Search results for: structural efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10124

Search results for: structural efficiency

10064 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 106
10063 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections

Procedia PDF Downloads 289
10062 Passive Seismic Energy Dissipation Mechanisms for Smart Green Structural System (SGSS)

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The design philosophy of building structure has been changing over time. The reason behind this is an increase in human interest regarding the improvements in building materials and technology that will affect how we live, the aim to speed up construction period, and the environmental effect which includes earthquakes and other natural disasters. One technique which takes into account the above case is using a prefabricable structural system, in which each and every structural element is designed and prefabricated and assembled on a site so that the construction speed is increased and the environmental impact is also enhanced. This system has immense advantages such as reduced construction cost, reusability, recyclability, faster construction period and less enviromental effect. In this study, some of the developed and evaluated structural elements of building structures are presented.

Keywords: eccentrically braced frame, natural disaster, prefabricable structural system, removable link, SGSS

Procedia PDF Downloads 408
10061 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana

Authors: Holly Sandberg, Christina McCoy, Khaled Mansy

Abstract:

Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.

Keywords: eucalyptus, timber, construction, structural, material

Procedia PDF Downloads 150
10060 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 265
10059 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture

Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain

Abstract:

Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.

Keywords: oil spill, graphene, oil-water separation, nanocomposite

Procedia PDF Downloads 134
10058 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 188
10057 Economic Analysis of Policy Instruments for Energy Efficiency

Authors: Etidel Labidi

Abstract:

Energy efficiency improvement is one of the means to reduce energy consumption and carbon emissions. Recently, some developed countries have implemented the tradable white certificate scheme (TWC) as a new policy instrument based on market approach to support energy efficiency improvements. The major focus of this paper is to compare the White Certificates (TWC) scheme as an innovative policy instrument for energy efficiency improvement to other policy instruments: energy taxes and regulations setting a minimum level of energy efficiency. On the basis of our theoretical discussion and numerical simulation, we show that the white certificates system is the most interesting policy instrument for saving energy because it generates the most important level of energy savings and the least increase in energy service price.

Keywords: energy savings, energy efficiency, energy policy, white certificates

Procedia PDF Downloads 304
10056 Supporting Factors and Barriers to Implementing Eco-Efficiency of Automotive Industry: A Case of Thailand

Authors: Angkawinijwong Sasiwan, Setthasakko Watchaneeporn

Abstract:

This paper aims to gain an understanding of supporting factors and barriers to implementing eco-efficiency of automotive industry in Thailand. It employs in-depth interviews with key involved informants, including environmental managers, plant managers and environmental officers of six leading companies. It is found that board of directors, legislation and customers’ need are three main supporting factors in implementing eco-efficiency. Data collection and lack of awareness and knowledge about eco-efficiency are identified as barriers.

Keywords: eco-efficiency, supporting factors, barriers, automotive industry, Thailand

Procedia PDF Downloads 397
10055 Building Exoskeletons for Seismic Retrofitting

Authors: Giuliana Scuderi, Patrick Teuffel

Abstract:

The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.

Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting

Procedia PDF Downloads 398
10054 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata

Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen

Abstract:

This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.

Keywords: composite, blending, optimization, lamination parameters

Procedia PDF Downloads 191
10053 Energy Efficiency Index Applied to Reactive Systems

Authors: P. Góes, J. Manzi

Abstract:

This paper focuses on the development of an energy efficiency index that will be applied to reactive systems, which is based in the First and Second Law of Thermodynamics, by giving particular consideration to the concept of maximum entropy. Among the requirements of such energy efficiency index, the practical feasibility must be essential. To illustrate the performance of the proposed index, such an index was used as decisive factor of evaluation for the optimization process of an industrial reactor. The results allow the conclusion to be drawn that the energy efficiency index applied to the reactive system is consistent because it extracts the information expected of an efficient indicator, and that it is useful as an analytical tool besides being feasible from a practical standpoint. Furthermore, it has proved to be much simpler to use than tools based on traditional methodologies.

Keywords: energy, efficiency, entropy, reactive

Procedia PDF Downloads 380
10052 The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications

Authors: Eman A. Alghamdi, A. M. Aldhafiri

Abstract:

It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics.

Keywords: CdTe, conductivity, photovoltaic, ellipsometry

Procedia PDF Downloads 97
10051 Multifunctional Composite Structural Elements for Sensing and Energy Harvesting

Authors: Amir H. Alavi, Kaveh Barri, Qianyun Zhang

Abstract:

This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed.

