Search results for: remote learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8197

Search results for: remote learning

8197 From the Bright Lights of the City to the Shadows of the Bush: Expanding Knowledge through a Case-Based Teaching Approach

Authors: Henriette van Rensburg, Betty Adcock

Abstract:

Concern about the lack of knowledge of quality teaching and teacher retention in rural and remote areas of Australia, has caused academics to improve pre-service teachers’ understanding of this problem. The participants in this study were forty students enrolled in an undergraduate educational course (EDO3341 Teaching in rural and remote communities) at the University of Southern Queensland in Toowoomba in 2012. This study involved an innovative case-based teaching approach in order to broaden their generally under-informed understanding of teaching in a rural and remote area. Three themes have been identified through analysing students’ critical reflections: learning expertise, case-based learning support and authentic learning. The outcomes identified the changes in pre-service teachers’ understanding after they have deepened their knowledge of the realities of teaching in rural and remote areas.

Keywords: rural and remote education, case based teaching, innovative education approach, higher education

Procedia PDF Downloads 491
8196 Remote Wireless Communications Lab in Real Time

Authors: El Miloudi Djelloul

Abstract:

Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”.

Keywords: remote access, remote laboratory, wireless telecommunications, external antenna-switching controller board (EASCB)

Procedia PDF Downloads 514
8195 Lecturers’ Need to Alter Their Identity in Remote Learning Environments: Case Study of Experiences from Uk and USA Universities

Authors: Richard Nelson

Abstract:

The knowledge, skills, and identity of the Higher Education professional are constantly challenged with a demanding environment of teaching, research, administration, and pastoral care. It is more important than ever for professors and lecturers to maintain their professional development in a constantly changing environment. The importance of professional development has become more focused as new skills are needed to meet the demands of remote teaching and learning during a pandemic. Uncertainty and performance pressures influence teachers to try to return to physical spaces or recreate lecture and seminar rooms despite more effective online spaces being available. This case study uses the Boys’ spatial triad as a framework for qualitative interviews to capture the Lecturers’ experiences in Universities in the UK and the USA of moving to online learning spaces. The study finds that without effective professional development and time to reflect critically on remote learning innovation in their teaching practices, lecturers attempt to defer to lecture theatres and seminar rooms, or similes of, as their preferred space for teaching and learning. Professional Development is needed to encourage teachers to reflect on their professional identity and relationship to the teaching space.

Keywords: professional identity, learning, online, remote

Procedia PDF Downloads 154
8194 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 265
8193 Fostering Enriched Teaching and Learning Experience Using Effective Cyber-Physical Learning Environment

Authors: Shubhakar K., Nachamma S., Judy T., Jacob S. C., Melvin Lee, Kenneth Lo

Abstract:

In recent years, technological advancements have ushered in a new era of education characterized by the integration of technology-enabled devices and online tools. The cyber-physical learning environment (CPLE) is a prime example of this evolution, merging remote cyber participants with in-class learners through immersive technology, interactive digital whiteboards, and online communication platforms like Zoom and MS Teams. This approach transforms the teaching and learning experience into a more seamless, immersive, and inclusive one. This paper outlines the design principles and key features of CPLE that support both teaching and group-based activities. We also explore the key characteristics and potential impact of such environments on educational practices. By analyzing user feedback, we evaluate how technology enhances teaching and learning in a cyber-physical setting, its impact on learning outcomes, user-friendliness, and areas for further enhancement to optimize the teaching and learning environment.

Keywords: cyber-physical class, hybrid teaching, online learning, remote learning, technology enabled learning

Procedia PDF Downloads 35
8192 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 33
8191 Remote Training with Self-Assessment in Electrical Engineering

Authors: Zoja Raud, Valery Vodovozov

Abstract:

The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.

Keywords: advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment

Procedia PDF Downloads 326
8190 Identification and Analysis of Supports Required for Teachers Moving to Remote Teaching and Learning during Disasters and Pandemics

Authors: Susan Catapano, Meredith Jones, Carol McNulty

Abstract:

Analysis of one state’s collaborative effort to support teachers, in both public and private schools, as they moved from face-to-face teaching to remote teaching during the Covid pandemic to identify lessons learned and materials put into place to support teachers and families. Surveys were created, distributed, and analyzed throughout the three months of remote teaching, documents and lesson plans were developed, and training materials were created. All data collected and materials developed were analyzed to identify supports teachers used and needed for successful remote teaching. Researchers found most teachers easily moved to online teaching; however, many families did not have access to technology, so teachers needed to develop non-technology-based access and support for remote teaching. Teachers also reported the need to prepare to teach remotely as part of their teaching training, so they were prepared in the future. Finally, data indicated teachers were able to establish stronger relationships with families than usual as a result of remote teaching. The lessons learned and support developed are part of the state’s ongoing policy for online teaching in the event of disasters and pandemics in the future.

