Search results for: recirculation zone (RZ)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1622

Search results for: recirculation zone (RZ)

1622 Unsteady Characteristics Investigation on the Precessing Vortex Breakdown and Energy Separation in a Vortex Tube

Authors: Xiangji Guo, Bo Zhang

Abstract:

In this paper, the phenomenon of vortex breakdown in a vortex tube was analyzed within the scope of unsteady character in swirl flows. A 3-D Unsteady Reynolds-averaged Navier–Stokes (URANS) closed by the Reynolds Stress Model (RSM) was adopted to simulate the large-scale vortex structure in vortex tube, and the numerical model was verified by the steady results. The swirl number was calculated for the vortex tube and the flow field was classed as strong swirl flow. According to the results, a time-dependent spiral flow field gyrates around a central recirculation zone which is precessing around the axis of the tube, and manifests the flow structure is the spiral type (S-type) vortex breakdown. The vortex breakdown is crucial for the formation of the central recirculation zone (CRZ), a further discussion was about the affection on CRZ with the different external conditions of vortex tube, the study on the unsteady characters was expected to hope to design of vortex tube and analyze the energy separation effect.

Keywords: vortex tube, vortex breakdown, central recirculation zone, unsteady, energy separation

Procedia PDF Downloads 285
1621 Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows

Authors: Foo Kok, Varun Thangamani

Abstract:

Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone.

Keywords: LES, cavity flows, unsteady shear layer, instability modes, secondary flow

Procedia PDF Downloads 29
1620 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel

Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy

Abstract:

In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.

Keywords: burner selection, natural gas, analysis, recirculation

Procedia PDF Downloads 138
1619 Investigation of Stabilized Turbulent Diffusion Flames Using Synthesis Fuel with Different Burner Configurations

Authors: Moataz Medhat, Essam Khalil, Hatem Haridy

Abstract:

The present study investigates the flame structure of turbulent diffusion flame of synthesis fuel in a 300 KW swirl-stabilized burner. The three-dimensional model adopts a realizable k-ε turbulent scheme interacting with two-dimensional PDF combustion scheme by applying flamelet concept. The study reveals more characteristics on turbulent diffusion flame of synthesis fuel when changing the inlet air swirl number and the burner quarl angle. Moreover, it concerns with studying the effect of flue gas recirculation and staging with taking radiation effect into consideration. The comparison with natural gas was investigated. The study showed two zones of recirculation, the primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. The results revealed an increase in temperature in the external recirculation zone as a result of increasing the swirl number of the inlet air stream. Also, it was found that recirculating part of the combustion products decreases pollutants formation especially nitrogen monoxide. The predicted results showed a great agreement when compared with the experiments.

Keywords: gas turbine, syngas, analysis, recirculation

Procedia PDF Downloads 251
1618 Experimental Study of Unconfined and Confined Isothermal Swirling Jets

Authors: Rohit Sharma, Fabio Cozzi

Abstract:

A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.

Keywords: acoustic probes, 3C-2D particle image velocimetry (PIV), precessing vortex core (PVC), recirculation zone (RZ)

Procedia PDF Downloads 212
1617 Study on NOₓ Emission Characteristics of Internal Gas Recirculation Technique

Authors: DaeHae Kim, MinJun Kwon, Sewon Kim

Abstract:

This study is aimed to develop ultra-low NOₓ burner using the internal recirculation of flue gas inside the combustion chamber that utilizes the momentum of intake fuel and air. Detailed experimental investigations are carried out to study these fluid dynamic effects on the emission characteristics of newly developed burner in industrial steam boiler system. Experimental parameters are distance of Venturi tube from burner, Coanda nozzle gap distance, and air sleeve length at various fuel/air ratio and thermal heat load conditions. The results showed that NOₓ concentration decreases as the distance of Venturi tube from burner increases. The CO concentration values at all operating conditions were negligible. In addition, the increase of the Coanda nozzle gap distance decreased the NOₓ concentration. It is experimentally found out that both fuel injection recirculation and air injection recirculation technique was very effective in reducing NOₓ formation.

