines evolve.

Keywords: coordinated care, epidural steroid injection, multi-disciplinary, non-invasive

Procedia PDF Downloads 107
239 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 135
238 Sensory Integration for Standing Postural Control Among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents

Authors: Eglal Y. Ali, Smita Rao, Anat Lubetzky, Wen Ling

Abstract:

Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model Analysis of Variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weight visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on the stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD.

Keywords: autism spectrum disorders, postural sway, sensory weighting and reweighting, standing postural control

Procedia PDF Downloads 38
237 Sensory Weighting and Reweighting for Standing Postural Control among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents

Authors: Eglal Y. Ali, Smita Rao, Anat Lubetzky, Wen Ling

Abstract:

Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on a compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on a compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model analysis of variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of the condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weigh visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on a stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high-functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD.

Keywords: autism spectrum disorders, postural sway, sensory weighting and reweighting, standing postural control

Procedia PDF Downloads 86
236 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study

Authors: Sadi Ali, Yaser Kishawi

Abstract:

As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.

Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 214
235 Chemical Study and Cytotoxic Activity of Extracts from Erythroxylum Genus against HeLa Cells

Authors: Richele P. Severino, Maria M. F. Alchaar, Lorena R. F. De Sousa, Patrik S. Vital, Ana G. Silva, Rosy I. M. A. Ribeiro

Abstract:

Recognized as a global biodiversity hotspot, the Cerrado (Brazil) presents an extreme abundance of endemic species and it is considered to be one of the biologically richest tropical savanna regions in the world. Erythroxylum genus is found in Cerrado and chemically is characterized by the presence of tropane alkaloids, among them cocaine, a natural alkaloid produced by Erythroxylum coca Lam., which was used as a local anesthetic in small surgeries. However, cocaine gained notoriety due to its psychoactive activity in the Central Nervous System (CNS), becoming one of the major problems of public health today. Some species of Erythroxylum are referred to in the literature as having pharmacological potential, which provide alkaloids, terpenoids, and flavonoids. E. vacciniifolium Mart., commonly known as 'catuaba', is used as a central nervous system stimulant and has aphrodisiac properties and E. pelleterianum A. St.-Hil. in the treatment of stomach pains. Already E. myrsinites Mart. and E. suberosum A. St.-Hil. are used in the tannery industry. Species of Erythroxylum are also used in folk medicine for various diseases, against diabetes, antiviral, fungicidal, cytotoxicity, among others. The Cerrado is recognized as the richer savannah in the world in biodiversity but little explored from the chemical view. In our on-going study of the chemistry of Erythroxylum genus, we have investigated four specimens collected in central Cerrado of Brazil: E. campestre (EC), E. deciduum (ED), E. suberosum (ES) and E. tortuosum (ET). The cytotoxic activity of extracts was evaluated using HeLa cells, in vitro assays. The chemical investigation was performed preparing the extracts using n-hexane (H), dichloromethane (D), ethyl acetate (E) and methanol (M). The cells were treated with increasing concentrations of extracts (50, 75 and 100 μg/mL) diluted in DMSO (1%) and DMEM (0.5% FBS and 1% P/S). The IC₅₀ values were determined measured spectrophotometrically at 570 nm, after incubation of HeLa cell line for 48 hours using the MTT (SIGMA M5655), and calculated by nonlinear regression analysis using GraphPad Prism software. All the assays were done in triplicate and repeated at least two times. The cytotoxic assays showed some promising results with IC₅₀ values less than 100 μg/mL (ETD = 38.5 μg/mL; ETM = 92.3 μg/mL; ESM = 67.8 μg/mL; ECD = 24.0 μg/mL; ECM = 32.9; EDA = 44.2 μg/mL). The chemical profile study of ethyl acetate (E) and methanolic (M) extracts of E. tortuosum leaves was performed by LC-MS, and the structures of the compounds were determined by analysis of ¹H, HSQC and HMBC spectra, and confirmed by comparison with the literature data. The investigation led to six substances: α-amyrin, β-amyrin, campesterol, stigmastan-3,5-diene, β-sitosterol and 7,4’-di-O-methylquercetin-3-O-β-rutinoside, with flavonoid the major compound of extracts. By alkaline extraction of the methanolic extract, it was possible to identify three alkaloids: tropacocaine, cocaine and 6-methoxy-8-methyl-8-azabicyclo[3.2.1]octan-3-ol. The results obtained are important for the chemical knowledge of the Cerrado biodiversity and brought a contribution to the chemistry of Erythroxylum genus.

Keywords: cytotoxicity, Erythroxylum, chemical profile, secondary metabolites

Procedia PDF Downloads 118
234 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses

Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard

Abstract:

Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.

