Search results for: recycled aggregate concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2405

Search results for: recycled aggregate concrete

455 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 113
454 Evaluation of Expected Annual Loss Probabilities of RC Moment Resisting Frames

Authors: Saemee Jun, Dong-Hyeon Shin, Tae-Sang Ahn, Hyung-Joon Kim

Abstract:

Building loss estimation methodologies which have been advanced considerably in recent decades are usually used to estimate socio and economic impacts resulting from seismic structural damage. In accordance with these methods, this paper presents the evaluation of an annual loss probability of a reinforced concrete moment resisting frame designed according to Korean Building Code. The annual loss probability is defined by (1) a fragility curve obtained from a capacity spectrum method which is similar to a method adopted from HAZUS, and (2) a seismic hazard curve derived from annual frequencies of exceedance per peak ground acceleration. Seismic fragilities are computed to calculate the annual loss probability of a certain structure using functions depending on structural capacity, seismic demand, structural response and the probability of exceeding damage state thresholds. This study carried out a nonlinear static analysis to obtain the capacity of a RC moment resisting frame selected as a prototype building. The analysis results show that the probability of being extensive structural damage in the prototype building is expected to 0.004% in a year.

Keywords: expected annual loss, loss estimation, RC structure, fragility analysis

Procedia PDF Downloads 378
453 Influence of Superplasticizer and Alkali Activator Concentration on Slag-Fly Ash Based Geopolymer

Authors: Sulaem Musaddiq Laskar, Sudip Talukdar

Abstract:

Sustainable supplementary cementitious material is the prime need in the construction industry. Geopolymer has strong potential for replacing the conventional Portland cement used in mortar and concrete in the industry. This study deals with experimental investigations performed on geopolymer mixes prepared from both ultra-fine ground granulated blast furnace slag and fly ash in a certain proportion. Geopolymer mixes were prepared with alkali activator composed of sodium hydroxide solution and varying amount of superplasticizer. The mixes were tested to study fresh and hardened state properties such as setting time, workability and compressive strength. Influence of concentration of alkali activator on effectiveness of superplasticizer in modifying the properties of geopolymer mixes was also investigated. Results indicated that addition of superplasticizer to ultra-fine slag-fly ash based geopolymer is advantageous in terms of setting time, workability and strength performance but up to certain dosage level. Higher concentration of alkali activator renders ineffectiveness in superplasticizer in improving the fresh and hardened state properties of geopolymer mixes.

Keywords: ultra-fine slag, fly ash, superplasticizer, setting time, workability, compressive strength

Procedia PDF Downloads 160
452 Converting Scheduling Time into Calendar Date Considering Non-Interruptible Construction Tasks

Authors: Salman Ali Nisar, Suzuki Koji

Abstract:

In this paper we developed a new algorithm to convert the project scheduling time into calendar date in order to handle non-interruptible activities not to be split by non-working days (such as weekend and holidays). In a construction project some activities might require not to be interrupted even on non-working days, or to be finished on the end day of business days. For example, concrete placing work might be required to be completed by the end day of weekdays i.e. Friday, and curing in the weekend. This research provides an algorithm that imposes time constraint for start and finish times of non-interruptible activities. The algorithm converts working days, which is obtained by Critical Path Method (CPM), to calendar date with consideration of the start date of a project. After determining the interruption by non-working days, the start time of a certain activity should be postponed, if there is enough total float value. Otherwise, the duration is shortened by hiring additional resources capacity or/and using overtime work execution. Then, time constraints are imposed to start time and finish time of the activity. The algorithm is developed in Excel Spreadsheet for microcomputer and therefore we can easily get a feasible, calendared construction schedule for such a construction project with some non-interruptible activities.