Keywords: Coanda effect, combustion, burner, low NOₓ

Procedia PDF Downloads 173
1616 Boundary Layer Control Using a Magnetic Field: A Case Study in the Framework of Ferrohydrodynamics

Authors: C. F. Alegretti, F. R. Cunha, R. G. Gontijo

Abstract:

This work investigates the effects of an applied magnetic field on the geometry-driven boundary layer detachment flow of a ferrofluid over a sudden expansion. Both constitutive equation and global magnetization equation for a ferrofluid are considered. Therefore, the proposed formulation consists in a coupled magnetic-hydrodynamic problem. Computational simulations are carried out in order to explore, not only the viability to control flow instabilities, but also to evaluate the consistency of theoretical aspects. The unidirectional sudden expansion in a ferrofluid flow is investigated numerically under the perspective of Ferrohydrodynamics in a two-dimensional domain using a Finite Differences Method. The boundary layer detachment induced by the sudden expansion results in a recirculating zone, which has been extensively studied in non-magnetic hydrodynamic problems for a wide range of Reynolds numbers. Similar investigations can be found in literature regarding the sudden expansion under the magnetohydrodynamics framework, but none considering a colloidal suspension of magnetic particles out of the superparamagnetic regime. The vorticity-stream function formulation is implemented and results in a clear coupling between the flow vorticity and its magnetization field. Our simulations indicate a systematic decay on the length of the recirculation zone as increasing physical parameters of the flow, such as the intensity of the applied field and the volume fraction of particles. The results all are discussed from a physical point of view in terms of the dynamical non-dimensional parameters. We argue that the decrease/reduction in the recirculation region of the flow is a direct consequence of the magnetic torque balancing the action of the torque produced by viscous and inertial forces of the flow. For the limit of small Reynolds and magnetic Reynolds parameters, the diffusion of vorticity balances the diffusion of the magnetic torque on the flow. These mechanics control the growth of the recirculation region.

Keywords: boundary layer detachment, ferrofluid, ferrohydrodynamics, magnetization, sudden expansion

Procedia PDF Downloads 183
1615 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow

Authors: Alex Fedoseyev

Abstract:

This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.

Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow

Procedia PDF Downloads 28
1614 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach

Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib

Abstract:

The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.

Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach

Procedia PDF Downloads 118
1613 Institutional Superposition, over Management and Coastal Economic Development: Coastal Areas in China

Authors: Mingbao Chen, Mingli Zhao

Abstract:

The coastal zone is the intersection of land and sea system, and also is the connecting zone of the two economic systems of land and sea. In the world, all countries attach great importance to the coastal zone management and the coastal zone economy. In China, the government has developed a number of related coastal management policies and institutional, such as marine functional zoning, main function zoning, integrated coastal zone management, to ensure the sustainable utilization of the coastal zone and promote the development of coastal economic. However, in practice, the effect is not satisfactory. This paper analyses the coastal areas of coastal zone management on coastal economic growth contribution based on coastal areas economic development data with the 2007-2015 in China, which uses the method of the evaluation index system of coastal zone management institutional efficiency. The results show that the coastal zone management institutional objectives are not clear, and the institutional has high repeatability. At the same time, over management of coastal zone leads to low economic efficiency because the government management boundary is blurred.

Keywords: institutional overlap, over management, coastal zone management, coastal zone economy

Procedia PDF Downloads 358
1612 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine

Authors: Hany El Said Fawaz

Abstract:

This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.

Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length

Procedia PDF Downloads 217
1611 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri

Abstract:

Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.

Keywords: turbulent flow, double forward, heat transfer, separation flow

Procedia PDF Downloads 441
1610 The Study on Energy Saving in Clarification Process for Water Treatment Plant

Authors: Wiwat Onnakklum

Abstract:

Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.

Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy

Procedia PDF Downloads 290
1609 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 157
1608 Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M

Authors: Muhammad Tarmidzi, Reza M. G. Gani, Andri Luthfi

Abstract:

The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82.

