Search results for: shear strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4534

Search results for: shear strength

4174 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling

Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann

Abstract:

We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.

Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping

Procedia PDF Downloads 307
4173 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 151
4172 Sound Exposure Effects towards Ross Broilers Growth Rate

Authors: Rashidah Ghazali, Herlina Abdul Rahim, Mashitah Shikh Maidin, Shafishuhaza Sahlan, Noramli Abdul Razak

Abstract:

Sound exposure effects have been investigated by broadcasting a group of broilers with sound of Quran verses (Group B) whereas the other group is the control broilers (Group C). The growth rate comparisons in terms of weight and raw meat texture measured by shear force have been investigated. Twenty-seven broilers were randomly selected from each group on Day 24 and weight measurement was carried out every week till the harvest day (Day 39). Group B showed a higher mean weight on Day 24 (1.441±0.013 kg) than Group C. Significant difference in the weight on Day 39 existed for Group B compared to Group C (p< 0.05). However, there was no significant (p> 0.05) difference of shear force in the same muscles (breast and drumstick raw meat) of both groups but the shear force of the breast meat for Group B and C broilers was lower (p < 0.05) than that of their drumstick meat. Thus, broadcasting the sound of Quran verses in the coop can be applied to improve the growth rate of broilers for producing better quality poultry.

Keywords: broilers, sound, shear force, weight

Procedia PDF Downloads 390
4171 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 279
4170 Relationship between Blow Count Number (N) and Shear Wave Velocity (Vs30) from the Specified Embankment Material: A Case Study on Three Selected Earthen Dams

Authors: Tanapon Suklim, Prachaya Intaphrom, Noppadol Poomvises, Anchalee Kongsuk

Abstract:

The relationship between shear wave velocity (Vs30) and blow count Number from Standard Penetration Tests (NSPT) was investigated on specified embankment dam to find the solution which can be used to estimate the value of N. Shear wave velocity, Vs30 and blow count number, NSPT were performed at three specified dam sites. At each site, Vs30 measurement was recorded by using seismic survey of MASW technique and NSPT were measured by field Standard Penetration Test. Regression analysis was used to derive statistical relation. The relation is giving a final solution to applicable calculated N-value with other earthen dam. Dam engineer can use the statistical relation to convert field Vs30 to estimated N-value instead of absolute N-value from field Standard Penetration Test. It can be noted that the formulae can be applied only in the earthen dam of specified material.

Keywords: blow count number, earthen dam, embankment, shear wave velocity

Procedia PDF Downloads 214
4169 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading

Authors: Danladi Ali, Onah Festus Iloabuchi

Abstract:

In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment

Procedia PDF Downloads 315
4168 Utilization of Waste Glass Powder in Mortar

Authors: Suhaib Salahuddin Alzubair Suliman

Abstract:

This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.

Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar

Procedia PDF Downloads 36
4167 Elastic Constants of Fir Wood Using Ultrasound and Compression Tests

Authors: Ergun Guntekin

Abstract:

Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood.

Keywords: compression tests, elastic constants, fir wood, ultrasound

Procedia PDF Downloads 188
4166 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows

Authors: M. Yaqub Khan, Usman Shabbir

Abstract:

History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.

Keywords: entropy, velocity shear, ion temperature gradient mode, drift

Procedia PDF Downloads 357
4165 Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium

Authors: Dharmana Pradeep, Chandan Kumar Patnaikuni, N. V. S. Venugopal

Abstract:

Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages.

Keywords: rice husk ash, compressive strength, sodium phosphate, curing

Procedia PDF Downloads 307
4164 A Simple Device for in-Situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Couste, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: simple shear, friction angle, Bekker parameters, device, regolith

Procedia PDF Downloads 479
4163 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection

Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar

Abstract:

In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.

Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM

Procedia PDF Downloads 127
4162 Application of Gene Expression Programming (GEP) in Predicting Uniaxial Compressive Strength of Pyroclastic Rocks

Authors: İsmail İnce, Mustafa Fener, Sair Kahraman

Abstract:

The uniaxial compressive strength (UCS) of rocks is an important input parameter for the design of rock engineering project. Compressive strength can be determined in the laboratory using the uniaxial compressive strength (UCS) test. Although the test is relatively simple, the method is time consuming and expensive. Therefore many researchers have tried to assess the uniaxial compressive strength values of rocks via relatively simple and indirect tests (e.g. point load strength test, Schmidt Hammer hardness rebound test, P-wave velocity test, etc.). Pyroclastic rocks are widely exposed in the various regions of the world. Cappadocia region located in the Central Anatolia is one of the most spectacular cite of these regions. It is important to determine the mechanical behaviour of the pyroclastic rocks due to their ease of carving, heat insulation properties and building some civil engineering constructions in them. The purpose of this study is to estimate a widely varying uniaxial strength of pyroclastic rocks from Cappadocia region by means of point load strength, porosity, dry density and saturated density tests utilizing gene expression programming.

