Search results for: safe bearing pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6240

Search results for: safe bearing pressure

6120 Design of Impedance Box to Study Fluid Parameters

Authors: K. AlJimaz, A. Abdullah, A. Abdulsalam, K. Ebdah, A. Abdalrasheed

Abstract:

Understanding flow distribution and head losses is essential to design and calculate Thermo fluid parameters in order to reduce the pressure to a certain required pressure. This paper discusses the ways acquired in design and simulation to create and design an impedance box that reduces pressure. It's controlled by specific scientific principles such as Bernoulli’s principle and conservation of mass. In this paper, the design is made using SOLIDWORKS, and the simulation is done using ANSYS software to solve differential equations and study the parameters in the 3D model, also to understand how the design of this box reduced the pressure. The design was made so that fluid enters at a certain pressure of 3000 Pa in a single inlet; then, it exits from six outlets at a pressure of 300 Pa with respect to the conservation of mass principle. The effect of the distribution of flow and the head losses has been noticed that it has an impact on reducing the pressure since other factors, such as friction, were neglected and also the temperature, which was constant. The design showed that the increase in length and diameter of the pipe helped to reduce the pressure, and the head losses contributed significantly to reduce the pressure to 10% of the original pressure (from 3000 Pa to 300 Pa) at the outlets.

Keywords: box, pressure, thermodynamics, 3D

Procedia PDF Downloads 62
6119 The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties

Authors: Mohsen Ramezan Shirazi, Orod Zarrin, Komeil Valipourian

Abstract:

This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations.

Keywords: bearing capacity, expansive clay, stone columns, vibro techniques

Procedia PDF Downloads 551
6118 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 481
6117 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: flow visualization, pressure measurement, reverse flow, vortex tube

Procedia PDF Downloads 486
6116 Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils

Authors: Bao Thach Nguyen, Abbas Mohajerani

Abstract:

The California bearing ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments, and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength, and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some fine-grained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.

Keywords: California bearing ratio, fine-grained soils, soil physical properties, pavement, soil test

Procedia PDF Downloads 478
6115 Design and Simulation of MEMS-Based Capacitive Pressure Sensors

Authors: Kirankumar B. Balavalad, Bhagyashree Mudhol, B. G. Sheeparamatti

Abstract:

MEMS sensor have gained popularity in automotive, biomedical, and industrial applications. In this paper, the design and simulation of conventional, slotted, and perforated MEMS capacitive pressure sensor is proposed. Polysilicon material is used as diaphragm material that deflects due to applied pressure. Better sensitivity is the main advantage of conventional pressure sensor as compared with other two sensors and perforated pressure sensor achieves large operating pressure range. The proposed MEMS sensor demonstrated with diaphragm length 50um, gap depth 3um is being modelled. The simulation is carried out for different types of MEMS capacitive pressure sensor using COMSOL Multiphysics and Coventor ware.

Keywords: MEMS, conventional pressure sensor, slotted and perforated diaphragm, COMSOL multiphysics, coventor ware

Procedia PDF Downloads 471
6114 The Universal Theory: Role of Imaginary Pressure on Different Relative Motions

Authors: Sahib Dino Naseerani

Abstract:

The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass.

Keywords: imaginary pressure, contraction, variation, relative motion

Procedia PDF Downloads 66
6113 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis

Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed

Abstract:

This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.

Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration

Procedia PDF Downloads 115
6112 Influence of Driving Speed on Bearing Capacity Measurement of Intra-Urban Roads with the Traffic Speed Deflectometer(Tsd)

Authors: Pahirangan Sivapatham, Barbara Esser, Andreas Grimmel

Abstract:

In times of limited public funds and, in particular, an increased social, environmental awareness, as well as the limited availability of construction materials, sustainable and resource-saving pavement management system, is becoming more and more important. Therefore, the knowledge about the condition of the structural substances, particularly bearing capacity and its consideration while planning the maintenance measures of the subordinate network, i.e., state and municipal roads unavoidable. According to the experience, the recommended ride speed of the Traffic Speed Deflectometer (TSD) shall be higher than 40 km/h. Holding of this speed on the intra-urban roads is nearly not possible because of intersections and traffic lights as well as the speed limit. A sufficient background of experience for the evaluation of bearing capacity measurements with TSD in the range of lower speeds is not available yet. The aim of this study is to determine the possible lowest ride speed of the TSD while the bearing capacity measurement on the intra-urban roads. The manufacturer of the TSD used in this study states that the measurements can be conducted at a ride speed of higher than 5 km/h. It is well known that with decreasing ride speed, the viscous fractions in the response of the asphalt pavement increase. This must be taken into account when evaluating the bearing capacity data. In the scope of this study, several measurements were carried out at different speeds between 10 km/h and 60 km/h on the selected intra-urban roads with Pavement-Scanner of the University of Wuppertal, which is equipped with TSD. Pavement-Scanner is able to continuously determine the deflections of asphalt roads in flowing traffic at speeds of up to 80 km/h. The raw data is then aggregated to 10 m mean values so that, as a rule, a bearing capacity characteristic value can be determined for each 10 m road section. By means of analysing of obtained test results, the quality and validity of the determined data rate subject to the riding speed of TSD have been determined. Moreover, the data and pictures of the additional measuring systems of Pavement-Scanners such as High-Speed Road Monitor, Ground Penetration Radar and front cameras can be used to determine and eliminate irregularities in the pavement, which could influence the bearing capacity.

Keywords: bearing capacity measurement, traffic speed deflectometer, inter-urban roads, Pavement-Scanner, structural substance

Procedia PDF Downloads 200
6111 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield

Authors: Raed H. Allawi

Abstract:

Formation pressure is the most critical parameter in hydrocarbon exploration and exploitation. Specifically, predicting abnormal pressures (high formation pressures) and subnormal pressure zones can provide valuable information to minimize uncertainty for anticipated drilling challenges and risks. This study aims to interpret and delineate the pore and fracture pressure of the Mishrif reservoir in the southern Iraq Oilfield. The data required to implement this study included acoustic compression wave, gamma-ray, bulk density, and drilling events. Furthermore, supporting these models needs the pore pressure measurement from the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.

Keywords: pore pressure, fracture pressure, overburden pressure, effective stress, drilling events

Procedia PDF Downloads 50
6110 A Literature Review of Ergonomics Sitting Studies to Characterize Safe and Unsafe Sitting Behaviors

Authors: Yoonjin Lee, Dongwook Hwang, Juhee Park, Woojin Park

Abstract:

As undesirable sitting posture is known to be a major cause of musculoskeletal disorder of office workers, sitting has attracted attention on occupational health. However, there seems to be no consensus on what are safe and unsafe sitting behaviors. The purpose of this study was to characterize safe and unsafe behaviors based on scientific findings of sitting behavior. Three objectives were as follows; to identify different sitting behaviors measure used in ergonomics studies on safe sitting, for each measure identified, to find available findings or recommendations on safe and unsafe sitting behaviors along with relevant empirical grounds, and to synthesize the findings or recommendations to provide characterizations of safe and unsafe behaviors. A systematic review of electronic databases (Google Scholar, PubMed, Web of Science) was conducted for extensive search of sitting behavior. Key terms included awkward sitting position, sedentary sitting, dynamic sitting, sitting posture, sitting posture, and sitting biomechanics, etc. Each article was systemically abstracted to extract a list of studied sitting behaviors, measures used to study the sitting behavior, and presence of empirical evidence of safety of the sitting behaviors. Finally, characterization of safe and unsafe sitting behavior was conducted based on knowledge with empirical evidence. This characterization is expected to provide useful knowledge for evaluation of sitting behavior and about postures to be measured in development of sensing chair.