Keywords: project management, scheduling, critical path method, time constraint, non-interruptible tasks

Procedia PDF Downloads 470
451 Critical Success Factors for Sustainable Smart City Project in India

Authors: Debasis Sarkar

Abstract:

Development of a Smart City would depend upon the development of its infrastructure in a smart way. Primarily based on the ideology of the fourth industrial revolution a Smart City project should have Smart governance, smart health care, smart building, smart transportation, smart mobility, smart energy, smart technology and smart citizen. Considering the Indian scenario of current state of cities in India, it has become very essential to decide the specific parameters which would govern the development of a Smart City project. It has been observed that there are significant parameters beyond Information and Communication Technology (ICT), which govern the development of a Smart City project. This paper is an attempt to identify the Critical Success Factors (CSF) which are significantly responsible for the development of a Smart City project in Western India. Responses to questionnaire survey were analyzed on basis of Likert scale. They were further critically evaluated with help of Factor Comparison Method (FCM) and Analytical Hierarchy Process (AHP). The project authorities need to incorporate Building Information Modeling (BIM) to make the smart city project more collaborative. To make the project more sustainable, use of flyash in the concrete used, reduced usage of cement and steel, use of alternate fuels like biodiesel is recommended.

Keywords: analytical hierarchical process, building information modeling, critical success factors, factor comparison method

Procedia PDF Downloads 225
450 A Study on the Implementation of Differentiating Instruction Based on Universal Design for Learning

Authors: Yong Wook Kim

Abstract:

The diversity of students in regular classrooms is increasing due to expand inclusive education and increase multicultural students in South Korea. In this diverse classroom environment, the universal design for learning (UDL) has been proposed as a way to meet both the educational need and social expectation of student achievement. UDL offers a variety of practical teaching methods, one of which is a differentiating instruction. The differentiating instruction has been pointed out resource limitation, organizational resistance, and lacks easy-to-implement framework. However, through the framework provided by the UDL, differentiating instruction is able to be flexible in their implementation. In practice, the UDL and differentiating instruction are complementary, but there is still a lack of research that suggests specific implementation methods that apply both concepts at the same time. This study was conducted to investigate the effects of differentiating instruction strategies according to learner characteristics (readiness, interest, learning profile), components of differentiating instruction (content, process, performance, learning environment), especially UDL principles (representation, behavior and expression, participation) existed in differentiating instruction, and implementation of UDL-based differentiating instruction through the Planning for All Learner (PAL) and UDL Lesson Plan Cycle. It is meaningful that such a series of studies can enhance the possibility of more concrete and realistic UDL-based teaching and learning strategies in the classroom, especially in inclusive settings.

Keywords: universal design for learning, differentiating instruction, UDL lesson plan, PAL

Procedia PDF Downloads 165
449 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 273
448 Developing a Framework for Assessing and Fostering the Sustainability of Manufacturing Companies

Authors: Ilaria Barletta, Mahesh Mani, Björn Johansson

Abstract:

The concept of sustainability encompasses economic, environmental, social and institutional considerations. Sustainable manufacturing (SM) is, therefore, a multi-faceted concept. It broadly implies the development and implementation of technologies, projects and initiatives that are concerned with the life cycle of products and services, and are able to bring positive impacts to the environment, company stakeholders and profitability. Because of this, achieving SM-related goals requires a holistic, life-cycle-thinking approach from manufacturing companies. Further, such an approach must rely on a logic of continuous improvement and ease of implementation in order to be effective. Currently, there exists in the academic literature no comprehensively structured frameworks that support manufacturing companies in the identification of the issues and the capabilities that can either hinder or foster sustainability. This scarcity of support extends to difficulties in obtaining quantifiable measurements in order to objectively evaluate solutions and programs and identify improvement areas within SM for standards conformance. To bridge this gap, this paper proposes the concept of a framework for assessing and continuously improving the sustainability of manufacturing companies. The framework addresses strategies and projects for SM and operates in three sequential phases: analysis of the issues, design of solutions and continuous improvement. A set of interviews, observations and questionnaires are the research methods to be used for the implementation of the framework. Different decision-support methods - either already-existing or novel ones - can be 'plugged into' each of the phases. These methods can assess anything from business capabilities to process maturity. In particular, the authors are working on the development of a sustainable manufacturing maturity model (SMMM) as decision support within the phase of 'continuous improvement'. The SMMM, inspired by previous maturity models, is made up of four maturity levels stemming from 'non-existing' to 'thriving'. Aggregate findings from the use of the framework should ultimately reveal to managers and CEOs the roadmap for achieving SM goals and identify the maturity of their companies’ processes and capabilities. Two cases from two manufacturing companies in Australia are currently being employed to develop and test the framework. The use of this framework will bring two main benefits: enable visual, intuitive internal sustainability benchmarking and raise awareness of improvement areas that lead companies towards an increasingly developed SM.