Keywords: multifunctional structures, composites, metamaterial, triboelectric nanogenerator, sensors, structural health monitoring, energy harvesting

Procedia PDF Downloads 166
10050 Informational Efficiency and Integration: Evidence from Gulf Cooperation Council (GCC) Shariah Equity Market

Authors: Sania Ashraf

Abstract:

The paper focuses on the prevalence of informational efficiency and integration of GCC Shariah Equity market for the period of 01st January 2010 to 31st June 2015 with daily equity returns of Kuwait, Oman, Qatar, Bahrain, Saudi Arabia and United Arab Emirates. The study employs traditional as well as the modern approach of tracing out the efficiency and integration in the return series. From the results of efficiency it was observed that the market lacked efficiency in terms of its past information. The results of integration test clearly indicates that there was a long memory in the returns of GCC Shariah during the study period. Hence it was concluded and proved that the returns of all GCC Equity Shariah were not informationally efficient but fractionally integrated during the study period.

Keywords: efficiency, Fama, GCC shariah, hurst exponent, integration, serial correlation

Procedia PDF Downloads 334
10049 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes

Authors: Hein Win Zaw

Abstract:

Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.

Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes

Procedia PDF Downloads 305
10048 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials

Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang

Abstract:

Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.

Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material

Procedia PDF Downloads 84
10047 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements

Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang

Abstract:

Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.

Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation

Procedia PDF Downloads 114
10046 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

Authors: Osama Al-Sehail

Abstract:

This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.   

Keywords: biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability

Procedia PDF Downloads 285
10045 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant

Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan

Abstract:

Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.

Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis

Procedia PDF Downloads 337
10044 Evaluating the Factors Influencing the Efficiency and Usage of Public Sports Services in a Chinese Province

Authors: Zhankun Wang, Timothy Makubuya

Abstract:

The efficiency of public sports service of prefecture-level cities in Zhejiang from 2008 to 2012 was evaluated by applying the DEA method, then its influencing factors were also analyzed through Tobit model. Upon analysis, the results revealed the following; (i) the change in average efficiency of public sports service in Zhejiang present a smooth uptrend and at a relatively high level from 2008 to 2012 (ii) generally, the productivity of public sports service in Zhejiang improved from 2008 to 2012, the productivity efficiency varied greatly in different years, and the regional difference of production efficiency increased. (iii) The correlations for urbanization rate, aging rate, per capita GDP and the population density were significantly positive with the public sports service efficiency in Zhejiang, of which the most significant was the aging rate. However, the population density and per capita GDP had less impact on the efficiency of public sports service in Zhejiang. In addition, whether the efficiency of public sports services in different areas in Zhejiang reciprocates to overall benefits in public wellbeing in both rural and urban settings is still arguable.

Keywords: DEA model, public sports service, efficiency, Tobit model, Malmquist productivity index, Zhejiang

Procedia PDF Downloads 256
10043 Scenarios of Digitalization and Energy Efficiency in the Building Sector in Brazil: 2050 Horizon

Authors: Maria Fatima Almeida, Rodrigo Calili, George Soares, João Krause, Myrthes Marcele Dos Santos, Anna Carolina Suzano E. Silva, Marcos Alexandre Da

Abstract:

In Brazil, the building sector accounts for 1/6 of energy consumption and 50% of electricity consumption. A complex sector with several driving actors plays an essential role in the country's economy. Currently, the digitalization readiness in this sector is still low, mainly due to the high investment costs and the difficulty of estimating the benefits of digital technologies in buildings. Nevertheless, the potential contribution of digitalization for increasing energy efficiency in the building sector in Brazil has been pointed out as relevant in the political and sectoral contexts, both in the medium and long-term horizons. To contribute to the debate on the possible evolving trajectories of digitalization in the building sector in Brazil and to subsidize the formulation or revision of current public policies and managerial decisions, three future scenarios were created to anticipate the potential energy efficiency in the building sector in Brazil due to digitalization by 2050. This work aims to present these scenarios as a basis to foresight the potential energy efficiency in this sector, according to different digitalization paces - slow, moderate, or fast in the 2050 horizon. A methodological approach was proposed to create alternative prospective scenarios, combining the Global Business Network (GBN) and the Laboratory for Investigation in Prospective Strategy and Organisation (LIPSOR) methods. This approach consists of seven steps: (i) definition of the question to be foresighted and time horizon to be considered (2050); (ii) definition and classification of a set of key variables, using the prospective structural analysis; (iii) identification of the main actors with an active role in the digital and energy spheres; (iv) characterization of the current situation (2021) and identification of main uncertainties that were considered critical in the development of alternative future scenarios; (v) scanning possible futures using morphological analysis; (vi) selection and description of the most likely scenarios; (vii) foresighting the potential energy efficiency in each of the three scenarios, namely slow digitalization; moderate digitalization, and fast digitalization. Each scenario begins with a core logic and then encompasses potentially related elements, including potential energy efficiency. Then, the first scenario refers to digitalization at a slow pace, with induction by the government limited to public buildings. In the second scenario, digitalization is implemented at a moderate pace, induced by the government in public, commercial, and service buildings, through regulation integrating digitalization and energy efficiency mechanisms. Finally, in the third scenario, digitalization in the building sector is implemented at a fast pace in the country and is strongly induced by the government, but with broad participation of private investments and accelerated adoption of digital technologies. As a result of the slow pace of digitalization in the sector, the potential for energy efficiency stands at levels below 10% of the total of 161TWh by 2050. In the moderate digitalization scenario, the potential reaches 20 to 30% of the total 161TWh by 2050. Furthermore, in the rapid digitalization scenario, it will reach 30 to 40% of the total 161TWh by 2050.