Keywords: cheese, miniature, model, pseudomonas spp, spoilage

Procedia PDF Downloads 113
233 A Foucauldian Analysis of Child Play: Case Study of a Preschool in the United States

Authors: Meng Wang

Abstract:

Historically, young members (children) in the society have been oppressed by adults through direct violent acts. Direct violence was evident in rampant child labor and child maltreatment cases. After acknowledging the rights of children from the United Nations, it is believed in public that children have been protected against direct physical violence. Nevertheless, at present, this paper argues from Foucauldian and disability study standpoints that similar to the old times, children are oppressed objects in the context of child play, which is constructed by adults to substitute direct violence in regulating children. Particularly, this paper suggests that on the one hand, preschool play is a new way that adults adopt to oppress preschoolers and regulate the society as a whole; on the other hand, preschoolers are taught how to play as an acquired skill and master self-regulation through play. There is a line of contemporary research that centers on child play from social constructivism perspective. Yet, current teaching practices pertaining to child play including guided child play and free play, in fact, serve the interest of adults and society at large. By acknowledging and deconstructing the prevalence of 'evidence-based best practice' in early childhood education field within western society, reconstruction of child-adult power relation could be achieved and alternative truth could be found in early childhood education. To support the argument of this paper, an on-going observational case study is conducted in a preschool setting in the United States. Age range of children is 2.5 to 4 years old. Approximately 10 children (5 boys) are participating in this case study. Observation is conducted throughout the weekdays as children follow through the classroom routine with a lead and an assistant teacher. Classroom teachers are interviewed pertaining to their classroom management strategies. Preliminary research finding of this case study suggested that preschool teachers tended to utilize scenarios from preschoolers’ dramatic play to impart core cultural values to young children. These values were pre-determined by adults. In addition, if young children have failed to follow teachers' guidance in terms of playing in a correct way, children ran the risk of being excluded from the play scenario by peers and adults. Furthermore, this study tended to indicate that through child play, preschoolers are obliged to develop an internal violence system, that is self-regulation skill to regulate their own behavior; and if this internal system is unestablished based on various assessments by adults, then potentially there will be consequences of negative labeling and disabling toward young children intended by adults. In conclusion, this paper applies Foucauldian analysis into the context of child play. At present, within preschool, child play is not free as it seems to be. Young children are expected to perform cultural tasks through their play activities designed by adults. Adults utilize child play as technologies of governmentality to further predict and regulate future society at large.

Keywords: child play, developmentally appropriate practice, DAP, poststructuralism, technologies of governmentality

Procedia PDF Downloads 130
232 An Interoperability Concept for Detect and Avoid and Collision Avoidance Systems: Results from a Human-In-The-Loop Simulation

Authors: Robert Rorie, Lisa Fern

Abstract:

The integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) poses a variety of technical challenges to UAS developers and aviation regulators. In response to growing demand for access to civil airspace in the United States, the Federal Aviation Administration (FAA) has produced a roadmap identifying key areas requiring further research and development. One such technical challenge is the development of a ‘detect and avoid’ system (DAA; previously referred to as ‘sense and avoid’) to replace the ‘see and avoid’ requirement in manned aviation. The purpose of the DAA system is to support the pilot, situated at a ground control station (GCS) rather than in the cockpit of the aircraft, in maintaining ‘well clear’ of nearby aircraft through the use of GCS displays and alerts. In addition to its primary function of aiding the pilot in maintaining well clear, the DAA system must also safely interoperate with existing NAS systems and operations, such as the airspace management procedures of air traffic controllers (ATC) and collision avoidance (CA) systems currently in use by manned aircraft, namely the Traffic alert and Collision Avoidance System (TCAS) II. It is anticipated that many UAS architectures will integrate both a DAA system and a TCAS II. It is therefore necessary to explicitly study the integration of DAA and TCAS II alerting structures and maneuver guidance formats to ensure that pilots understand the appropriate type and urgency of their response to the various alerts. This paper presents a concept of interoperability for the two systems. The concept was developed with the goal of avoiding any negative impact on the performance level of TCAS II (understanding that TCAS II must largely be left as-is) while retaining a DAA system that still effectively enables pilots to maintain well clear, and, as a result, successfully reduces the frequency of collision hazards. The interoperability concept described in the paper focuses primarily on facilitating the transition from a late-stage DAA encounter (where a loss of well clear is imminent) to a TCAS II corrective Resolution Advisory (RA), which requires pilot compliance with the directive RA guidance (e.g., climb, descend) within five seconds of its issuance. The interoperability concept was presented to 10 participants (6 active UAS pilots and 4 active commercial pilots) in a medium-fidelity, human-in-the-loop simulation designed to stress different aspects of the DAA and TCAS II systems. Pilot response times, compliance rates and subjective assessments were recorded. Results indicated that pilots exhibited comprehension of, and appropriate prioritization within, the DAA-TCAS II combined alert structure. Pilots demonstrated a high rate of compliance with TCAS II RAs and were also seen to respond to corrective RAs within the five second requirement established for manned aircraft. The DAA system presented under test was also shown to be effective in supporting pilots’ ability to maintain well clear in the overwhelming majority of cases in which pilots had sufficient time to respond. The paper ends with a discussion of next steps for research on integrating UAS into civil airspace.