Keywords: life cycle management, continuous improvement, maturity model, sustainable manufacturing

Procedia PDF Downloads 222
447 Causes and Implications of Obesity in Urban School Going Children

Authors: Mohammad Amjad, Muhammad Iqbal Zafar, Ashfaq Ahmed Maan, Muhammad Tayyab Kashif

Abstract:

Obesity is an abnormal physical condition where an increased and undesirable fat accumulates in the human body. Obesity is an international phenomenon. In the present study, 12 schools were randomly selected from each district considering the areas i.e. Elite Private Schools in the private sector, Government schools in urban areas and Government schools in rural areas. Interviews were conducted with male students studying in grade 5 to grade 9 in each school. The sample size was 600 students; 300 from Faisalabad district and 300 from Rawalpindi district in Pakistan. A well-structured and pre-tested questionnaire was used for data collection. The calibrated scales were used to attain the heights and weights of the respondents. Obesity of school-going children depends on family types, family size, family history, junk food consumption, mother’s education, weekly time spent in walking, and sports facility at school levels. Academic performance, physical health and psychological health of school going children are affected with obesity. Concrete steps and policies could minimize the incidence of obesity in children in Pakistan.

Keywords: body mass index, cardiovascular disease, fast food, morbidity, overweight

Procedia PDF Downloads 156
446 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 475
445 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 38
444 Diversability and Diversity: Toward Including Disability/Body-Mind Diversity in Educational Diversity, Equity, and Inclusion

Authors: Jennifer Natalya Fink

Abstract:

Since the racial reckoning of 2020, almost every major educational institution has incorporated diversity, equity, and inclusion (DEI) principles into its administrative, hiring, and pedagogical practices. Yet these DEI principles rarely incorporate explicit language or critical thinking about disability. Despite the fact that according to the World Health Organization, one in five people worldwide is disabled, making disabled people the larger minority group in the world, disability remains the neglected stepchild of DEI. Drawing on disability studies and crip theory frameworks, the underlying causes of this exclusion of disability from DEI, such as stigma, shame, invisible disabilities, institutionalization/segregation/delineation from family, and competing models and definitions of disability are examined. This paper explores both the ideological and practical shifts necessary to include disability in university DEI initiatives. It offers positive examples as well as conceptual frameworks such as 'divers ability' for so doing. Using Georgetown University’s 2020-2022 DEI initiatives as a case study, this paper describes how curricular infusion, accessibility, identity, community, and diversity administration infused one university’s DEI initiatives with concrete disability-inclusive measures. It concludes with a consideration of how the very framework of DEI itself might be challenged and transformed if disability were to be included.

Keywords: diversity, equity, inclusion, disability, crip theory, accessibility

Procedia PDF Downloads 100
443 Optimal Allocation of Oil Rents and Public Investment In Low-Income Developing Countries: A Computable General Equilibrium Analysis

Authors: Paule Olivia Akotto

Abstract:

The recent literature suggests spending between 50%-85% of oil rents. However, there are not yet clear guidelines for allocating this windfall in the public investment system, while most of the resource-rich countries fail to improve their intergenerational mobility. We study a design of the optimal spending system in Senegal, a low-income developing country featuring newly discovered oil fields and low intergenerational mobility. We build a dynamic general equilibrium model in which rural and urban (Dakar and other urban centers henceforth OUC) households face different health, education, and employment opportunities based on their location, affecting their intergenerational mobility. The model captures the relationship between oil rents, public investment, and multidimensional inequality of opportunity. The government invests oil rents in three broad sectors: health and education, road and industries, and agriculture. Through endogenous productivity externality and human capital accumulation, our model generates the predominant position of Dakar and OUC households in terms of access to health, education, and employment in line with Senegal data. Rural households are worse off in all dimensions. We compute the optimal spending policy under two sets of simulation scenarios. Under the current Senegal public investment strategy, which weighs more health and education investments, we find that the reform maximizing the decline in inequality of opportunity between households, frontloads investment during the first eight years of the oil exploitation and spends the perpetual value of oil wealth thereafter. We will then identify the marginal winners and losers associated with this policy and its redistributive implications. Under our second set of scenarios, we will test whether the Senegalese economy can reach better equality of opportunity outcomes under this frontloading reform, by allowing the sectoral shares of investment to vary. The trade-off will be between cutting human capital investment in favor of agricultural and productive infrastructure or increasing the former. We will characterize the optimal policy by specifying where the higher weight should be. We expect that the optimal policy of the second set strictly dominates in terms of equality of opportunity, the optimal policy computed under the current investment strategy. Finally, we will quantify this optimal policy's aggregate and distributional effects on poverty, well-being, and gender earning gaps.