Keywords: hydrocarbons zone, petrophysic, rock property, sequence stratigraphic

Procedia PDF Downloads 280
1607 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: separation flow, backward facing step, heat transfer, laminar flow

Procedia PDF Downloads 441
1606 The Conceptual Exploration of Comfort Zone by Using Content Analysis

Authors: Lilla Szabó Hangya, Szilvia Jambori

Abstract:

The comfort zone is less studied area in the field of psychology. One of the most important definitions is that comfort zone is a psychological state in which things feel familiar to a person with low level of anxiety and stress. But the validity of comfort zone does not confirm till now. The aim of our pilot research is to test which psychological factors could determine how young adults behave during their decision process to stay in one’s comfort zone or to leave it. Every person has a number of comfort zones, so we are not able to measure it directly, only those personality traits which predict if someone leaves his comfort zone easier or harder. In our study at first we wanted to clarify the meaning of comfort zone. 110 young adults (male: 37, female: 73; ages from 18 to 70, average age: 26,6) took part in the study. Beside their demographic datas we asked them what does the comfort zone mean for them. The results showed that the meaning of the comfort zone can be grouped in five dimensions: comfort (49,6 %), leaving it-change (8,1%), ambivalent feelings (10,6%), related to other people (10,6%), pursuit of self-realization (16,8%). Our results demonstrated age related characteristics. For young people at the age of 19 the comfort zone is related to other people, because during adolescents peer relationships become more important. Subjects at the age 20-30 answered that the comfort zone means comfort and stability for them. Their life becomes stable for a while, they are studying or working. But at the age of 25, when they finish university, most of them answered comfort zone means a changing process for them. On the other hand for subjects at the age of 27 the means of the comfort zone is pursuit of self-realization. After that period at the age of 31 when they have families and stable job the stability will also dominant. We saw that the comfort zone has much more meaning besides a pleasant psychological trait. Further we would like to determine which psychological factors relate to comfort zone, and what kind of personality traits could predict leaving or staying in one’s comfort zone. We want to observe the relationship between comfort zone and subjective well-being, life satisfaction self-efficacy or self-esteem.

Keywords: comfort zone, development, personality trait, young adults

Procedia PDF Downloads 312
1605 Communication Development for Development Communication: Prospects and Challenges of New Media Technologies in South East Zone, Nigeria

Authors: O. I. Ekwueme

Abstract:

New media technologies are noted for their immense contributions in various sectors of the economy which are believed to have resulted in the development of European countries. There is an assumption that we cannot have development communication without communication development, but we are not sure if new media technologies contribute to development in the South-East zone, Nigeria. The study employed mixed method and discovered that new media technologies have a very minimal relationship to development in the South-East zone, Nigeria. It was discovered that the media report on development news is basically informative instead of interactive. The South-East zone is scarcely covered unlike other zones. It argued that the communication technologies introduced in Nigeria was as a result of their struggle for independence. It was recommended that media organisations in the South-East zone should give adequate coverage to the zone, and be more interactive.

Keywords: communication, development, new media, technologies

Procedia PDF Downloads 301
1604 Solution to Riemann Hypothesis Critical Strip Zone Using Non-Linear Complex Variable Functions

Authors: Manojkumar Sabanayagam

Abstract:

The Riemann hypothesis is an unsolved millennium problem and the search for a solution to the Riemann hypothesis is to study the pattern of prime number distribution. The scope of this paper is to identify the solution for the critical strip and the critical line axis, which has the non-trivial zero solutions using complex plane functions. The Riemann graphical plot is constructed using a linear complex variable function (X+iY) and is applicable only when X>1. But the investigation shows that complex variable behavior has two zones. The first zone is the transformation zone, where the definition of the complex plane should be a non-linear variable which is the critical strip zone in the graph (X=0 to 1). The second zone is the transformed zone (X>1) defined using linear variables conventionally. This paper deals with the Non-linear function in the transformation zone derived using cosine and sinusoidal time lag w.r.t imaginary number ‘i’. The alternate complex variable (Cosθ+i Sinθ) is used to understand the variables in the critical strip zone. It is concluded that the non-trivial zeros present in the Real part 0.5 are because the linear function is not the correct approach in the critical strip. This paper provides the solution to Reimann's hypothesis.