Keywords: sitting position, sitting biomechanics, sitting behavior, unsafe sitting

Procedia PDF Downloads 272
6109 Significant Stressed Zone of Highway Embankment

Authors: Sharifullah Ahmed, P. Eng

Abstract:

The Axle Pressure and the Consolidation Pressure decrease with the height of the highway embankment and the depth of subsoil. This reduction of pressure depends on the height and width of the embankment. The depth is defined as the significantly stressed zone at which the pressure is reduced to 0.2 or 20%. The axle pressure is reduced to 7% for embankment height 1-3m and to 0.7% for embankment height 4-12m at the bottom level of Highway Embankment. This observation implies that, the portion of axle pressure transferred to subsoil underlying the embankment is not significant for ESAL factor 4.8. The 70% consolidation to have occurred after the construction of the surface layer of pavement. Considering this ratio of post construction settlement, 70% consolidation pressure (Δσ70) is used in this analysis. The magnitude of influence depth or Significant Stressed Zone (Ds) had been obtained for the range of crest width (at the top level of the embankment) is kept between 5m and 50m and for the range of embankment height from 1.0m to 12.0m considering 70% of consolidation pressure (Δσ70). Significantly stressed zones (Ds) for 70% embankment pressure are found as 2-6.2He for embankment top width 5-50m.

Keywords: consolidation pressure, consolidation settlement, ESAL, highway embankment, HS 20-44, significant stressed zone, stress distribution

Procedia PDF Downloads 64
6108 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate

Authors: R. Kiš, M. Malcho, M. Janovcová

Abstract:

This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.

Keywords: orifice plate, high-pressure pipeline, natural gas, CFD analysis

Procedia PDF Downloads 357
6107 Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe

Authors: Babatunde Olumide Olawale, Oyebode Olumide Oyediran

Abstract:

The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe.

Keywords: access control, multimodal biometrics, pattern recognition, security safe

Procedia PDF Downloads 299
6106 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet

Authors: Kateřina Jurdová

Abstract:

Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.

Keywords: decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet

Procedia PDF Downloads 366
6105 The Influence of Cycle Index of Simulation Condition on Main Bearing Wear Prognosis of Internal Combustion Engine

Authors: Ziyu Diao, Yanyan Zhang, Zhentao Liu, Ruidong Yan

Abstract:

The update frequency of wear profile in main bearing wear prognosis of internal combustion engine plays an important role in the calculation efficiency and accuracy. In order to investigate the appropriate cycle index of the simplified working condition of wear simulation, the main bearing-crankshaft journal friction pair of a diesel engine in service was studied in this paper. The method of multi-body dynamics simulation was used, and the wear prognosis model of the main bearing was established. Several groups of cycle indexes were set up for the wear calculation, and the maximum wear depth and wear profile were compared and analyzed. The results showed that when the cycle index reaches 3, the maximum deviation rate of the maximum wear depth is about 2.8%, and the maximum deviation rate comes to 1.6% when the cycle index reaches 5. This study provides guidance and suggestions for the optimization of wear prognosis by selecting appropriate value of cycle index according to the requirement of calculation cost and accuracy of the simulation work.

Keywords: cycle index, deviation rate, wear calculation, wear profile

Procedia PDF Downloads 131
6104 Appropriate Depth of Needle Insertion during Rhomboid Major Trigger Point Block

Authors: Seongho Jang

Abstract:

Objective: To investigate an appropriate depth of needle insertion during trigger point injection into the rhomboid major muscle. Methods: Sixty-two patients who visited our department with shoulder or upper back pain participated in this study. The distance between the skin and the rhomboid major muscle (SM) and the distance between the skin and rib (SB) were measured using ultrasonography. The subjects were divided into 3 groups according to BMI: BMI less than 23 kg/m2 (underweight or normal group); 23 kg/m2 or more to less than 25 kg/m2 (overweight group); and 25 kg/m2 or more (obese group). The mean ±standard deviation (SD) of SM and SB of each group were calculated. A range between mean+1 SD of SM and the mean-1 SD of SB was defined as a safe margin. Results: The underweight or normal group’s SM, SB, and the safe margin were 1.2±0.2, 2.1±0.4, and 1.4 to 1.7 cm, respectively. The overweight group’s SM and SB were 1.4±0.2 and 2.4±0.9 cm, respectively. The safe margin could not be calculated for this group. The obese group’s SM, SB, and the safe margin were 1.8±0.3, 2.7±0.5, and 2.1 to 2.2 cm, respectively. Conclusion: This study will help us to set the standard depth of safe needle insertion into the rhomboid major muscle in an effective manner without causing any complications.