Keywords: developing countries, general equilibrium, inequality of opportunity, oil rents

Procedia PDF Downloads 189
442 A Fuzzy Analytic Hierarchy Process Approach for the Decision of Maintenance Priorities of Building Entities: A Case Study in a Facilities Management Company

Authors: Wai Ho Darrell Kwok

Abstract:

Building entities are valuable assets of a society, however, all of them are suffered from the ravages of weather and time. Facilitating onerous maintenance activities is the only way to either maintain or enhance the value and contemporary standard of the premises. By the way, maintenance budget is always bounded by the corresponding threshold limit. In order to optimize the limited resources allocation in carrying out maintenance, there is a substantial need to prioritize maintenance work. This paper reveals the application of Fuzzy AHP in a Facilities Management Company determining the maintenance priorities on the basis of predetermined criteria, viz., Building Status (BS), Effects on Fabrics (EF), Effects on Sustainability (ES), Effects on Users (EU), Importance of Usage (IU) and Physical Condition (PC) in dealing with categorized 8 predominant building components maintenance aspects for building premises. From the case study, it is found that ‘building exterior repainting or re-tiling’, ‘spalling concrete repair works among exterior area’ and ‘lobby renovation’ are the top three maintenance priorities from facilities manager and maintenance expertise personnel. Through the application of the Fuzzy AHP for maintenance priorities decision algorithm, a more systemic and easier comparing scalar linearity factors being explored even in considering other multiple criteria decision scenarios of building maintenance issue.

Keywords: building maintenance, fuzzy AHP, maintenance priority, multi-criteria decision making

Procedia PDF Downloads 213
441 Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures

Authors: Minjung Kim, Hyunkoo Kang, Jinkoo Kim

Abstract:

In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm.

Keywords: seismic retrofit, slit dampers, genetic algorithm, jacketing, capacity spectrum method

Procedia PDF Downloads 241
440 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 132
439 Antibacterial and Anti-Biofilm Activity of Vaccinium meridionale S. Pomace Extract Against Staphylococcus aureus, Escherichia coli and Salmonella Enterica

Authors: Carlos Y. Soto, Camila A. Lota, G. Astrid Garzón

Abstract:

Bacterial biofilms cause an ongoing problem for food safety. They are formed when microorganisms aggregate to form a community that attaches to solid surfaces. Biofilms increase the resistance of pathogens to cleaning, disinfection and antibacterial products. This resistance gives rise to problems for human health, industry, and agriculture. At present, plant extracts rich in polyphenolics are being investigated as natural alternatives to degrade bacterial biofilms. The pomace of the tropical Berry Vaccinium meridionale S. contains high amounts of phenolic compounds. Therefore, in the current study, the antimicrobial and antibiofilm effects of extracts from the pomace of Vaccinium meridionale S. were tested on three foodborne pathogens: Enterohaemorrhagic Escherichia coli O157:H7 (ATCC®700728TM), Staphylococcus aureus subsp. aureus (ATCC® 6538TM), and Salmonella enterica serovar Enteritidis (ATCC® 13076TM). Microwave-assisted extraction was used to extract polyphenols with aqueous methanol (80% v/v) at a solid to solvent ratio of 1:10 (w/v) for 20 min. The magnetic stirring was set at 400 rpm, and the microwave power was adjusted to 400 W. The antimicrobial effect of the extract was assessed by determining the half maximal inhibitory concentration (IC50) against the three food poisoning pathogens at concentrations ranging from 50 to 2,850 μg gallic acid equivalents (GAE)/mL of the extract. Biofilm inhibition was assessed using a crystal violet assay applying the same range of concentration. Three replications of the experiments were carried out, and all analyses were run in triplicate. IC50 values were determined using the GraphPad Prism8® program. Significant differences (P<0.05) among means were identified using one-factor analysis of variance (ANOVA) and the post-hoc least significant difference (LSD) test using the Statgraphics plus program, version 2.1.There was significant difference among the mean IC50 values for the tested bacteria. The IC50 for S. aureus was 48 ± 9 μg GAE/mL, followed by 123 ± 49 μg GAE/mL for Salmonella and 376 ± 32 μg GAE/mL for E. coli. The percent inhibition of the extract on biofilm formation was significantly higher for S. aureus (85.8  0.3), followed by E. coli (74.5  1.0) and Salmonella (53.6  9.7). These findings suggest that polyphenolic extracts obtained from the pomace of V. meridionale S. might be used as natural antimicrobial and anti-biofilm natural agents, effective against S. aureus, E. coli and Salmonella enterica.