Keywords: Reimann hypothesis, critical strip, complex plane, transformation zone

Procedia PDF Downloads 181
1603 Studies on the Recovery of Calcium and Magnesium from Red Seawater by Nanofiltration Membrane

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Mahmoud A. El-Toukhy

Abstract:

This paper reports the results of nanofiltration (NF) polymeric membrane for the recovery of divalent ions (calcium and magnesium) from Red Seawater. Pilot plant experiments have been carried out using Alfa-Laval (NF 2517/48) membrane module. System was operated in both total recirculation mode (permeate and brine) and brine recirculation mode under hydraulic pressure of 15 bar. Impacts of some chelating agents on both flux and rejection have been also investigated. Results indicated that pure water permeability ranges from 17 to 85.5 L/m²h at 2-15 bar. Comparison with seawater permeability under the same operating pressure values reveals lower values of 8.9-31 L/m²h manifesting the effect of the osmotic pressure of seawater. Overall total dissolved solids (TDS) reduction was almost constant without incorporation of chelating agents. On the contrary of expectations, the use of chelating agents N-(2-hydroxyethyl) ethylene diamine-N,N´,N´-triacetic acid (HEDTA) and ethylene glycol bis (2-aminoethyl ether)-N,N,N´,N´-tetraacetic acid (EGTA) showed flux decline of about 3-15%. Analysis of rejection data of total recirculation mode showed reasonable rejection values of 35%, 59% and 90% for Ca, Mg and SO₄, respectively. Operating under brine recirculation mode only showed a decrease of rejection to 33%, 56% and 86% for Ca, Mg and SO₄, respectively. The use of chelating agents has no substantial effect on NF membrane performance except for increasing the total Ca rejection to 48 and 65% for EGTA and HEDTA, respectively. Results, in general, confirmed the powerful separation of NF technology for softening and recovery of divalent ions from seawater. It is anticipated that increasing operating pressure beyond the limits of our investigations would improve the rejection and flux values. A trade-off should be considered between operating cost (due to higher pressure and marginal benefits as manifested by expected improved performance). The experimental results fit well with the formulated rejection empirical correlations and the published ones.

Keywords: nanofiltration, seawater, recovery, calcium, magnesium

Procedia PDF Downloads 138
1602 Design Considerations for Solar Energy Application to Fish Pond Recirculating System

Authors: A. O. Ogunlela, T. O. Ayodele

Abstract:

A fish pond recirculating system was designed and constructed. The system consists of three plastic culture tanks (1000 litres each, filled up to 850 litres). It also consists of a sedimentation tank where the water filtration was carried out and a pump tank where the treated water partially settled before being pumped to the culture tanks. A pump of ½ hp capacity was selected to pump water round the system to enhance water recirculation. Following the design of the solar array that was done, a grid support of tilt angle 36.640 was constructed to offer the system an optimum, all-year-round, intense solar energy reception, which is specific to the location of the project.

Keywords: solar energy, fish pond, recirculation system, pump tank

Procedia PDF Downloads 346
1601 Static Study of Piezoelectric Bimorph Beams with Delamination Zone

Authors: Zemirline Adel, Ouali Mohammed, Mahieddine Ali

Abstract:

The FOSDT (First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.

Keywords: static, piezoelectricity, beam, delamination

Procedia PDF Downloads 391
1600 Biogenic-Sedimentary Structures of the Ordovician-Khabour Formation from the Northern Thrust Zone, Kurdistan, Iraq

Authors: Waleed Sulaiman Shingaly

Abstract:

The Ordivician-Khabour Formation from the Northern Thrust Zone of Iraqi-Kurdistan comprises between 500 and 800 m of alternating predominantly greenish-grey sandstones, siltstones and shales. The succession has revealed an abundant ichnofossils characterized by 11 ichnogenus, namely: Helminthopsis, Gordia, Cruziana, Rusophycus, Monomorphichnus, Rhizocorallium, Thalassinoide, Planolite, Paleophycus, Deplocraterion and Skolithose. Ethologically these ichnogenera display dwelling and feeding activities of the infaunal organisms. This association of ichnofossils contains elements of the Skolithose and Cruziana ichnofacies. The presence of Skolithos ichnofacies indicates sandy shifting substrate and high energy conditions in foreshore zone while the Cruziana ichnofacies indicate unconsolidated, poorly sorted soft substrate and low energy condition in the shore face/offshore zone. These ichnogenera indicate shoreface-offshore zone of shallow-marine environment for the deposition of the rocks of the Khabour Formation.

