Search results for: sacred geometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1202

Search results for: sacred geometry

962 Computer Aided Shoulder Prosthesis Design and Manufacturing

Authors: Didem Venus Yildiz, Murat Hocaoglu, Murat Dursun, Taner Akkan

Abstract:

The shoulder joint is a more complex structure than the hip or knee joints. In addition to the overall complexity of the shoulder joint, two different factors influence the insufficient outcome of shoulder replacement: the shoulder prosthesis design is far from fully developed and it is difficult to place these shoulder prosthesis due to shoulder anatomy. The glenohumeral joint is the most complex joint of the human shoulder. There are various treatments for shoulder failures such as total shoulder arthroplasty, reverse total shoulder arthroplasty. Due to its reverse design than normal shoulder anatomy, reverse total shoulder arthroplasty has different physiological and biomechanical properties. Post-operative achievement of this arthroplasty is depend on improved design of reverse total shoulder prosthesis. Designation achievement can be increased by several biomechanical and computational analysis. In this study, data of human both shoulders with right side fracture was collected by 3D Computer Tomography (CT) machine in dicom format. This data transferred to 3D medical image processing software (Mimics Materilise, Leuven, Belgium) to reconstruct patient’s left and right shoulders’ bones geometry. Provided 3D geometry model of the fractured shoulder was used to constitute of reverse total shoulder prosthesis by 3-matic software. Finite element (FE) analysis was conducted for comparison of intact shoulder and prosthetic shoulder in terms of stress distribution and displacements. Body weight physiological reaction force of 800 N loads was applied. Resultant values of FE analysis was compared for both shoulders. The analysis of the performance of the reverse shoulder prosthesis could enhance the knowledge of the prosthetic design.

Keywords: reverse shoulder prosthesis, biomechanics, finite element analysis, 3D printing

Procedia PDF Downloads 131
961 Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration

Authors: Payam Haghparast, Mikhail V. Sorin, Hakim Nesreddine

Abstract:

The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.

Keywords: 1D model, constant area-mixing, constant pressure-mixing, normal shock location, ejector dimensions

Procedia PDF Downloads 169
960 Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability

Authors: Omid Tavasoli, Mahmoud Ghazavi

Abstract:

A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles.

Keywords: pile driving, finite difference method, non-uniform piles, pile geometry, pile set, plastic points, soil compaction

Procedia PDF Downloads 455
959 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India

Authors: Shailendra Kumar Patidar

Abstract:

Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.

Keywords: Brahma Sarover, eutrophication, nutrients, trophic status

Procedia PDF Downloads 338
958 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow

Procedia PDF Downloads 108
957 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System

Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin

Abstract:

Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.

Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers

Procedia PDF Downloads 126
956 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: aluminum alloy, fatigue performance, fracture, friction stir welding

Procedia PDF Downloads 132
955 Effects of Watershed Erosion on Stream Channel Formation

Authors: Tiao Chang, Ivan Caballero, Hong Zhou

Abstract:

Streams carry water and sediment naturally by maintaining channel dimensions, pattern, and profile over time. Watershed erosion as a natural process has occurred to contribute sediment to streams over time. The formation of channel dimensions is complex. This study is to relate quantifiable and consistent channel dimensions at the bankfull stage to the corresponding watershed erosion estimation by the Revised Universal Soil Loss Equation (RUSLE). Twelve sites of which drainage areas range from 7 to 100 square miles in the Hocking River Basin of Ohio were selected for the bankfull geometry determinations including width, depth, cross-section area, bed slope, and drainage area. The twelve sub-watersheds were chosen to obtain a good overall representation of the Hocking River Basin. It is of interest to determine how these bankfull channel dimensions are related to the soil erosion of corresponding sub-watersheds. Soil erosion is a natural process that has occurred in a watershed over time. The RUSLE was applied to estimate erosions of the twelve selected sub-watersheds where the bankfull geometry measurements were conducted. These quantified erosions of sub-watersheds are used to investigate correlations with bankfull channel dimensions including discharge, channel width, channel depth, cross-sectional area, and pebble distribution. It is found that drainage area, bankfull discharge and cross-sectional area correlates strongly with watershed erosion well. Furthermore, bankfull width and depth are moderately correlated with watershed erosion while the particle size, D50, of channel bed sediment is not well correlated with watershed erosion.