Keywords: pyroclastic rocks, uniaxial compressive strength, gene expression programming (GEP, Cappadocia region

Procedia PDF Downloads 302
4161 Effect of Pulverised Burnt Clay Waste Fineness on the Compressive Strength of Concrete

Authors: Emmanuel Onaivi Ajayi, Adewumi John Babafemi

Abstract:

The use of supplementary cementitious materials as partial replacement for cement is steadily increasing in the construction industry. Concrete produced with these materials has shown significant improvement in durability compared to conventional concrete. However, blended cement concretes produced using these supplementary materials typically gain compressive strength at later ages beyond the 28-day, and this does not favour its use when early age strength is required. Improving the fineness of the supplementary materials could be a way to improving the strength performance of its blended cement concrete. In this paper, the effect of pulverised burnt clay waste fineness on the compressive strength of concrete has been investigated. Two different fineness of pulverised burnt clay waste classified as coarse and fine portions were obtained by sieving the original pulverised burnt clay waste portion through sieve sizes No. 100 (150 µm) and No. 200 (75 µm), respectively. Pulverised burnt clay waste dosages of 0% (control), 10% and 20% by weight of binder were used in producing the concrete mixtures. It is found that the compressive strength of the concrete depends on the fineness and proportion of pulverised burnt clay waste. The result shows improvement in compressive strength at all curing ages with the fine portion pulverised burnt clay waste having the highest strength and improved early age compressive strength.

Keywords: pulverized burnt clay waste, supplementary cementitious materials, compressive strength, pozzolans, fineness

Procedia PDF Downloads 315
4160 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

Authors: Min Ye Koo, Gyo Woo Lee

Abstract:

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.

Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property

Procedia PDF Downloads 345
4159 Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy

Authors: Elena B. Cherepetskaya, Alexander A.Karabutov, Vladimir A. Makarov, Elena A. Mironova, Ivan A. Shibaev

Abstract:

In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined.

Keywords: laser ultrasonic testing , local elastic moduli, shear wave velocity, shungit

Procedia PDF Downloads 275
4158 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance

Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang

Abstract:

According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.

Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance

Procedia PDF Downloads 144
4157 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete

Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam

Abstract:

Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.

Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry

Procedia PDF Downloads 303
4156 Effects of Aggregate Type and Concrete Age on Compressive Strength After Subjected to Elevated Temperature

Authors: Ahmed M. Seyam, Rita Nemes

Abstract:

In this study, the influence of elevated temperature and concrete age on the compressive strength of concrete produced by normal quartz aggregate, expanded clay, expanded glass, crushed andesite and crushed clay bricks aggregates were investigated. For this purpose, six different mixtures were prepared by 100% replacement of the coarse aggregate. The specimens were cured in water for seven days, then kept in the laboratory for 120 days and 240 days. The concrete specimens were heated in an electric furnace up to 200, 400, 600, 800, and 1000 °C and kept at these temperatures for two hours heating, then for 24 hours cooling. The residual compressive strength of the specimens was measured. The results showed that, the elevated temperature induces a significant decrease in a compressive strength in both normal weight and lightweight aggregate concrete, by comparing the behavior of different mixes, in all cases, the strength of the specimens containing crushed andesite aggregates showed a better performance for compressive strength after exposure to elevated temperatures over 800 °C, while the specimens containing expanded glass showing the least residual strength after subjected to elevated temperature; moreover the age of the concrete in all mixes has also been an effective factor, the behavior of the concrete strength loss by increasing heating temperature was not changed but the strength results showing the better performance and higher compressive strength in both ambient and elevated temperature.