Keywords: antibiofilm, antimicrobial, E. coli, S. aureus, salmonella, IC50, pomace, V. meridionale

Procedia PDF Downloads 35
438 Features of Calculating Structures for Frequent Weak Earthquakes

Authors: M. S. Belashov, A. V. Benin, Lin Hong, Sh. Sh. Nazarova, O. B. Sabirova, A. M. Uzdin, Lin Hong

Abstract:

The features of calculating structures for the action of weak earthquakes are analyzed. Earthquakes with a recurrence of 30 years and 50 years are considered. In the first case, the structure is to operate normally without damage after the earthquake. In the second case, damages are allowed that do not affect the possibility of the structure operation. Three issues are emphasized: setting elastic and damping characteristics of reinforced concrete, formalization of limit states, and combinations of loads. The dependence of damping on the reinforcement coefficient is estimated. When evaluating limit states, in addition to calculations for crack resistance and strength, a human factor, i.e., the possibility of panic among people, was considered. To avoid it, it is proposed to limit a floor-by-floor speed level in certain octave ranges. Proposals have been developed for estimating the coefficients of the combination of various loads with the seismic one. As an example, coefficients of combinations of seismic and ice loads are estimated. It is shown that for strong actions, the combination coefficients for different regions turn out to be close, while for weak actions, they may differ.

Keywords: weak earthquake, frequent earthquake, damage, limit state, reinforcement, crack resistance, strength resistance, a floor-by-floor velocity, combination coefficients

Procedia PDF Downloads 57
437 Influence of Cathodic Protection on High Strength, Pre-Stressed Corroded Tendons

Authors: Ibrahim R. Elomari, Fin O'Flaherty, Ibrahim R. Elomari, Paul Lambert

Abstract:

Cathodic protection (CP) is a technique commonly used to arrest corrosion of steel in infrastructure. However, it is not generally used on high strength, pre-stressed tendons due to the risk of hydrogen generation, leading to possible embrittlement. This paper investigates its use in such circumstances where the applied protection potential is varied to determine if CP can be safely employed on pre-stressed tendons. Plain steel tendons measuring 5.4 mm diameter were pre-stressed in timber moulds and embedded in sand/cement mortar, formulated to represent gunite. Two levels of pre-stressing were investigated (400MPa and 1200MPa). Pre-corrosion of 0% (control), 3% and 6% target loss of cross-sectional area was applied to replicate service conditions. Impressed current cathodic protection (ICCP) was then applied to the tendons at two levels of potential to identify any effect on strength. Instant-off values up to -950mV were used for normal protection with values of -1100mV or more negative to achieve overprotection. Following the ICCP phase, the tendons were removed from the mortar, cleaned and weighed to confirm actual percentage of corrosion. Tensile tests were then conducted on the tendons. The preliminary results show the influence of normal levels and overprotection of CP on the ultimate strength of the tendons.