Keywords: watershed, stream, sediment, channel

Procedia PDF Downloads 261
954 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 419
953 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 130
952 The Meaning of Stillness: Based on the Errand Boy Project in Tibet during the Pandemic Quarantine in Shanghai in the Mayday Holiday

Authors: Mingyuan Duan

Abstract:

Many scholars have paid attention to the relationship between mobility and stillness, but most of them focus on stillness from the perspective of serving mobility. This study believes that more attention should be paid to the importance of stillness, and we suggest reexamining the meaning of stillness in terms of the value of stillness to people. The Errand Boy Project was launched by a social innovation enterprise called Bottle Dream during the May Day holiday in 2022. It linked volunteers from all over the world online to help people who are trapped at home due to the epidemic realize their outdoor wishes: get closer to nature and relieve their anxious mood. Taking Errand Boy in Tibet as a case study, this paper analyzes the emotional expressions and comments of people with limited mobility in the face of nature in the webcast room and explains the importance of stillness to humans from a non-human perspective. This study points out that the significance of stillness to human beings during the pandemic is composed of three aspects: the sense of solidity established by a steady mobile phone network connection, the stable possibility of wish fulfillment predicted by the periodic regularity of plant growth, and the transcendent spiritual power from the stable sacred mountain.

Keywords: stillness, non-human, pandemic, mobility

Procedia PDF Downloads 48
951 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI

Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil

Abstract:

The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.

Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency

Procedia PDF Downloads 371
950 Structural Anatomy and Deformation Pattern of the Palghat-Cauvery Shear Zone in the Central Sector, Tamil Nadu, Southern India

Authors: Mrinal Mukherjee, Gargi Seal, Bitopan Mazumdar, Prakhar Agarwal

Abstract:

The central sector of Palghat-Cauvery Shear zone Tamil Nadu, India, had been studied with reference to development, mode of occurrence, interrelationship and variation of structural elements. The litho assemblages of the study area include gneisses migmatites granites and bear signature of multistage deformation patterns. The early deformation D1 is characterized in migmatites and gneisses by the development of tight to isoclinal, recumbent to reclined folds within the compositional bands that are refolded subsequently to produce D2 deformation structures ranging from type-II to type-III superposed geometry. The granite, in general, is undeformed, save a few places where strong mylonitic foliation developed with stretching lineation on it. The D1-D2 structures of gneisses and migmatites were affected by a D3 stage- E-W trending shear zone (Palghat-Cauvery Shear zone) that dips steeply towards north. The shear zone is characterized by the development of mylonite zone with stretching lineation on foliation, shear band structures, modification of geometry and orientation of earlier folds and foliations within the shear zone and development of shear induced folds and foliations. Several anastomosing lenses of shear zones define the larger Palghat-Cauvery Shear zone. The orientation of the shear induced folds and foliations and deflections of earlier foliation and folds within the Palghat-Cauvery shear zone indicate an oblique-slip thrust-shear with north-towards-east sense of displacement. The E-W trending shear zone is further openly folded along N-S in the D4 stage of deformation.

Keywords: deformation, migmatites, mylonites, shear zones

Procedia PDF Downloads 159
949 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 186
948 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 129
947 Role of Music Education as a Pillar in Sustainable Development of India

Authors: Rohit Rutka

Abstract:

The aim of the present paper is to reveal the importance of music as an indispensable aspect in education of art, with regard to every single culture which serves as indisputable support to sustainable development in India. Indian system of education is one of the oldest systems of the world. Both secular and sacred education was handed over systematically by formalizing the system of education. We have found significant growth in the system of education in our country since ancient times. It is a veritable avenue which enables societies to transmit music and musical skills from one generation to the upcoming ones. The research is based on a comprehensive literature review on the impact of music to sustainable development. This paper contextualized that music education is imperative to Sustainable Development, to the adult. It is a vital force of self-expression, communication and empowerment economically, in growing children, involvement in music education will promote their creative ability, thereby contribute to the full development of intellectual capacities, apt emotional development that gives the right values and feelings to various events and happenings, music helps to develop skills, innate and instinctive talent in human being and recommend that the informal music teaching should be incorporated into school system so as to transmit and preserve the cultural music and that the study of music should be made compulsory at all levels of the Indian educational system.

Keywords: sustainable development, music education, culture, music as a pillar to sustainable development

Procedia PDF Downloads 320
946 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: natural fiber reinforced composites, delamination, thrust force, machinability

Procedia PDF Downloads 104
945 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there’s always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: solar energy, double-skin façades, thermal buoyancy, fluid machinery

Procedia PDF Downloads 463
944 Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete

Authors: Marilia M. Camargo, Luisa A. Gachet-Barbosa, Rosa C. C. Lintz

Abstract:

The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC.