Keywords: remote learning, teacher education, pandemic, families

Procedia PDF Downloads 160
8189 The Impact of Social Interaction, Wellbeing and Mental Health on Student Achievement During COVID-19 Lockdown in Saudi Arabia

Authors: Shatha Ahmad Alharthi

Abstract:

Prior research suggests that reduced social interaction can negatively affect well-being and impair mental health (e.g., depression and anxiety), resulting in lower academic performance. The COVID-19 pandemic has significantly limited social interaction among Saudi Arabian school children since the government closed schools and implemented lockdown restrictions to reduce the spread of the disease. These restrictions have resulted in prolonged remote learning for middle school students with unknown consequences for perceived academic performance, mental health, and well-being. This research project explores how middle school Saudi students’ current remote learning practices affect their mental health (e.g., depression and anxiety) and well-being during the lockdown. Furthermore, the study will examine the association between social interaction, mental health, and well-being pertaining to students’ perceptions of their academic achievement. Research findings could lead to a better understanding of the role of lockdown on depression, anxiety, well-being and perceived academic performance. Research findings may also inform policy-makers or practitioners (e.g., teachers and school leaders) about the importance of facilitating increased social interactions in remote learning situations and help to identify important factors to consider when seeking to re-integrate students into a face-to-face classroom setting. Potential implications for future educational research include exploring remote learning interventions targeted at bolstering students’ mental health and academic achievement during periods of remote learning.

Keywords: depression, anxiety, academic performance, social interaction

Procedia PDF Downloads 117
8188 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 32
8187 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 346
8186 Security Features for Remote Healthcare System: A Feasibility Study

Authors: Tamil Chelvi Vadivelu, Nurazean Maarop, Rasimah Che Yusoff, Farhana Aini Saludin

Abstract:

Implementing a remote healthcare system needs to consider many security features. Therefore, before any deployment of the remote healthcare system, a feasibility study from the security perspective is crucial. Remote healthcare system using WBAN technology has been used in other countries for medical purposes but in Malaysia, such projects are still not yet implemented. This study was conducted qualitatively. The interview results involving five healthcare practitioners are further elaborated. The study has addressed four important security features in order to incorporate remote healthcare system using WBAN in Malaysian government hospitals.

Keywords: remote healthcare, IT security, security features, wireless sensor application

Procedia PDF Downloads 304
8185 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 369
8184 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 5
8183 Analysis of Pangasinan State University: Bayambang Students’ Concerns Through Social Media Analytics and Latent Dirichlet Allocation Topic Modelling Approach

Authors: Matthew John F. Sino Cruz, Sarah Jane M. Ferrer, Janice C. Francisco

Abstract:

COVID-19 pandemic has affected more than 114 countries all over the world since it was considered a global health concern in 2020. Different sectors, including education, have shifted to remote/distant setups to follow the guidelines set to prevent the spread of the disease. One of the higher education institutes which shifted to remote setup is the Pangasinan State University (PSU). In order to continue providing quality instructions to the students, PSU designed Flexible Learning Model to still provide services to its stakeholders amidst the pandemic. The model covers the redesigning of delivering instructions in remote setup and the technology needed to support these adjustments. The primary goal of this study is to determine the insights of the PSU – Bayambang students towards the remote setup implemented during the pandemic and how they perceived the initiatives employed in relation to their experiences in flexible learning. In this study, the topic modelling approach was implemented using Latent Dirichlet Allocation. The dataset used in the study. The results show that the most common concern of the students includes time and resource management, poor internet connection issues, and difficulty coping with the flexible learning modality. Furthermore, the findings of the study can be used as one of the bases for the administration to review and improve the policies and initiatives implemented during the pandemic in relation to remote service delivery. In addition, further studies can be conducted to determine the overall sentiment of the other stakeholders in the policies implemented at the University.

Keywords: COVID-19, topic modelling, students’ sentiment, flexible learning, Latent Dirichlet allocation

Procedia PDF Downloads 121
8182 “Teacher, You’re on Mute!”: Teachers as Cultivators of Trans-Literacies

Authors: Efleda Preclaro Tolentino

Abstract:

Research indicates that an educator’s belief system is reflected in the way they structure the learning environment. Their values and belief system have the potential to positively impact school readiness through an understanding of children’s development and the creation of a stable, motivating environment. Based on the premise that the social environment influences the development of social skills, knowledge construct, and shared values of young children, this study examined verbal and nonverbal exchanges between early childhood teachers and their preschool students within the context of remote learning. Using the qualitative method of data collection, the study determined the nature of interactions between preschoolers and their teachers within a remote learning environment at a preschool in Southeast Asia that utilized the Mother Tongue-based Multilingual Education (MTBMLE) Approach. From the lens of sociocultural theory, the study investigated preschoolers’ use of literacies to convey meaning and to interact within a remote learning environment. Using a Strengths Perspective, the study revealed the creativity and resourcefulness of preschoolers in expressing themselves through trans-literacies that were made possible by the use of online mode of learning within cultural and subcultural norms. The study likewise examined how social skills acquired by young children were transmitted (verbally or nonverbally) in their interactions with peers during Zoom meetings. By examining the dynamics of social exchanges between teachers and children, the findings of the study underscore the importance of providing support for preschool students as they apply acquired values and shared practices within a remote learning environment. The potential of distance learning in the early years will be explored, specifically in supporting young children’s language and literacy development. At the same time, the study examines the role of teachers as cultivators of trans-literacies. The teachers’ skillful use of technology in facilitating young children’s learning, as well as in supporting interactions with families, will be examined. The findings of this study will explore the potential of distance learning in early childhood education to establish continuity in learning, supporting young children’s social and emotional transitions, and nurturing trans-literacies that transcend prevailing definitions of learning contexts. The implications of teachers and parents working collaboratively to support student learning will be examined. The importance of preparing teachers to be resourceful, adaptable, and innovative to ensure that learning takes place across a variety of modes and settings will be discussed.

Keywords: transliteracy, preschoolers, remote learning, strengths perspective

Procedia PDF Downloads 91
8181 A Case Study of Remote Location Viewing, and Its Significance in Mobile Learning

Authors: James Gallagher, Phillip Benachour

Abstract:

As location aware mobile technologies become ever more omnipresent, the prospect of exploiting their context awareness to enforce learning approaches thrives. Utilizing the growing acceptance of ubiquitous computing, and the steady progress both in accuracy and battery usage of pervasive devices, we present a case study of remote location viewing, how the application can be utilized to support mobile learning in situ using an existing scenario. Through the case study we introduce a new innovative application: Mobipeek based around a request/response protocol for the viewing of a remote location and explore how this can apply both as part of a teacher lead activity and informal learning situations. The system developed allows a user to select a point on a map, and send a request. Users can attach messages alongside time and distance constraints. Users within the bounds of the request can respond with an image, and accompanying message, providing context to the response. This application can be used alongside a structured learning activity such as the use of mobile phone cameras outdoors as part of an interactive lesson. An example of a learning activity would be to collect photos in the wild about plants, vegetation, and foliage as part of a geography or environmental science lesson. Another example could be to take photos of architectural buildings and monuments as part of an architecture course. These images can be uploaded then displayed back in the classroom for students to share their experiences and compare their findings with their peers. This can help to fosters students’ active participation while helping students to understand lessons in a more interesting and effective way. Mobipeek could augment the student learning experience by providing further interaction with other peers in a remote location. The activity can be part of a wider study between schools in different areas of the country enabling the sharing and interaction between more participants. Remote location viewing can be used to access images in a specific location. The choice of location will depend on the activity and lesson. For example architectural buildings of a specific period can be shared between two or more cities. The augmentation of the learning experience can be manifested in the different contextual and cultural influences as well as the sharing of images from different locations. In addition to the implementation of Mobipeek, we strive to analyse this application, and a subset of other possible and further solutions targeted towards making learning more engaging. Consideration is given to the benefits of such a system, privacy concerns, and feasibility of widespread usage. We also propose elements of “gamification”, in an attempt to further the engagement derived from such a tool and encourage usage. We conclude by identifying limitations, both from a technical, and a mobile learning perspective.

Keywords: context aware, location aware, mobile learning, remote viewing

Procedia PDF Downloads 290
8180 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 158
8179 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic

Authors: Jansirani Natarajan, Mickael Antoinne Joseph

Abstract:

The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.

Keywords: engagement, perception, emergency remote learning, COVID-19

Procedia PDF Downloads 62
8178 Teaching Remotely during COVID-19 Pandemic: Effectiveness and Challenges Faced by Teachers of Remote Teaching Strategies with Autistic Children in the Kingdom of Bahrain-Teachers’ Point of View

Authors: Wid Daghustani, Alison Mackenzie

Abstract:

This research aims to understand how teachers of autistic children responded to teaching remotely during the Covid-19 pandemic. Six teachers who work in an autism centre were interviewed in face-to-face, semi-structured interviews in the Kingdom of Bahrain. The interviews focused on three themes, the effectiveness of remote teaching strategies, the types of remote teachings employed, and the impact on student’s educational outcomes. WhatsApp video calls were used to conduct the remote teaching since it was easy for mothers to us. According to all teachers, the unprecedented change was quite challenging for autos and their families, especially the mothers being the primary caretakers. Additionally, the effectiveness of remote teaching mainly depended on the cooperation and the willingness of the mothers and on the behaviour of the autistic child. Overall, teachers have agreed that in comparison to face-to-face teaching, remote teaching was not a very successful experience.