Keywords: pre-stressed concrete, corrosion, cathodic protection, hydrogen embrittlement

Procedia PDF Downloads 235
436 Quality of Life of the Beneficiaries of the Government’s Bolsa Família Program: A Case Study in Mateiros/TO/Brazil

Authors: Mary L. G. S. Senna, Afonso R. Aquino, Veruska C. Dutra, Carlos H. C. Tolentino

Abstract:

The quality of life index, despite elucidating many discussions, the conceptual subjectivity of the term does not show precision, and consequently, many researchers seek to develop methods aiming to measure this concept, bringing it to a more concrete approach. In this study, the quality of life index method was used to analyze the population of Mateiros, Tocantins, Brazil for quality of life. After data collection, it was compared the quality of life index between the population and the group of beneficiaries of the Brazilian government assistance program Bolsa Família (Family Allowance). Some of the people interviewed receive financial aid from the federal government program Bolsa Família (22%). Comparisons were made among the final score of the quality of life index of the Mateiros population and the following factors: Gender, age, education, those working or not with tourism and those who receive or do not receive the Bolsa Família. It was observed that only the factor, Bolsa Família (p-score 0.0138), shows an association with quality of life improvement, noticing that those who have financial aid had a higher quality of life improvement than the rest of the population. It was concluded that, government assistance has shown a decisive element on the enhancement of Mateiros population quality of life, indicating that similar actions should be maintained.

Keywords: quality of life index, government aid to families, sustainable tourism, Bolsa Familia

Procedia PDF Downloads 277
435 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles

Authors: Priya Jaswal, Vivek, S. K. Sinha

Abstract:

One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.

Keywords: coir, geotextile, treated, unpaved

Procedia PDF Downloads 60
434 Hydrological Benefits Sharing Concepts in Constructing Friendship Dams on Transboundary Tigris River Between Iraq and Turkey

Authors: Thair Mahmood Altaiee

Abstract:

Because of the increasing population and the growing water requirements from the transboundary water resources within riparian countries in addition to un-proper management of these transboundary water resources, it is likely that a conflicts on the water will be occurred. So it is mandatory to search solutions to mitigate the action and probabilities of these undesired conflicts. One of the solutions for these crises may be sharing the riparian countries in the management of their transboundary water resources and share benefit. Effective cooperation on a transboundary river is any action by the riparian countries that lead to improve management of the river to their mutual acceptance. In principle, friendship dams constructed by riparian countries may play an important role in preventing conflicts like the Turkish-Syrian friendship dam on Asi river (Orontes), Iranian-Tukmenistan dam on Hariroud river, Bulgarian-Turkish dam on Tundzha river, Brazil-Paraguay dam on Parana river, and Aras dam between Iran and Azerbaijan. The objective of this study is to focus the light on the hydrological aspects of cooperation in constructing dams on the transboundary rivers, which may consider an option to prevent conflicts on water between the riparian countries. The various kinds of benefits and external impacts associated with cooperation in dams construction on the transboundary rivers with a real examples will be presented and analyzed. The hydrological benefit sharing from cooperation in dams construction, which type of benefit sharing mechanisms are applicable to dams, and how they vary were discussed. The study considered the cooperative applicability to dams on shared rivers according to selected case study of friendship dams in the world to illustrate the relevance of the cooperation concepts and the feasibility of such propose cooperation between Turkey and Iraq within the Tigris river. It is found that the opportunities of getting benefit from cooperation depend mainly on the hydrological boundary and location of the dam in relation to them. The desire to cooperate on dams construction on transboundary rivers exists if the location of a dam upstream will increase aggregate net benefits. The case studies show that various benefit sharing mechanisms due to cooperation in constructing friendship dams on the riparian countries border are possible for example when the downstream state (Iraq) convinces the upstream state (Turkey) to share building a dam on Tigris river across the Iraqi –Turkish border covering the cost and sharing the net benefit derived from this dam. These initial findings may provide guidance for riparian states engaged in and donors facilitating negotiation on dam projects on transboundary rivers.