Keywords: detect and avoid, interoperability, traffic alert and collision avoidance system (TCAS II), unmanned aircraft systems

Procedia PDF Downloads 245
231 Reliability and Validity of a Portable Inertial Sensor and Pressure Mat System for Measuring Dynamic Balance Parameters during Stepping

Authors: Emily Rowe

Abstract:

Introduction: Balance assessments can be used to help evaluate a person’s risk of falls, determine causes of balance deficits and inform intervention decisions. It is widely accepted that instrumented quantitative analysis can be more reliable and specific than semi-qualitative ordinal scales or itemised scoring methods. However, the uptake of quantitative methods is hindered by expense, lack of portability, and set-up requirements. During stepping, foot placement is actively coordinated with the body centre of mass (COM) kinematics during pre-initiation. Based on this, the potential to use COM velocity just prior to foot off and foot placement error as an outcome measure of dynamic balance is currently being explored using complex 3D motion capture. Inertial sensors and pressure mats might be more practical technologies for measuring these parameters in clinical settings. Objective: The aim of this study was to test the criterion validity and test-retest reliability of a synchronised inertial sensor and pressure mat-based approach to measure foot placement error and COM velocity while stepping. Methods: Trials were held with 15 healthy participants who each attended for two sessions. The trial task was to step onto one of 4 targets (2 for each foot) multiple times in a random, unpredictable order. The stepping target was cued using an auditory prompt and electroluminescent panel illumination. Data was collected using 3D motion capture and a combined inertial sensor-pressure mat system simultaneously in both sessions. To assess the reliability of each system, ICC estimates and their 95% confident intervals were calculated based on a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. To test the criterion validity of the combined inertial sensor-pressure mat system against the motion capture system multi-factorial two-way repeated measures ANOVAs were carried out. Results: It was found that foot placement error was not reliably measured between sessions by either system (ICC 95% CIs; motion capture: 0 to >0.87 and pressure mat: <0.53 to >0.90). This could be due to genuine within-subject variability given the nature of the stepping task and brings into question the suitability of average foot placement error as an outcome measure. Additionally, results suggest the pressure mat is not a valid measure of this parameter since it was statistically significantly different from and much less precise than the motion capture system (p=0.003). The inertial sensor was found to be a moderately reliable (ICC 95% CIs >0.46 to >0.95) but not valid measure for anteroposterior and mediolateral COM velocities (AP velocity: p=0.000, ML velocity target 1 to 4: p=0.734, 0.001, 0.000 & 0.376). However, it is thought that with further development, the COM velocity measure validity could be improved. Possible options which could be investigated include whether there is an effect of inertial sensor placement with respect to pelvic marker placement or implementing more complex methods of data processing to manage inherent accelerometer and gyroscope limitations. Conclusion: The pressure mat is not a suitable alternative for measuring foot placement errors. The inertial sensors have the potential for measuring COM velocity; however, further development work is needed.

Keywords: dynamic balance, inertial sensors, portable, pressure mat, reliability, stepping, validity, wearables

Procedia PDF Downloads 116
230 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel

Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer

Abstract:

Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.

Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber

Procedia PDF Downloads 98
229 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation

Authors: James Rate, Apostolos Pesiridis

Abstract:

In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.

Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan

Procedia PDF Downloads 292
228 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol

Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska

Abstract:

Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).

Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise

Procedia PDF Downloads 51
227 Medical and Dietary Potentials of Mare's Milk in Liver Diseases

Authors: Bakytzhan Bimbetov, Abay Zhangabilov, Saule Aitbaeva, Galymzhan Meirambekov

Abstract:

Mare’s milk (saumal) contains in total about 40 biological components necessary for the human body. The most significant among them are amino acids, fats, carbohydrates, enzymes (lysozyme, amylase), more minerals and vitamins which are well balanced with each other. In Kazakhstan, Company "Eurasia Invest Ltd.” produces a freeze-dried saumal in form of powder by the use of modern German innovative technology by means of evaporating at low temperature (-35°C) with an appropriate pasteurization. Research of freeze-dried biomilk for the qualitative content showed that main ingredients of freshly drown milk are being preserved. We are currently studying medical and dietary properties of freeze-dried mare's milk for diseases of the digestive system, including for nonalcoholic steatohepatitis (NASH) and liver cirrhosis (LC) viral etiology. The studied group consisted of 14 patients with NASH, and 7 patients with LC viral etiology of Class A severity degree as per Child-Pugh. Patients took freeze-dried saumal, preliminary dissolved in boiled warm water (24 g. powder per 200 ml water) 3-4 times a day for a month in conjunction with basic therapy. The results were compared to a control group (11 patients with NASH and LC) who received only basic therapy without mare’s milk. Results of preliminary research showed an improvement of subjective and objective conditions of all patients, but more significant improvement of clinical symptoms and syndromes were observed in the treatment group compared to the control one. Patients with NASH significantly over time compared to the beginning of therapy decreased asthenic and dyspeptic syndromes (p<0,01). Hepatomegaly, identified on the basis of ultrasound prior to treatment was observed in 92,8±2,4% of patients, and after combination therapy hepatomegaly the rate decreased by 14,3%, amounting to 78,5±2,8%. Patients with LC also noted the improvement of asthenic (p<0,01) and dyspeptic (p<0,05) syndromes and hemorrhagic syndrome (nosebleeds and bleeding gums when brushing your teeth, p<0,05), and jaundice. Laboratory study also showed improvement in the research group, but more significant changes were observed in the experimental group. Group of patients with NASH showed a significant improvement of index in cytolysis in conjunction with a combination therapy (p<0,05). In the control group, these indicators were also improved, but they were not statistically reliable (p>0,05). Markers of liver failure were additionally studied during the study of laboratory parameters in patients with liver cirrhosis, in particular, bilirubin, albumin and prothrombin index (PTI). Combined therapy with the use of basic treatment and mare's milk showed a significant improvement in cytolysis and bilirubin (p<0,05). In our opinion, a very important and interesting fact is that, in conjunction with basic therapy, the use of mare's milk revealed an improvement of liver function in the form of normalized PTI and albumin in patients with liver cirrhosis viral etiology. Results of this work have shown therapeutic efficiency of the use of mare's milk in complex treatment of patients with liver disease and require further in-depth study.

Keywords: liver cirrhosis, non-alcohol steatohepatitis, saumal, mare’s milk

Procedia PDF Downloads 202
226 Co-Movement between Financial Assets: An Empirical Study on Effects of the Depreciation of Yen on Asia Markets

Authors: Yih-Wenn Laih

Abstract:

In recent times, the dependence and co-movement among international financial markets have become stronger than in the past, as evidenced by commentaries in the news media and the financial sections of newspapers. Studying the co-movement between returns in financial markets is an important issue for portfolio management and risk management. The realization of co-movement helps investors to identify the opportunities for international portfolio management in terms of asset allocation and pricing. Since the election of the new Prime Minister, Shinzo Abe, in November 2012, the yen has weakened against the US dollar from the 80 to the 120 level. The policies, known as “Abenomics,” are to encourage private investment through a more aggressive mix of monetary and fiscal policy. Given the close economic relations and competitions among Asia markets, it is interesting to discover the co-movement relations, affected by the depreciation of yen, between stock market of Japan and 5 major Asia stock markets, including China, Hong Kong, Korea, Singapore, and Taiwan. Specifically, we devote ourselves to measure the co-movement of stock markets between Japan and each one of the 5 Asia stock markets in terms of rank correlation coefficients. To compute the coefficients, return series of each stock market is first fitted by a skewed-t GARCH (generalized autoregressive conditional heteroscedasticity) model. Secondly, to measure the dependence structure between matched stock markets, we employ the symmetrized Joe-Clayton (SJC) copula to calculate the probability density function of paired skewed-t distributions. The joint probability density function is then utilized as the scoring scheme to optimize the sequence alignment by dynamic programming method. Finally, we compute the rank correlation coefficients (Kendall's  and Spearman's ) between matched stock markets based on their aligned sequences. We collect empirical data of 6 stock indexes from Taiwan Economic Journal. The data is sampled at a daily frequency covering the period from January 1, 2013 to July 31, 2015. The empirical distributions of returns indicate fatter tails than the normal distribution. Therefore, the skewed-t distribution and SJC copula are appropriate for characterizing the data. According to the computed Kendall’s τ, Korea has the strongest co-movement relation with Japan, followed by Taiwan, China, and Singapore; the weakest is Hong Kong. On the other hand, the Spearman’s ρ reveals that the strength of co-movement between markets with Japan in decreasing order are Korea, China, Taiwan, Singapore, and Hong Kong. We explore the effects of “Abenomics” on Asia stock markets by measuring the co-movement relation between Japan and five major Asia stock markets in terms of rank correlation coefficients. The matched markets are aligned by a hybrid method consisting of GARCH, copula and sequence alignment. Empirical experiments indicate that Korea has the strongest co-movement relation with Japan. The strength of China and Taiwan are better than Singapore. The Hong Kong market has the weakest co-movement relation with Japan.