Keywords: pneumothorax, rhomboid major muscle, trigger point injection, ultrasound

Procedia PDF Downloads 263
6103 Numerical Analysis of Reinforced Embankment on Algeria Sabkha Subgrade

Authors: N. Benmebarek, F. Berrabah, S. Benmebarek

Abstract:

This paper is interested by numerical analysis using PLAXIS code of geosynthetic reinforced embankment crossing a section about 11 km on sabkha soil of Chott El Hodna in Algeria. The site observations indicated that the surface soil of this sabkha is very sensitive to moisture and complicated by the presence of locally weak zones. Therefore, serious difficulties were encountered during building the first embankment layer. This paper focuses on the use of geosynthetic to mitigate the difficulty encountered. Due to the absence of an accepted design methods, parametric studies are carried out to assess the effect of basal embankment reinforcement on both the bearing capacity and compaction conditions. The results showed the contribution conditions of geosynthetics to improve the bearing capacity of sabkha soil.

Keywords: reinforced embankment, numerical modelling, geosynthetics, weak bearing capacity

Procedia PDF Downloads 270
6102 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 98
6101 The Effects of External Daminozide (ALAR) Application on Nutrient Contents in Memecik Olive Trees

Authors: Sahriye Sonmez, Salih Ulger, Mustafa Kaplan, Mustafa Karhan

Abstract:

The objective of this study was to investigate the effects of external ALAR application on nutrients contents in leaf and node in ‘on (bearing)’ and ‘off (non-bearing)’ years in Memecik olive trees. For this purpose; 2000 mg L-1 ALAR was externally applied to Memecik olive trees, and leaf and node samples from olive trees were taken during the induction, initiation and differentiation periods in ‘on’ and ‘off’ years. Nutrients contents (N, P, K, Ca, Mg, Fe, Mn, Zn and Cu) in leaf and node samples were determined. The K, Ca, Mg, Fe, Mn, Zn and Cu contents were determined by atomic absorption spectrophotometry, Nitrogen by Kjeldahl procedure, and P by a spectrophotometric method. The results showed that the N, Ca, Mg, Fe, Mn, Zn and Cu contents in ‘on’ year were higher than ‘off’ year while the K contents in ‘on’ year were lower than ‘off ‘ year, but the P content was not different. The N, Ca, Mg, Fe and Mn contents in leaf samples were higher in the node samples except for K while the P, Zn and Cu contents were not different. The N, K, Ca, Fe, Mn, Zn and Cu contents were lowest during the initiation period while the P content was highest in this period. The Mg content was not different in all period.

Keywords: bearing, differentiation period, induction period, initiation period, non bearing, olive

Procedia PDF Downloads 423
6100 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake

Authors: N. M. Amin, W. N. A. W. Sulaiman

Abstract:

The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.

Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis

Procedia PDF Downloads 395
6099 Effect of Reinforcement Density on the Behaviour of Reinforced Sand Under a Square Footing

Authors: Dhyaalddin Bahaalddin Noori Zangana

Abstract:

This study involves the behavior of reinforced sand under a square footing. A series of bearing capacity tests were performed on a small-scale laboratory model, which filled with a poorly-graded homogenous bed of sand, which was placed in a medium dense state using sand raining technique. The sand was reinforced with 40 mm wide household aluminum foil strips. The main studied parameters was to consider the effect of reinforcing strip length, with various linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcement below the footing, on load-settlement behavior, bearing capacity ratio and settlement reduction factor. The relation of load-settlement generally showed similar trend in all the tests. Failure was defined as settlement equal to 10% of the footing width. The recommended optimum reinforcing strip length, linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcing strips that give the maximum bearing capacity improvement and minimum settlement reduction factor were presented and discussed. Different bearing capacity ration versus length of the reinforcing strips and settlement reduction factor versus length of the reinforcing strips relations at failure were showed improvement of bearing capacity ratio by a factor of 3.82 and reduction of settlement reduction factor by a factor of 0.813. The optimum length of reinforcement was found to be 7.5 times the footing width.

Keywords: square footing, relative density, linear density of reinforcement, bearing capacity ratio, load-settlement behaviour

Procedia PDF Downloads 71
6098 Design and Development of Ceramics Kiln by Application Burners Use from High Pressure of Household Gas Stove

Authors: Somboon Sarasit

Abstract:

This research aims to develop a model small ceramic kiln using burner from a high-pressure household gas stove. The efficiency of the kiln and community technology transfer. The study of history shows that this area used to be a source of pottery on the old capital of Ayutthaya. There is evidence from pottery kilns unearthed many types of wood kiln since 2535 and was assumed that the production will end when the war with Burma in the Ayutthaya period. The result of the research design and performance testing of ceramic kiln using burners by gas cooker and outside from 200-liter steel drums inside with ceramic fiber. It was found that the Graze Firing of the products to be at a temperature of 1230°C. The duration of the burn approximately 5-6 hours and uses only 3-4 kg of LPG products, a coffee can burn up to 40-50 pieces. It is an energy-efficient Kiln. Use safe and appropriate opportunities for entrepreneurs, small ceramic and entrepreneurs with new investments or those who want to produce ceramic products as a hobby. The community interest in the pottery to create a new one to continue the product development and manufacturing in the harshest existence forever.

Keywords: ceramics kiln design and development, ceramic gas kiln, burners application, high-pressure of household gas stove

Procedia PDF Downloads 519
6097 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method

Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari

Abstract:

The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.

Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed

Procedia PDF Downloads 466
6096 A Study on the Calculation of Bearing Life of Electric Motor Using Accelerated Life Test

Authors: Youn-Hwan Kim, Hae-Joong Kim, Jae-Won Moon

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out and it is compared with the bearing life expectancy by ISO 281.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 230
6095 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 487
6094 A Steady State Characteristics of Four-Lobe Journal Bearing Lubricated with a Couple Stress Fluids in Turbulent Flow Regime

Authors: Boualem Chetti, Samir Zahaf

Abstract:

This paper presents the steady-state performance analysis of a four-lobe journal bearing lubricated with a couple stress fluids operating in the turbulent regime, following Constantinescu’s turbulent lubrication theory. The modified Reynolds equation is solved numerically using the finite difference method taking into consideration the effects of the turbulence and the couple stress. In this analysis, the steady-state parameters in terms of the attitude angle, load carrying capacity, side leakage and friction coefficient are determined at various values of eccentricities ratio. The computed results show that the turbulence increases the load carrying capacity, the attitude angle and the friction coefficient for a journal bearing lubricated with a Newtonian or a couple stress fluids. It is found that the turbulence has strongly influence on the steady-state performances of the four-lobe journal bearing lubricated with Newtonian fluids or a couple stress fluids.

Keywords: Four-lobe journal bearings, static characteristics, couple-stress fluids, turbulent flow

Procedia PDF Downloads 156
6093 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings

Authors: Amira Amamou, Mnaouar Chouchane

Abstract:

This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.

Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations

Procedia PDF Downloads 375
6092 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 423
6091 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure

Authors: Reza Behtash, Enayat Enayati

Abstract:

The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.

Keywords: boiler, pressure, pool condenser, partition plate

Procedia PDF Downloads 352