Keywords: fiber reinforced concrete, steel fibers, volume of fibers, orientation of fibers, post-cracking behaviour

Procedia PDF Downloads 152
943 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima

Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez

Abstract:

Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.

Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis

Procedia PDF Downloads 292
942 Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery

Authors: Sohrab Jafarpour, Hamed Farokhi, Mohammad Rahmati, Alireza Gholipour

Abstract:

In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque.

Keywords: atherosclerosis, fluid-Structure interaction modeling, material stability analysis, and nonlinear biomechanics

Procedia PDF Downloads 60
941 Philosophy, Geometry, and Purpose in Islamic and Gothic Architecture as Two Religious-Based Styles

Authors: P. Nafisi Poor, P. Javid

Abstract:

Religion and divinity have always held important meaning to humans, and therefore it affects different aspects of life including art and architecture. Numerous works of art are related to religion whether supporting or denying it. Religion and religious scholars have influenced and changed art throughout history. This paper focuses on Islam and Christianity because these two religions have been the most discussed and most popular of all time, starting from the birth of Jesus to the arrival of Mohammad. Based on this popularity, these religions have influenced the arts and especially architecture. Islam on one hand changed Iranian and Arabian architecture and they applied it in different places around the world. From the appearance of Islam at 622 AD to this day, Islamic architecture has been evolving; however, one of the most important periods for this style was between 1501 AD and 1736 AD in Iran. Christianity, on the other hand, changed European architecture especially between 1150 AD and 1450 AD or the so-called "Gothic" era, which begins at medieval time and reaches its peak at International Gothic ages. At both of these periods, designing buildings based on spiritual concepts and divine statements reached its peak, and architects were considering God and religion as their center of attention. This article studies the focus on the religions of Islam and Christianity in terms of architecture and presents a general philosophy of both styles to comprehend the idea behind each one, followed by an analysis of their geometry and architectural aspects derived from the best examples, all to understand the purpose of each style and to realize, which one was more successful in reaching their purpose. Subsequently, a comprehensive review of each building is provided including 3D visualizations to help achieve the goal of the article. These studies can support diverse inquiries about both Islamic and Gothic architecture and can be used as a resource to support studies and research towards designing based on religion or for divine purposes.

Keywords: architecture, Gothic, Islamic, religion

Procedia PDF Downloads 116
940 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions

Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski

Abstract:

The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.

Keywords: waste heat recovery, heat exchanger, CFD simulation, pems

Procedia PDF Downloads 548
939 Particular Features of the First Romanian Multilingual Dictionaries

Authors: Mihaela Mocanu

Abstract:

The Romanian multilingual dictionaries – also named polyglot, plurilingual or polylingual dictionaries, have known a slow yet constant development starting with the end of the 17th century, when the first such work is attested, to the present time, when we witness a considerable increase of the number of polyglot dictionaries, especially the terminological ones. This paper aims at analyzing the context in which the first Romanian multilingual dictionaries were issued, as well as and the organization and structure particularities of the first lexicographic works of this type. The irretrievable loss of some of these works as well as the partial conservation of others renders the attempt to retrace the beginnings of Romanian lexicography extremely difficult. The research methodology is part of a descriptive and analytical approach based on two types of sources, subject to contrastive analysis: the notes made by the initiators of lexicographic projects and the testimonies of their contemporaries, respectively, along with the specialized studies regarding the history of the old Romanian lexicography. The analysis of the contents has indicated that these dictionaries lacked a scientific apparatus in the true sense of the phrase, failed to obey unitary organizational criteria, being limited, most of the times, to mere inventories of words, where the Romanian term was assigned its correspondent in other languages. Motivated by practical reasons, the first multilingual dictionaries were aimed at the clerics their purpose being to ensure the translators’ fidelity towards the original religious texts, regarded as sacred.

Keywords: Romanian lexicography, multilingual dictionary, terminology, language

Procedia PDF Downloads 266
938 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers

Authors: M. Kashfi, K. Jahani

Abstract:

Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.