Keywords: remote teaching, autistic, COVID-19, teachers

Procedia PDF Downloads 160
8177 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 19
8176 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco

Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali

Abstract:

This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.

Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco

Procedia PDF Downloads 16
8175 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 141
8174 Remote Patient Monitoring for Covid-19

Authors: Launcelot McGrath

Abstract:

The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.

Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management

Procedia PDF Downloads 108
8173 Analyzing e-Leadership Literature in Applying an e-Leadership Model for Community College Leaders of Hybrid Remote Teams

Authors: Lori Timmis

Abstract:

The COVID-19 pandemic precipitated significant organizational change in employee turnover, retirements, and burnout exacerbated by enrollment declines in higher education, especially community colleges. To counter this downturn, community college leaders must thoughtfully examine meaningful work opportunities to retain an engaged and productive workforce. Higher education led fully remote teams during the pandemic, which highlighted the benefits and weaknesses of building and leading remote teams. Hybrid remote teams offer possibility to reimagine community college structures, though leading remote teams requires specific e-leadership competencies. This paper examines the literature of studies on e-leadership conducted during the pandemic and from several higher education studies, pre-pandemic, against an e-leadership competency framework. The e-leadership studies conducted pre-pandemic and from the pandemic complement the e-leadership competency framework, comprising six e-leadership competencies performed via information technology communications, which provides community college (and higher education) leaders to consider hybrid remote team structures and the necessary leadership skills to lead hybrid remote teams.

Keywords: community college, e-leadership, great resignation, hybrid remote teams

Procedia PDF Downloads 99
8172 Geography Undergraduates 360⁰ Academic Peer Learning And Mentoring 2021 – 2023: A Pilot Study

Authors: N. Ayob, N. C. Nkosi, R. P. Burger, S. J. Piketh, F. Letlaila, O. Maphosa

Abstract:

South African higher tertiary institution have been faced with high dropout rates. About 50 to 60% of first years drop out to due to various reasons one being inadequate academic support. Geography 111 (GEOG 111) module is historically known for having below 50% pass rate, high dropout rate and identified as a first year risk module. For the first time GEOG 111 (2021) on the Mahikeng Campus admitted 150 students pursuing more than 6 different qualifications (BA and BSc) from the Humanities Faculty and FNAS. First year students had difficulties transitioning from secondary to tertiary institutions as we shifted to remote learning while we navigate through the Covid-19 pandemic. The traditional method of teaching does not encourage students to help each other. With remote learning we do not have control over what the students share and perhaps this can be a learning opportunity to embrace peer learning and change the manner in which we assess the students. The purpose of this pilot study was to assist GEOG111 students with academic challenges whilst improving their University experience. This was a qualitative study open to all GEOG111, repeaters, students who are not confident in their Geographical knowledge and never did Geography at high school level. The selected 9 Golden Key International Honour Society Geography mentors attended an academic mentor training program with module lecturers. About 17.6% of the mentees did not have a geography background however, 94% of the mentees passed, 1 mentee had a mark of 38%. 11 of the participants had a mark >60% with one student that excelled 70%. It is evident that mentorship helped students reach their academic potential. Peer learning and mentoring are associated with improved academic performance and allows the students to take charge of their learning and academic experience. Thus an important element as we transform pedagogies at higher learning institutions.

Keywords: geography, risk module, peer mentoring, peer learning

Procedia PDF Downloads 153
8171 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 69
8170 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 335
8169 Sliding Mode Control of an Internet Teleoperated PUMA 600 Robot

Authors: Abdallah Ghoul, Bachir Ouamri, Ismail Khalil Bousserhane

Abstract:

In this paper, we have developed a sliding mode controller for PUMA 600 manipulator robot, to control the remote robot a teleoperation system was developed. This system includes two sites, local and remote. The sliding mode controller is installed at the remote site. The client asks for a position through an interface and receives the real positions after running of the task by the remote robot. Both sites are interconnected via the Internet. In order to verify the effectiveness of the sliding mode controller, that is compared with a classic PID controller. The developed approach is tested on a virtual robot. The results confirmed the high performance of this approach.

Keywords: internet, manipulator robot, PID controller, remote control, sliding mode, teleoperation

Procedia PDF Downloads 329
8168 Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform

Authors: Shuen-Tai Wang, Hsi-Ya Chang

Abstract:

Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.

Keywords: virtualization, remote desktop, HTML5, cloud computing

Procedia PDF Downloads 338