Keywords: friendship dams, transboundary rivers, water cooperation, benefit sharing

Procedia PDF Downloads 115
433 Analysis of Eco-Efficiency and the Determinants of Family Agriculture in Southeast Spain

Authors: Emilio Galdeano-Gómez, Ángeles Godoy-Durán, Juan C. Pérez-Mesa, Laura Piedra-Muñoz

Abstract:

Eco-efficiency is receiving ever-increasing interest as an indicator of sustainability, as it links environmental and economic performances in productive activities. In agriculture, these indicators and their determinants prove relevant due to the close relationships in this activity between the use of natural resources, which is generally limited, and the provision of basic goods to society. In this context, various analyses have focused on eco-efficiency by considering individual family farms as the basic production unit. However, not only must the measure of efficiency be taken into account, but also the existence of a series of factors which constitute socio-economic, political-institutional, and environmental determinants. Said factors have been studied to a lesser extent in the literature. The present work analyzes eco-efficiency at a micro level, focusing on small-scale family farms as the main decision-making units in horticulture in southeast Spain, a sector which represents about 30% of the fresh vegetables produced in the country and about 20% of those consumed in Europe. The objectives of this study are a) to obtain a series of eco-efficiency indicators by estimating several pressure ratios and economic value added in farming, b) to analyze the influence of specific social, economic and environmental variables on the aforementioned eco-efficiency indicators. The present work applies the method of Data Envelopment Analysis (DEA), which calculates different combinations of environmental pressures (water usage, phytosanitary contamination, waste management, etc.) and aggregate economic value. In a second stage, an analysis is conducted on the influence of the socio-economic and environmental characteristics of family farms on the eco-efficiency indicators, as endogeneous variables, through the use of truncated regression and bootstrapping techniques, following Simar-Wilson methodology. The results reveal considerable inefficiency in aspects such as waste management, while there is relatively little inefficiency in water usage and nitrogen balance. On the other hand, characteristics, such as product specialization, the adoption of quality certifications and belonging to a cooperative do have a positive impact on eco-efficiency. These results are deemed to be of interest to agri-food systems structured on small-scale producers, and they may prove useful to policy-makers as regards managing public environmental programs in agriculture.

Keywords: data envelopment analysis, eco-efficiency, family farms, horticulture, socioeconomic features

Procedia PDF Downloads 153
432 Study Biogas Produced by Strain Archaea Methanothrix soehngenii in Different Biodigesters UASB in Treating Brewery Effluent in Brazil

Authors: Ederaldo Godoy Junior, Ricardo O. Jesus, Pedro H. Jesus, José R. Camargo, Jorge Y. Oliveira, Nicoly Milhardo Lourenço

Abstract:

This work aimed at the comparative study of the quality and quantity of biogas produced by archaea strain Methanothrix soehngenii operating in different versions of anaerobic digesters upflow sludge bed in the brewery wastewater treatment in Brazil in the tropical region. Four types of UASB digesters were studied made of different geometries and materials which are: a UASB IC steel 20 meters high; a circular UASB steel 6 meters high; an UASB reinforced concrete lined with geomembrane PEAB with 6 meters high; and finally a UASB plug flow comprising two UASB in serious rotomolded HDPE 6 meters high.Observed clearly that the biogas produced in the digester UASB steel H2S concentrations had values lower than the HDPE. With respect to efficiency in short time, the UASB IC showed the best results to absorb overloads, as the UASB circular steel showed an efficiency of 90% removal of the organic load. The UASB system plug flow in HDPE showed the lowest cost of deployment, and its efficiency in removing the organic load was 80%.

Keywords: biogas, achaeas, UASB, Brewery effluent

Procedia PDF Downloads 328
431 The Impact of Technology on Handicapped and Disability

Authors: George Kamil Kamal Abdelnor

Abstract:

Every major educational institution has incorporated diversity, equity, and inclusion (DEI) principles into its administrative, hiring, and pedagogical practices. Yet these DEI principles rarely incorporate explicit language or critical thinking about disability. Despite the fact that according to the World Health Organization, one in five people worldwide is disabled, making disabled people the larger minority group in the world, disability remains the neglected stepchild of DEI. Drawing on disability studies and crip theory frameworks, the underlying causes of this exclusion of disability from DEI, such as stigma, shame, invisible disabilities, institutionalization/segregation/delineation from family, and competing models and definitions of disability are examined. This paper explores both the ideological and practical shifts necessary to include disability in university DEI initiatives. It offers positive examples as well as conceptual frameworks such as 'divers ability' for so doing. Using Georgetown University’s 2020-2022 DEI initiatives as a case study, this paper describes how curricular infusion, accessibility, identity, community, and diversity administration infused one university’s DEI initiatives with concrete disability-inclusive measures. It concludes with a consideration of how the very framework of DEI itself might be challenged and transformed if disability were to be included.

