Search results for: robotic fabrication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1009

Search results for: robotic fabrication

739 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering

Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han

Abstract:

Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.

Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate

Procedia PDF Downloads 125
738 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Likas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.

Keywords: big data, natural language generation, publishing, robotic journalism

Procedia PDF Downloads 405
737 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules

Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye

Abstract:

Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.

Keywords: dendritic, electroplating, gold, template

Procedia PDF Downloads 163
736 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density

Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany

Abstract:

Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.

Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination

Procedia PDF Downloads 241
735 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis

Authors: Alireza Abbasi Moshaii, Shaghayegh Nasiri, Mehdi Tale Masouleh

Abstract:

The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.

Keywords: robotic, static analysis, 3-RCC, 3-RRS

Procedia PDF Downloads 355
734 Life-Cycle Cost and Life-Cycle Assessment of Photovoltaic/Thermal Systems (PV/T) in Swedish Single-Family Houses

Authors: Arefeh Hesaraki

Abstract:

The application of photovoltaic-thermal hybrids (PVT), which delivers both electricity and heat simultaneously from the same system, has become more popular during the past few years. This study addresses techno-economic and environmental impacts assessment of photovoltaic/thermal systems combined with a ground-source heat pump (GSHP) for three single-family houses located in Stockholm, Sweden. Three case studies were: (1) A renovated building built in 1936, (2) A renovated building built in 1973, and (3) A new building built-in 2013. Two simulation programs of SimaPro 9.1 and IDA Indoor Climate and Energy 4.8 (IDA ICE) were applied to analyze environmental impacts and energy usage, respectively. The cost-effectiveness of the system was evaluated using net present value (NPV), internal rate of return (IRR), and discounted payback time (DPBT) methods. In addition to cost payback time, the studied PVT system was evaluated using the energy payback time (EPBT) method. EPBT presents the time that is needed for the installed system to generate the same amount of energy which was utilized during the whole lifecycle (fabrication, installation, transportation, and end-of-life) of the system itself. Energy calculation by IDA ICE showed that a 5 m² PVT was sufficient to create a balance between the maximum heat production and the domestic hot water consumption during the summer months for all three case studies. The techno-economic analysis revealed that combining a 5 m² PVT with GSHP in the second case study possess the smallest DPBT and the highest NPV and IRR among the three case studies. It means that DPBTs (IRR) were 10.8 years (6%), 12.6 years (4%), and 13.8 years (3%) for the second, first, and the third case study, respectively. Moreover, environmental assessment of embodied energy during cradle- to- grave life cycle of the studied PVT, including fabrication, delivery of energy and raw materials, manufacture process, installation, transportation, operation phase, and end of life, revealed approximately two years of EPBT in all cases.

Keywords: life-cycle cost, life-cycle assessment, photovoltaic/thermal, IDA ICE, net present value

Procedia PDF Downloads 90
733 Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes

Authors: Seyed Mohsen Mousavi, Ali Reza Mahjoub, Bahjat Afshari Razani

Abstract:

In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys.

Keywords: azo dyes, Fe/ZnO hollow sphere, hollow sphere nanostructures, photocatalyst

Procedia PDF Downloads 327
732 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 155
731 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles

Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane

Abstract:

In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.

Keywords: autonomous vehicles, convoy, non-linear control, non-linear observer, sliding mode

Procedia PDF Downloads 116
730 Effect of Copper Addition at a Rate of 4% Weight on the Microstructure, Mechanical Characteristics, and Surface Roughness on the Hot Extrusion of Aluminum

Authors: S. M. A. Al Qawabah, A. I. O. Zaid

Abstract:

Al-4%Cu alloys are now widely used in many engineering applications especially in robotic, aerospace and vibration control area. The main problem arises from the weakness of their mechanical characteristics. Therefore, this study is directed towards enhancing the mechanical properties through severe plastic deformation. In this work, the hot direct extrusion process was chosen to provide the required hot work for this purpose. A direct extrusion die was designed and manufactured to be used in this investigation. The general microstructure, microhardness, surface roughness, and compression tests were performed on specimens from the produced Al-4%Cu alloy both in the as cast and after extrusion conditions. It was found that a pronounced enhancement in the mechanical characteristics of the produced Al-4%Cu after extrusion was achieved. The microhardness increased by 89.3%, the flow stress was decreased by 10% at 0.2 strain and finally the surface roughness was reduced by 81.6%.

Keywords: aluminum, copper, surface roughness, hot extrusion

Procedia PDF Downloads 545
729 Self-Directed-Car on GT Road: Grand Trunk Road

Authors: Rameez Ahmad, Aqib Mehmood, Imran Khan

Abstract:

Self-directed car (SDC) that can drive itself from one fact to another without support from a driver. Certain trust that self-directed car obligate the probable to transform the transportation manufacturing while essentially removing coincidences, and cleaning up the environment. This study realizes the effects that SDC (also called a self-driving, driver or robotic) vehicle travel demands and ride scheme is likely to have. Without the typical obstacles that allows detection of a audio vision based hardware and software construction (It (SDC) and cost benefits, the vehicle technologies, Gold (Generic Obstacle and Lane Detection) to a knowledge-based system to predict their potential and consider the shape, color, or balance) and an organized environment with colored lane patterns, lane position ban. Discovery the problematic consequence of (SDC) on GT (grand trunk road) road and brand the car further effectual.