Keywords: building digitalization, energy efficiency, scenario building, prospective structural analysis, morphological analysis

Procedia PDF Downloads 84
10042 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes

Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush

Abstract:

Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.

Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing

Procedia PDF Downloads 181
10041 Weight Regulation Mechanism on Bridges

Authors: S. Siddharth, Saravana Kumar

Abstract:

All Metros across the world tend to have a large number of bridges and there have been concerns about the safety of these bridges. As the traffic in most cities in India is heterogeneous, Trucks and Heavy vehicles traverse on our roads on an everyday basis this will lead to structural damage on the long run. All bridges are designed with a maximum Load limit and this limit is seldom checked. We have hence come up with an idea to check the load of all the vehicles entering the bridge and block the bridge with barricades if the vehicle surpasses the maximum load , this is done to catch hold of the perpetrators. By doing this we can avoid further structural damage and also provide an effective way to enforce the law. If our solution is put in place structural damage and accidents would be reduced to a great deal and it would also make the law enforcement job easier.

Keywords: heterogeneous, structural, load, law, heavy, vehicles

Procedia PDF Downloads 405
10040 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics

Authors: Geraldine Giraldo

Abstract:

In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.

Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic

Procedia PDF Downloads 39
10039 Measuring Environmental Efficiency of Energy in OPEC Countries

Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani

Abstract:

Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.

Keywords: energy efficiency, undesirable outputs, data envelopment analysis

Procedia PDF Downloads 705
10038 Organizational Efficiency in the Age of the Current Financial Crisis Strategies and Tracks Progress

Authors: Aharouay Soumaya

Abstract:

Efficiency is a relative concept. It is measured by comparing the productivity obtained in what is intended as standard or objective criteria. The quantity and quality of output achieved and the level of service are also compared to targets or standards, to determine to what extent they could cause changes in efficiency. Efficiency improves when more outputs of a specified quality are produced with the same resource inputs or less, or when the same amount of output is produced with fewer resources. This article proposes a review of the literature on strategies adopted by firms in the age of the financial crisis to overcome these negative effects, and tracks progress chosen by the organization to remain successful despite the plight of firms.

Keywords: effectiveness, efficiency, organizational capacity, strategy, management tool, progress, performance

Procedia PDF Downloads 318
10037 Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency

Authors: Aydin Azizi, Abdurrahman Tanira

Abstract:

With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel.

Keywords: fuel efficiency, driving techniques, optimum speed, optimizing fuel consumption

Procedia PDF Downloads 433
10036 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 200
10035 Evaluation the Financial and Social Efficiency of Microfinance Institutions Using Data Envelope Analysis - A Sample Study of Active Microfinance Institutions in India

Authors: Hiba Mezaache

Abstract:

The study aims to assess the financial and social efficiency of microfinance institutions in india for the period 2015-2019 by using two models of economies of scale and choosing the output direction of the data envelope analysis (DEA) method and using the MIX MARKET database. The study concluded that microfinance institutions focus on achieving financial efficiency beyond their focus on achieving social efficiency to ensure their continuity in the market. Convergence in the efficiency ratios that have been achieved, but the optimum ratios have been achieved under the changing economies of scale; Efficiency is affected by the depth of reaching low-income groups, as serving this group raises costs and risks. The importance of lending to women in rural areas and raising their awareness to ensure their financial and social empowerment; Make improvements in operating expenses, asset management, and loan personnel control in order to maximize output.

Keywords: microfinance, financial efficiency, social efficiency, mix market, microfinance institutions

Procedia PDF Downloads 124