Keywords: Ichnofossils, shoreface-offshore zone, Khabour Formation, Iraq

Procedia PDF Downloads 493
1599 Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone

Authors: Niranjan Mukherjee, Burga Braun, Ulrich Szewzyk

Abstract:

Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals.

Keywords: iopromide, hyporheic zone, recalcitrant pharmaceutical, redox gradients

Procedia PDF Downloads 99
1598 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods

Authors: H. J. Wattimanela, U. S. Passaribu, A. N. T. Puspito, S. W. Indratno

Abstract:

Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

Keywords: molluca collision zone, partition regions, conventional statistical methods, earthquakes, classifications, disaster management

Procedia PDF Downloads 465
1597 The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah, Issa Saket, Md. Azlin

Abstract:

The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model.

Keywords: oil/water separator tanks, inlet baffles, CFD, VOF

Procedia PDF Downloads 327
1596 Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique

Authors: Azim Hilmy Mohamad Yusof, Muhamad Iqbal Mubarak Faharul Azman, Nur Azwin Ismail, Noer El Hidayah Ismail

Abstract:

Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone.

Keywords: 2-D resistivity imaging, microcline granite, salt water intrusion, water infiltration

Procedia PDF Downloads 311
1595 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran

Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand

Abstract:

Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.

Keywords: fractal, Gavkhouni, microform, Iran

Procedia PDF Downloads 233
1594 Analysis of the Plastic Zone Under Mixed Mode Fracture in Bonded Composite Repair of Aircraft

Authors: W. Oudad, H. Fikirini, K. Boulenouar

Abstract:

Material fracture by opening (mode I) is not alone responsible for fracture propagation. Many industrial examples show the presence of mode II and mixed mode I + II. In the present work the three-dimensional and non-linear finite element method is used to estimate the performance of the bonded composite repair of metallic aircraft structures by analyzing the plastic zone size ahead of repaired cracks under mixed mode loading. The computations are made according to Von Mises and Tresca criteria. The extension of the plastic zone which takes place at the tip of a crack strictly depends on many variables, such as the yield stress of the material, the loading conditions, the crack size and the thickness of the cracked component, The obtained results show that the presence of the composite patch reduces considerably the size of the plastic zone ahead of the crack. The effects of the composite orientation layup (adhesive properties) and the patch thickness on the plastic zone size ahead of repaired cracks were analyzed.

Keywords: crack, elastic-plastic, J integral, patch, plastic zone

Procedia PDF Downloads 414
1593 Development Process and Design Methods for Shared Spaces in Europe

Authors: Kazuyasu Yoshino, Keita Yamaguchi, Toshihiko Nishimura, Masashi Kawasaki

Abstract:

Shared Space, the planning and design concept that allows pedestrians and vehicles to coexist in a street space, has been advocated and developed according to the traffic conditions in each country in Europe. Especially in German/French-speaking countries, the "Meeting Zone," which is a traffic rule combining speed regulation (20km/h) and pedestrian priority, is often applied when designing shared spaces at intersections, squares, and streets in the city center. In this study, the process of establishment and development of the Meeting Zone in Switzerland, France, and Austria was chronologically organized based on the descriptions in the major discourse and guidelines in each country. Then, the characteristics of the spatial design were extracted by analyzing representative examples of Meeting Zone applications. Finally, the relationships between the different approaches to designing of Meeting Zone and traffic regulations in different countries were discussed.

Keywords: shared space, traffic calming, meeting zone, street design

Procedia PDF Downloads 61