Keywords: co-movement, depreciation of Yen, rank correlation, stock market

Procedia PDF Downloads 212
225 A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs

Authors: Brittany E. Coff, Tommy K. K. Ngai, Laura A. S. MacDonald

Abstract:

Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.

Keywords: education and training, capacity building, evaluation, water and sanitation

Procedia PDF Downloads 282
224 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites

Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga

Abstract:

One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design

Procedia PDF Downloads 231
223 Potential of Dredged Material for CSEB in Building Structure

Authors: BoSheng Liu

Abstract:

The research goal is to re-image a locally-sourced waste product as abuilding material. The author aims to contribute to the compressed stabilized earth block (CSEB) by investigating the promising role of dredged material as an alternative building ingredient in the production of bricks and tiles. Dredged material comes from the sediment deposited near the shore or downstream, where the water current velocity decreases. This sediment needs to be dredged to provide water transportation; thus, there are mounds of the dredged material stored at bay. It is the interest of this research to reduce the filtered un-organic soil in the production of CSEB and replace it with locally dredged material from the Atchafalaya River in Morgan City, Louisiana. Technology and mechanical innovations have evolved the traditional adobe production method, which mixes the soil and natural fiber into molded bricks, into chemically stabilized CSEB made by compressing the clay mixture and stabilizer in a compression chamber with particular loads. In the case of dredged material CSEB (DM-CSEB), cement plays an essential role as the bending agent contributing to the unit strength while sustaining the filtered un-organic soil. Each DM-CSEB unit is made in a compression chamber with 580 PSI (i.e., 4 MPa) force. The research studied the cement content from 5% to 10% along with the range of dredged material mixtures, which differed from 20% to 80%. The material mixture content affected the DM-CSEB's strength and workability during and after its compression. Results indicated two optimal workabilities of the mixture: 27% fine clay content and 63% dredged material with 10% cement, or 28% fine clay content, and 67% dredged material with 5% cement. The final product of DM-CSEB emitted between 10 to 13 times fewer carbon emissions compared to the conventional fired masonry structure. DM-CSEB satisfied the strength requirement given by the ASTM C62 and ASTM C34 standards for construction material. One of the final evaluations tested and validated the material performance by designing and constructing an architectural, conical tile-vault prototype that was 28" by 40" by 24." The vault utilized a computational form-finding approach to generate the form's geometry, which optimized the correlation between the vault geometry and structural load distribution. A series of scaffolding was deployed to create the framework for the tile-vault construction. The final tile-vault structure was made from 2 layers of DM-CSEB tiles jointed by mortar, and the construction of the structure used over 110 tiles. The tile-vault prototype was capable of carrying over 400 lbs of live loads, which further demonstrated the dredged material feasibility as a construction material. The presented case study of Dredged Material Compressed Stabilized Earth Block (DM-CSEB) provides the first impression of dredged material in the clayey mixture process, structural performance, and construction practice. Overall, the approach of integrating dredged material in building material can be feasible, regionally sourced, cost-effective, and environment-friendly.

Keywords: dredged material, compressed stabilized earth block, tile-vault, regionally sourced, environment-friendly

Procedia PDF Downloads 93
222 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows

Authors: S. Pradhan, V. Kumaran

Abstract:

Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.

Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow

Procedia PDF Downloads 373
221 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials

Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics

Abstract:

Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.

Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool

Procedia PDF Downloads 200
220 Isoflavonoid Dynamic Variation in Red Clover Genotypes

Authors: Andrés Quiroz, Emilio Hormazábal, Ana Mutis, Fernando Ortega, Loreto Méndez, Leonardo Parra

Abstract:

Red clover root borer, Hylastinus obscurus Marsham (Coleoptera: Curculionidae), is the main insect pest associated to red clover, Trifolium pratense L. An average of 1.5 H. obscurus per plant can cause 5.5% reduction in forage yield in pastures of two to three years old. Moreover, insect attack can reach 70% to 100% of the plants. To our knowledge, there is no a chemical strategy for controlling this pest. Therefore alternative strategies for controlling H. obscurus are a high priority for red clover producers. One of this alternative is related to the study of secondary metabolites involved in intrinsic chemical defenses developed by plants, such as isoflavonoids. The isoflavonoids formononetin and daidzein have elicited an antifeedant and phagostimult effect on H. obscurus respectively. However, we do not know how is the dynamic variation of these isoflavonoids under field conditions. The main objective of this work was to evaluate the variation of the antifeedant isoflavonoids formononetin, the phagostimulant isoflavonoids daidzein, and their respective glycosides over time in different ecotypes of red clover. Fourteen red clover ecotypes (8 cultivars and 6 experimental lines), were collected at INIA-Carillanca (La Araucanía, Chile). These plants were established in October 2015 under irrigated conditions. The cultivars were distributed in a randomized complete block with three replicates. The whole plants were sampled in four times: 15th October 2016, 12th December 2016, 27th January 2017 and 16th March 2017 with sufficient amount of soil to avoid root damage. A polar fraction of isoflavonoid was obtained from 20 mg of lyophilized root tissue extracted with 2 mL of 80% MeOH for 16 h using an orbital shaker in the dark at room temperature. After, an aliquot of 1.4 mL of the supernatant was evaporated, and the residue was resuspended in 300 µL of 45% MeOH. The identification and quantification of isoflavonoid root extracts were performed by the injection of 20 µL into a Shimadzu HPLC equipped with a C-18 column. The sample was eluted with a mobile phase composed of AcOH: H₂O (1:9 v/v) as solvent A and CH₃CN as solvent B. The detection was performed at 260 nm. The results showed that the amount of aglycones was higher than the respective glycosides. This result is according to the biosynthetic pathway of flavonoids, where the formation of glycoside is further to the glycosides biosynthesis. The amount of formononetin was higher than daidzein. In roots, where H. obscurus spent the most part of its live cycle, the highest content of formononetin was found in G 27, Pawera, Sabtoron High, Redqueli-INIA and Superqueli-INIA cvs. (2.1, 1.8, 1.8, 1.6 and 1.0 mg g⁻¹ respectively); and the lowest amount of daidzein were found Superqueli-INIA (0.32 mg g⁻¹) and in the experimental line Sel Syn Int4 (0.24 mg g⁻¹). This ecotype showed a high content of formononetin (0.9 mg g⁻¹). This information, associated with cultural practices, could help farmers and breeders to reduce H. obscurus in grassland, selecting ecotypes with high content of formononetin and low amount of daidzein in the roots of red clover plants. Acknowledgements: FONDECYT 1141245 and 11130715.

Keywords: daidzein, formononetin, isoflavonoid glycosides, trifolium pratense

Procedia PDF Downloads 188
219 Flood Analysis of Domestic Rooftop Rainwater Harvesting in Low Lying Flood Plain Areas at Gomti Nagar In Rain-Dominated Monsoon Climates

Authors: Rajkumar Ghosh

Abstract:

Rapid urbanization, rising population, changing lifestyles and in-migration, Lucknow is groundwater over-exploited area, with an abstract rate of 1968 m3/day/km2 in Gomti Nagar. The groundwater situation in Gomti Nagar is deteriorating day-by-day. According to the work, the calculated annual water deficiency in Gomti Nagar area will be 28061 Million Litre (ML) in 2022. Within 30 yrs., the water deficiency will be 735570 ML (till 2051). The calculated groundwater recharge in Gomti Nagar was 10813 ML/y (in 2022). The annual groundwater abstraction from Gomti Nagar area was 35332 ML/yr. (in 2022). Bye-laws (≥ 300 sq.m) existing RTRWHs can recharge 17.71 ML/yr. in Gomti Nagar area. The existing RTRWHs are contributing 0.07% for recharging groundwater table. In Gomti Nagar, the water level is dropping at a rate of 1.0 metre per year, and the depth of the water table is less than 30 metre below ground level (mbgl). Natural groundwater recharge is affected by the geomorphological conditions of the surrounding area. Gomti Nagar is located on the erosional terrace (Te) and depositional terrace (d) of the Gomti River. The flood plain in Lucknow city is less active due to the embankments on the both sides of the Gomti River. The alluvium is composed of clay sandy up to a depth of 30m, and the alignment of the Gomti River reveals the presence of sandy soil at shallow depths. Aquifer depth 120 metre. Recharge as in Gomti Nagar (it may vary) 0 – 150 metre. Infiltration rates in alluvial floodplains range from 0.8 to 74 cm/hr. Geologically and Geomorphologically support rapid percolation of rainwater through alluvium in Gomti Nagar, Lucknow city, Uttar Pradesh. Over-exploitation of groundwater causes natural hazards viz. land subsidence, development of cracks on roads and buildings, development of vacuum and compactness of soil/clay which leads towards land subsidence, devastating effects on natural stream flow. Gomti River already transitioning phase from ‘effluent’ to ‘influent’, and saline intrusion in Aquifer –II (among Five aquifers in Lucknow city). A 250 m long crack developed in 2007 due to groundwater depletion in Dullu Khera and Vader Khera village of Kakori, Uttar Pradesh. The groundwater table of Lucknow is declining and water table imbalance occurs due to 17 times less recharge than groundwater exploitation. Uttar Pradesh along with four states have extracted 49% of groundwater in the entire country. In Gomti Nagar area, 27305 no of houses are present and available build up area 3.8 sq. km (60% of plot area) based on Lucknow Development Authority (LDA) Master plan 2031. If RTRWHs would install in all the houses, then 12% harvested rainwater contribute to the water table in Gomti Nagar area. Till 2051, Gomti Nagar area will harvest 91110 ML of rainwater. There are minimalistic chances that any incidence of flood can occur due to RTRWH. Thus, it can conclud that RTRWH is not related to flood happening in urban areas viz. Gomti Nagar.