Keywords: elevated temperature, concrete age, compressive strength, expanded clay, expanded glass, crushed andesite, crushed clay bricks

Procedia PDF Downloads 79
4155 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 106
4154 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 342
4153 Experimental Investigations on the Mechanical properties of Spiny (Kawayan Tinik) Bamboo Layers

Authors: Ma. Doreen E. Candelaria, Ma. Louise Margaret A. Ramos, Dr. Jaime Y. Hernandez, Jr

Abstract:

Bamboo has been introduced as a possible alternative to some construction materials nowadays. Its potential use in the field of engineering, however, is still not widely practiced due to insufficient engineering knowledge on the material’s properties and characteristics. Although there are researches and studies proving its advantages, it is still not enough to say that bamboo can sustain and provide the strength and capacity required of common structures. In line with this, a more detailed analysis was made to observe the layered structure of the bamboo, particularly the species of Kawayan Tinik. It is the main intent of this research to provide the necessary experiments to determine the tensile strength of dried bamboo samples. The test includes tensile strength parallel to fibers with samples taken at internodes only. Throughout the experiment, methods suggested by the International Organization for Standardization (ISO) were followed. The specimens were tested using 3366 INSTRON Universal Testing Machine, with a rate of loading set to 0.6 mm/min. It was then observed from the results of these experiments that dried bamboo samples recorded high layered tensile strengths, as high as 600 MPa. Likewise, along the culm’s length and across its cross section, higher tensile strength were observed at the top part and at its outer layers. Overall, the top part recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The recorded tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. From this variation in tensile strength across the cross section, it may be concluded that an increase in tensile strength may be observed towards the outer periphery of the bamboo. With these preliminary investigations on the layered tensile strength of bamboo, it is highly recommended to conduct experimental investigations on the layered compressive strength properties as well. It is also suggested to conduct investigations evaluating perpendicular layered tensile strength of the material.

Keywords: bamboo strength, layered strength tests, strength test, tensile test

Procedia PDF Downloads 384
4152 Effects of Geometrical Parameters on Static Strength of Tubular KT-Joints at Fire Condition

Authors: Hamid Ahmadi, Neda Azari Dodaran

Abstract:

This paper aims to study the structural behavior of tubular KT-joints subjected to axial loading at fire induced elevated temperatures. At first, a finite element (FE) model was developed and validated against the data available from experimental tests. Then, a set of 810 FE analyses were performed to study the influence of temperature and dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. The joints were analyzed under two types of axial loading and five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). Results show that the ultimate strength and initial stiffness of KT-joints decrease considerably by increasing the temperature. In the joints having bigger values of the β, the temperature elevation leads to less reduction in ultimate strength; while in the joints with bigger values of the γ, the temperature elevation results in more reduction in ultimate strength. The influence of the θ on the ultimate strength is independent from the temperature. To our knowledge, there is no design formula available for determining the ultimate strength of KT-joints at elevated temperatures. Hence, after parametric study, two equations were developed through nonlinear regression, for calculating the ultimate strength of KT-joints at elevated temperatures.

Keywords: axial loads, fire condition, parametric formula, static strength, tubular KT-joint

Procedia PDF Downloads 124
4151 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: recycled aggregate, permeable concrete, compressive strength, permeability

Procedia PDF Downloads 185
4150 Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay

Authors: S. H. Chew, Z. X. Eng, K. E. Chuah, T. Y. Lim, H. M. A. Yim

Abstract:

In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material.

Keywords: cemented clay, containment bund, dewatering, geotextile tube

Procedia PDF Downloads 247
4149 A Numerical Study of Adherend Geometry on the Stress Distribution in Adhesively Lap Joint

Authors: Ahmet Calik

Abstract:

In present study, the effect of adherend geometry on the tensile strength of adhesively single lap aluminum structures joint, bonded was numerically studied using by three dimensional finite element model. Six joint model were investigated. Analyses were performed in ANSYS commercial software. The results shows that the adherends shape has the highest effect on peel and shear stresses.

Keywords: adhesive, adherend, single lap joints, finite element

Procedia PDF Downloads 266
4148 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis

Authors: S. Dorbani, M. Badaoui, D. Benouar

Abstract:

The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.

Keywords: base shear force, fundamental period, epicentral distance, uncertainty, lognormal variables, statistics

Procedia PDF Downloads 293
4147 An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy

Authors: Rajveer, Abhinav Saxena, Sanjeev Das

Abstract:

The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy.

Keywords: aluminum alloy 6082, strength, forging, age hardening

Procedia PDF Downloads 403
4146 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels

Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain

Abstract:

The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.

Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde

Procedia PDF Downloads 230
4145 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls

Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma

Abstract:

An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.

Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading

Procedia PDF Downloads 328