Keywords: transmission loss, absorptive material, flow resistivity, thickness, frequency

Procedia PDF Downloads 220
937 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 78
936 The Old Traditional Structures in Iran: A Suitable Model for Today's Greenhouse

Authors: Behbood Maashkar

Abstract:

One of the principles for societies’ development is the requirement to consider past experiences. Man should always take advantage of the predecessor’s experiences and analyze their works and methods. The predecessors have had a more friendly relationship with nature and their lives less damaged the nature, and it is one of the elements of green building. One of the things the ancients have observed in regard to green building in their houses, stores, sacred places, etc. was using wind-catchers as an air conditioning and cooling system which can be considered as the first foundations of green building. In designing houses Iranian architects have paid a great attention to the factor of making use of more shaded area in hot season and insulation of wall and ceiling against influence of hot weather and also air circulation inside the building. In order to circulate the air inside closed spaces and decrease the temperature, they have considered different winds which blow in Iran and its effective power, and in order to make use of it they invented wind catcher. Direction of wind blow and its height from the earth as well as the time and duration of wind blow and other factors have been effective in making different types of wind catchers. Using wind catchers has been and is prevalent mainly in central and south regions of Iran, coastal areas of Persian Gulf, and Khorasan, especially in cities like Yazd, Kashan, Bam, Abarghoo, Jahrom, and Tabas.

Keywords: environment pollution, green building, Iran, wind catchers

Procedia PDF Downloads 230
935 The Hawza Al-’Ilmiyya and Its Role in Preserving the Shia Identity through Jurisprudence

Authors: Raied Khayou

Abstract:

The Hawza Al-'Ilmiyya is a network of religious seminaries in the Shia branch of Islam. This research mainly focuses on the oldest school located in Najaf, Iraq, because its core curriculum and main characteristics have been unchanged since the fourth century of Islam. Relying on a thorough literature review of Arabic and English publications, and interviews with current and previous students of the seminary, the current research outlines the factors proving how this seminary was crucial in keeping the Shia religious identity intact despite sometimes gruesome attempts of interference and persecution. There are several factors that helped the seminary to preserve its central importance. First, rooted in their theology, Shia Muslims believe that the Hawza Al-’Ilmiyya and its graduates carry a sacred authority. Secondly, the financial independence of the Seminary helped to keep it intact from any governmental or political meddling. Third, its unique teaching method, its matchless openness for new students, and its flexible curriculum made it attractive for many students who were interested in learning more about Shia theology and jurisprudence. The Hawza Al-‘Ilmiyya has the exclusive right to train clerics who hold the religious authority of Shia Islamic jurisprudence, and the seminary’s success in staying independent throughout history kept Shia Islamic theology independent, as well.

Keywords: Hawza Al'Ilmiyya, religious seminary, Shia Muslim education, Islamic jurisprudence

Procedia PDF Downloads 77
934 Paleogene Syn-Rift Play Identification in Palembang Sub-Basin, South Sumatera, Indonesia

Authors: Perdana Rakhmana Putra, Hansen Wijaya, Sri Budiyani, Muhamad Natsir, Alexis badai Samudra

Abstract:

The Palembang Sub-Basin (PSB) located in southern part of South Sumatera basin (SSB) consist of half-graben complex trending N-S to NW-SE. These geometries are believe as an impact of strike-slip regime developed in Eocene-Oligocene. Generally, most of the wells in this area produced hydrocarbon from late stage of syn-rift sequences called Lower Talang Akar (LTAF) and post-rift sequences called Batu Raja Formation (BRF) and drilled to proved hydrocarbon on structural trap; three-way dip anticline, four-way dip anticline, dissected anticline, and stratigraphy trap; carbonate build-up and stratigraphic pinch out. Only a few wells reached the deeper syn-rift sequences called Lahat Formation (LAF) and Lemat Formation (LEF). The new interpretation of subsurface data was done by the tectonostratigraphy concept and focusing on syn-rift sequence. Base on seismic characteristic on basin centre, it divided into four sequences: pre-rift sequence, rift initiation, maximum rift and late rift. These sequences believed as a new exploration target on PSB mature basin. This paper will demonstrate the paleo depositional setting during Paleogene and exploration play concept of syn-rift sequence in PSB. The main play for this area consists of stratigraphic and structure play, where the stratigraphic play is Eocene-Oligocene sediment consist of LAF sandstone, LEF-Benakat formation, and LAF with pinch-out geometry. The pinch-out, lenses geometry and on-lap features can be seen on the seismic reflector and formed at the time of the syn-rift sequence. The structural play is dominated by a 3 Way Dip play related to reverse fault trap.

Keywords: syn-rift, tectono-stratigraphy, exploration play, basin center play, south sumatera basin

Procedia PDF Downloads 163
933 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 390