Keywords: SDC, gold, GT, knowledge-based system

Procedia PDF Downloads 337
728 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 50
727 Effects of Surface Topography on Roughness of Glazed Ceramic Substrates

Authors: R. Sarjahani, M. Sheikhattar, S. Javadpour, B. Hashemi

Abstract:

Glazes and their surface characterization is an important subject for ceramic industries. Fabrication of a super smooth surface resistant to stains is a big improvement for those industries. In this investigation, surface topography of popular glazes such as Zircon and Titania based opaque glazes, calcium based matte glaze and transparent glaze has been analyzed by Marsurf M300, SEM, EDS and XRD. Results shows that surface roughness of glazes seriously depends on surface crystallinity, crystal size and shapes.

Keywords: crystallinity, glaze, surface roughness, topography

Procedia PDF Downloads 533
726 Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts

Authors: Nikolay Konukhov

Abstract:

This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2

Keywords: alloys, electric contacts, microelectromechanical systems (MEMS), microswitch

Procedia PDF Downloads 143
725 Electro Spinning in Nanotechnology

Authors: Mahoud Alfama, Meloud Yones, Abdelbaset Zroga, Abdelati Elalem

Abstract:

Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. In this paper we examine -electrospinning by providing a brief description of the theory behind the process examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.

Keywords: nanotechnology, electro spinning, reinforced materials

Procedia PDF Downloads 260
724 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding

Authors: Aiman Alshare, Sahar Qaadan

Abstract:

A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.

Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm

Procedia PDF Downloads 336
723 Zinc Oxide Nanowires: Device Fabrication and Optical Properties

Authors: Igori Wallace

Abstract:

Zinc oxide (ZnO) nanowires with hexagonal structure were successfully synthesized by the chemical bath deposition technique. The obtained nanowires were characterized by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The SEM micrographs revealed the morphology of ZnO nanowires with the diameter between 170.3 and 481nm and showed that the normal pH of the bath solution, 8.1 is the optimized value to form ZnO nanowires with the hexagonal shape. The compositional (EDX) analysis revealed the elemental compositions of samples and confirmed the presence of Zn and O.

Keywords: crystallite, chemical bath deposition technique, hexagonal, morphology, nanowire

Procedia PDF Downloads 283
722 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling

Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski

Abstract:

This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.

Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS

Procedia PDF Downloads 46
721 Using Lagrange Equations to Study the Relative Motion of a Mechanism

Authors: R. A. Petre, S. E. Nichifor, A. Craifaleanu, I. Stroe

Abstract:

The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program.

Keywords: Lagrange equations, relative motion, inertial reference frame, non-inertial reference frame

Procedia PDF Downloads 98
720 Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps

Authors: Hang Zhou, Limin Zhu

Abstract:

This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy.

Keywords: microstructures, anodic oxidation, silicon, agarose stamps

Procedia PDF Downloads 272
719 Fabrication of Silicon Solar Cells Using All Sputtering Process

Authors: Ching-Hua Li, Sheng-Hui Chen

Abstract:

Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process.

Keywords: solar cell, sputtering process, pvd, alloy target

Procedia PDF Downloads 539
718 Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool

Authors: Abdulhamit Donder, Erhan Ilhan Konukseven

Abstract:

Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory.

Keywords: coherence analysis, correlation, FFT, grinding, hanning window, machining, Piezo actuator, reverse arrangements test, spectral analysis

Procedia PDF Downloads 375
717 Improving the Efficiency of Pelton Wheel and Cross-Flow Micro Hydro Power Plants

Authors: Loice K. Gudukeya, Charles Mbohwa

Abstract:

The research investigates hydropower plant efficiency with a view to improving the power output while keeping the overall project cost per kilowatt produced within an acceptable range. It reviews the commonly used Pelton and Cross-flow turbines which are employed in the region for micro-hydro power plants. Turbine parameters such as surface texture, material used and fabrication processes are dealt with the intention of increasing the efficiency by 20 to 25 percent for the micro hydro-power plants.

Keywords: hydro, power plant, efficiency, manufacture

Procedia PDF Downloads 401
716 X-Glove: Case Study of Soft Robotic Hand Exoskeleton

Authors: Pim Terachinda, Witaya Wannasuphoprasit, Wasuwat Kitisomprayoonkul, Anan Srikiatkhachorn

Abstract:

Restoration of hand function and dexterity remain challenges in rehabilitation after stroke. We have developed soft exoskeleton hand robot in which using tendon-driven mechanism. Finger flexion and extension can be triggered by a foot switch and force can be adjusted manually depending on patient’s grip strength. The objective of this study is to investigate feasibility and safety of this device. The study was done in 2 stroke patients with the strength of the finger flexors/extensors grade 1/0 and 3/1 on Medical Research Council scale, respectively. Grasp and release training was performed for 30 minutes. No complication was observed. Results demonstrated that the device is safe, and therapy can be tailored to individual patient’s need. However, further study is required to determine recovery and rehabilitation outcomes after training in patients after nervous system injury.

Keywords: hand, rehabilitation, robot, stroke

Procedia PDF Downloads 254
715 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 32
714 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 216
713 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball

Procedia PDF Downloads 600
712 Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing

Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak, Władysław Hamiga

Abstract:

Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes.

Keywords: SAE, formula student, composite materials, carbon fiber, Aramid fiber, hot wire cutter

Procedia PDF Downloads 484
711 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment

Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee

Abstract:

Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.

Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity

Procedia PDF Downloads 247
710 Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes

Authors: Fama Jallow, Melody Neaves, Professor Mcgregor

Abstract:

The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market.

Keywords: hydrogen production, electrode, lattice structure, Africa

Procedia PDF Downloads 45