Keywords: cognitive disability, cognitive diversity, disability, higher education disability, Standardized Index of Diversity of Disability (SIDD), differential and diversity in disability, 60+ population diversity, equity, inclusion, crip theory, accessibility

Procedia PDF Downloads 12
430 Repair and Strengthening of Plain and FRC Shear Deficient Beams Using Externally Bonded CFRP Sheets

Authors: H. S. S. Abou El-Mal, H. E. M. Sallam

Abstract:

This paper presents experimental and analytical study on the behavior of repaired and strengthened shear critical RC beams using externally bonded CFRP bi-directional fabrics. The use of CFRP sheets to repair or strengthen RC beams has been repetitively studied and proven feasible. However, the use of combined repair techniques and applying that method to both plain and FRC beams can maximize the shear capacity of RC shear deficient beams. A total of twelve slender beams were tested under four-point bending. The test parameters included CFRP layout, number of layers and fiber direction, injecting cracks before applying repairing sheets, enhancing the flexural capacity to differentiate between shear repair and strengthening techniques, and concrete matrix types. The findings revealed that applying CFRP sheets increased the overall shear capacity, the amount and orientation of wrapping is of prime importance in both repairing and strengthening, CFRP wrapping could change the failure mode from shear to flexural shear, the use of crack injection combined to CFRP wrapping further improved the shear capacity while, applying the previous method to FRC beams enhanced both shear capacity and failure ductility. Acceptable agreement was found between predicted shear capacities using the Canadian code and the experimental results of the current study.

Keywords: CFRP, FRC, repair, shear strengthening

Procedia PDF Downloads 316
429 Equity, Bonds, Institutional Debt and Economic Growth: Evidence from South Africa

Authors: Ashenafi Beyene Fanta, Daniel Makina

Abstract:

Economic theory predicts that finance promotes economic growth. Although the finance-growth link is among the most researched areas in financial economics, our understanding of the link between the two is still incomplete. This is caused by, among others, wrong econometric specifications, using weak proxies of financial development, and inability to address the endogeneity problem. Studies on the finance growth link in South Africa consistently report economic growth driving financial development. Early studies found that economic growth drives financial development in South Africa, and recent studies have confirmed this using different econometric models. However, the monetary aggregate (i.e. M2) utilized used in these studies is considered a weak proxy for financial development. Furthermore, the fact that the models employed do not address the endogeneity problem in the finance-growth link casts doubt on the validity of the conclusions. For this reason, the current study examines the finance growth link in South Africa using data for the period 1990 to 2011 by employing a generalized method of moments (GMM) technique that is capable of addressing endogeneity, simultaneity and omitted variable bias problems. Unlike previous cross country and country case studies that have also used the same technique, our contribution is that we account for the development of bond markets and non-bank financial institutions rather than being limited to stock market and banking sector development. We find that bond market development affects economic growth in South Africa, and no similar effect is observed for the bank and non-bank financial intermediaries and the stock market. Our findings show that examination of individual elements of the financial system is important in understanding the unique effect of each on growth. The observation that bond markets rather than private credit and stock market development promotes economic growth in South Africa induces an intriguing question as to what unique roles bond markets play that the intermediaries and equity markets are unable to play. Crucially, our results support observations in the literature that using appropriate measures of financial development is critical for policy advice. They also support the suggestion that individual elements of the financial system need to be studied separately to consider their unique roles in advancing economic growth. We believe that our understanding of the channels through which bond market contribute to growth would be a fertile ground for future research.

Keywords: bond market, finance, financial sector, growth

Procedia PDF Downloads 388
428 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 65
427 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar

Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi

Abstract:

With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.

Keywords: structural integrity, highways, pavement evaluation, asphalt concrete pavement

Procedia PDF Downloads 31
426 Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation

Authors: Q. J. Yang

Abstract:

This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied.

Keywords: pad footing, Hilly formation, stability, block works

Procedia PDF Downloads 294