Keywords: RTRWH, aquifer, groundwater table, rainwater, infiltration

Procedia PDF Downloads 48
218 Epidemiological Analysis of Measles Outbreak in North-Kazakhstan Region of the Republic of Kazakhstan

Authors: Fatima Meirkhankyzy Shaizadina, Alua Oralovna Omarova, Praskovya Mikhailovna Britskaya, Nessipkul Oryntayevna Alysheva

Abstract:

In recent years in the Republic of Kazakhstan there have been registered outbreaks of measles among the population. The objective of work was the analysis of outbreak of measles in 2014 among the population of North-Kazakhstan region of the Republic of Kazakhstan. For the analysis of the measles outbreak descriptive and analytical research, techniques were used and threshold levels of morbidity were calculated. The increase of incidence was noted from March to July. The peak was registered in May and made 9.0 per 100000 population. High rates were registered in April – 5.7 per 100000 population, and in June and July they made 5.7 and 3.1 respectively. Duration of the period of increase made 5 months. The analysis of monthly incidence of measles revealed spring and summer seasonality. Across the territory it was established that 69.2% of cases were registered in the city, 29.1% in rural areas and 1.7% of cases were brought in from other regions of Kazakhstan. The registered cases and threshold values of measles during the outbreak revealed that from 12 to 24 week, and also during the 40th week the cases exceeding the threshold levels are registered. Thus, for example, for the analyzed 1 week the number of the revealed patients made 4, which exceeds the calculated threshold value (3) by 33.3%. The data exceeding the threshold values confirm the emergence of a disease outbreak or the beginning of epidemic rise in morbidity. Epidemic rise in incidence of the population of North-Kazakhstan region was observed throughout 2014. The risk group includes 0-4 year-old children, who made 22.7%, 15-19 year-olds – 25.6%, 20-24 year-olds – 20.9%. The analysis of measles cases registration by gender revealed that women are registered 1.1 times more often than men. The ratio of women to men made 1:0.87. In social and professional groups often ill are unorganized children – 23.3% and students – 19.8%. Studying clinical manifestations of measles in the hospitalized patients, the typical beginning of a disease with expressed intoxication symptoms – weakness, sickliness was established. In individual cases expressed intoxication symptoms, hemorrhagic and dyspeptic syndromes, complications in the form of overlay of a secondary bacterial infection, which defined high severity of the illness, were registered both in adults and in children. The average duration of stay of patients in the hospital made 6.9 days. The average duration of time between date of getting the disease and date of delivery of health care made 3.6 days. Thus, the analysis of monthly incidence of measles revealed spring and summer seasonality, the peak of which was registered in May. Urban dwellers are ill more often (69.2%), while in rural areas people are ill more rarely (29.1%). Throughout 2014 an epidemic rise in incidence of the population of North-Kazakhstan region was observed. Risk group includes: children under 4 – 22.7%, 15-19 year-olds – 25.6%, 20-24 year-olds – 20.9%. The ratio of women and men made 1:0.87. The typical beginning of a disease in all hospitalized with the expressed intoxication symptoms – weakness, sickliness was established.

Keywords: epidemiological analysis, measles, morbidity, outbreak

Procedia PDF Downloads 198
217 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution

Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko

Abstract:

Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.

Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking

Procedia PDF Downloads 47
216 Iron-Metal-Organic Frameworks: Potential Application as Theranostics for Inhalable Therapy of Tuberculosis

Authors: Gabriela Wyszogrodzka, Przemyslaw Dorozynski, Barbara Gil, Maciej Strzempek, Bartosz Marszalek, Piotr Kulinowski, Wladyslaw Piotr Weglarz, Elzbieta Menaszek

Abstract:

MOFs (Metal-Organic Frameworks) belong to a new group of porous materials with a hybrid organic-inorganic construction. Their structure is a network consisting of metal cations or clusters (acting as metallic centers, nodes) and the organic linkers between nodes. The interest in MOFs is primarily associated with the use of their well-developed surface and large porous. Possibility to build MOFs of biocompatible components let to use them as potential drug carriers. Furthermore, forming MOFs structure from cations possessing paramagnetic properties (e.g. iron cations) allows to use them as MRI (Magnetic Resonance Imaging) contrast agents. The concept of formation of particles that combine the ability to transfer active substance with imaging properties has been called theranostic (from words combination therapy and diagnostics). By building MOF structure from iron cations it is possible to use them as theranostic agents and monitoring the distribution of the active substance after administration in real time. In the study iron-MOF: Fe-MIL-101-NH2 was chosen, consisting of iron cluster in nodes of the structure and amino-terephthalic acid as a linker. The aim of the study was to investigate the possibility of applying Fe-MIL-101-NH2 as inhalable theranostic particulate system for the first-line anti-tuberculosis antibiotic – isoniazid. The drug content incorporated into Fe-MIL-101-NH2 was evaluated by dissolution study using spectrophotometric method. Results showed isoniazid encapsulation efficiency – ca. 12.5% wt. Possibility of Fe-MIL-101-NH2 application as the MRI contrast agent was demonstrated by magnetic resonance tomography. FeMIL-101-NH2 effectively shortening T1 and T2 relaxation times (increasing R1 and R2 relaxation rates) linearly with the concentrations of suspended material. Images obtained using multi-echo magnetic resonance imaging sequence revealed possibility to use FeMIL-101-NH2 as positive and negative contrasts depending on applied repetition time. MOFs micronization via ultrasound was evaluated by XRD, nitrogen adsorption, FTIR, SEM imaging and did not influence their crystal shape and size. Ultrasonication let to break the aggregates and achieve very homogeneously looking SEM images. MOFs cytotoxicity was evaluated in in vitro test with a highly sensitive resazurin based reagent PrestoBlue™ on L929 fibroblast cell line. After 24h no inhibition of cell proliferation was observed. All results proved potential possibility of application of ironMOFs as an isoniazid carrier and as MRI contrast agent in inhalatory treatment of tuberculosis. Acknowledgments: Authors gratefully acknowledge the National Science Center Poland for providing financial support, grant no 2014/15/B/ST5/04498.

Keywords: imaging agents, metal-organic frameworks, theranostics, tuberculosis

Procedia PDF Downloads 221
215 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction

Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier

Abstract:

Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.

Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing

Procedia PDF Downloads 63
214 Edmonton Urban Growth Model as a Support Tool for the City Plan Growth Scenarios Development

Authors: Sinisa J. Vukicevic

Abstract:

Edmonton is currently one of the youngest North American cities and has achieved significant growth over the past 40 years. Strong urban shift requires a new approach to how the city is envisioned, planned, and built. This approach is evidence-based scenario development, and an urban growth model was a key support tool in framing Edmonton development strategies, developing urban policies, and assessing policy implications. The urban growth model has been developed using the Metronamica software platform. The Metronamica land use model evaluated the dynamic of land use change under the influence of key development drivers (population and employment), zoning, land suitability, and land and activity accessibility. The model was designed following the Big City Moves ideas: become greener as we grow, develop a rebuildable city, ignite a community of communities, foster a healing city, and create a city of convergence. The Big City Moves were converted to three development scenarios: ‘Strong Central City’, ‘Node City’, and ‘Corridor City’. Each scenario has a narrative story that expressed scenario’s high level goal, scenario’s approach to residential and commercial activities, to transportation vision, and employment and environmental principles. Land use demand was calculated for each scenario according to specific density targets. Spatial policies were analyzed according to their level of importance within the policy set definition for the specific scenario, but also through the policy measures. The model was calibrated on the way to reproduce known historical land use pattern. For the calibration, we used 2006 and 2011 land use data. The validation is done independently, which means we used the data we did not use for the calibration. The model was validated with 2016 data. In general, the modeling process contain three main phases: ‘from qualitative storyline to quantitative modelling’, ‘model development and model run’, and ‘from quantitative modelling to qualitative storyline’. The model also incorporates five spatial indicators: distance from residential to work, distance from residential to recreation, distance to river valley, urban expansion and habitat fragmentation. The major finding of this research could be looked at from two perspectives: the planning perspective and technology perspective. The planning perspective evaluates the model as a tool for scenario development. Using the model, we explored the land use dynamic that is influenced by a different set of policies. The model enables a direct comparison between the three scenarios. We explored the similarities and differences of scenarios and their quantitative indicators: land use change, population change (and spatial allocation), job allocation, density (population, employment, and dwelling unit), habitat connectivity, proximity to objects of interest, etc. From the technology perspective, the model showed one very important characteristic: the model flexibility. The direction for policy testing changed many times during the consultation process and model flexibility in applying all these changes was highly appreciated. The model satisfied our needs as scenario development and evaluation tool, but also as a communication tool during the consultation process.

Keywords: urban growth model, scenario development, spatial indicators, Metronamica

Procedia PDF Downloads 72