Search results for: rainfall and temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7313

Search results for: rainfall and temperature

7283 Flood Scenarios for Hydrological and Hydrodynamic Modelling

Authors: M. Sharif Imam Ibne Amir, Mohammad Masud Kamal Khan, Mohammad Golam Rasul, Raj H. Sharma, Fatema Akram

Abstract:

Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper.

Keywords: climate change, rainfall, potential evaporation, scenario, sea level rise (SLR), sub-catchment

Procedia PDF Downloads 488
7282 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 258
7281 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 61
7280 Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State

Authors: Rajendra Kumar Isaac, Monisha Isaac

Abstract:

Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.

Keywords: climate variability, agriculture, land use, mitigation strategies

Procedia PDF Downloads 246
7279 Spatial Temporal Rainfall Trends in Australia

Authors: Bright E. Owusu, Nittaya McNeil

Abstract:

Rainfall is one of the most essential quantities in meteorology and hydrology. It has important impacts on people’s daily life and excess or inadequate of it could bring tremendous losses in economy and cause fatalities. Population increase around the globe tends to have a corresponding increase in settlement and industrialization. Some countries are affected by flood and drought occasionally due to climate change, which disrupt most of the daily activities. Knowledge of trends in spatial and temporal rainfall variability and their physical explanations would be beneficial in climate change assessment and to determine erosivity. This study describes the spatial-temporal variability of daily rainfall in Australia and their corresponding long-term trend during 1950-2013. The spatial patterns were investigated by using exploratory factor analysis and the long term trend in rainfall time series were determined by linear regression, Mann-Kendall rank statistics and the Sen’s slope test. The exploratory factor analysis explained most of the variations in the data and grouped Australia into eight distinct rainfall regions with different rainfall patterns. Significant increasing trends in annual rainfall were observed in the northern regions of Australia. However, the northeastern part was the wettest of all the eight rainfall regions.

Keywords: climate change, explanatory factor analysis, Mann-Kendall and Sen’s slope test, rainfall.

Procedia PDF Downloads 322
7278 Sea Surface Trend over the Arabian Sea and Its Influence on the South West Monsoon Rainfall Variability over Sri Lanka

Authors: Sherly Shelton, Zhaohui Lin

Abstract:

In recent decades, the inter-annual variability of summer precipitation over the India and Sri Lanka has intensified significantly with an increased frequency of both abnormally dry and wet summers. Therefore prediction of the inter-annual variability of summer precipitation is crucial and urgent for water management and local agriculture scheduling. However, none of the hypotheses put forward so far could understand the relationship to monsoon variability and related factors that affect to the South West Monsoon (SWM) variability in Sri Lanka. This study focused to identify the spatial and temporal variability of SWM rainfall events from June to September (JJAS) over Sri Lanka and associated trend. The monthly rainfall records covering 1980-2013 over the Sri Lanka are used for 19 stations to investigate long-term trends in SWM rainfall over Sri Lanka. The linear trends of atmospheric variables are calculated to understand the drivers behind the changers described based on the observed precipitation, sea surface temperature and atmospheric reanalysis products data for 34 years (1980–2013). Empirical orthogonal function (EOF) analysis was applied to understand the spatial and temporal behaviour of seasonal SWM rainfall variability and also investigate whether the trend pattern is the dominant mode that explains SWM rainfall variability. The spatial and stations based precipitation over the country showed statistically insignificant decreasing trends except few stations. The first two EOFs of seasonal (JJAS) mean of rainfall explained 52% and 23 % of the total variance and first PC showed positive loadings of the SWM rainfall for the whole landmass while strongest positive lording can be seen in western/ southwestern part of the Sri Lanka. There is a negative correlation (r ≤ -0.3) between SMRI and SST in the Arabian Sea and Central Indian Ocean which indicate that lower temperature in the Arabian Sea and Central Indian Ocean are associated with greater rainfall over the country. This study also shows that consistently warming throughout the Indian Ocean. The result shows that the perceptible water over the county is decreasing with the time which the influence to the reduction of precipitation over the area by weakening drawn draft. In addition, evaporation is getting weaker over the Arabian Sea, Bay of Bengal and Sri Lankan landmass which leads to reduction of moisture availability required for the SWM rainfall over Sri Lanka. At the same time, weakening of the SST gradients between Arabian Sea and Bay of Bengal can deteriorate the monsoon circulation, untimely which diminish SWM over Sri Lanka. The decreasing trends of moisture, moisture transport, zonal wind, moisture divergence with weakening evaporation over Arabian Sea, during the past decade having an aggravating influence on decreasing trends of monsoon rainfall over the Sri Lanka.

Keywords: Arabian Sea, moisture flux convergence, South West Monsoon, Sri Lanka, sea surface temperature

Procedia PDF Downloads 102
7277 Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan

Authors: Zia Ullah, Ruh Ullah

Abstract:

A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m.

Keywords: agro-climatic zones, aridity index, GDD, rainfall

Procedia PDF Downloads 377
7276 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress

Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher

Abstract:

Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.

Keywords: green roof, plant cover, plant drought stress, rainfall retention

Procedia PDF Downloads 90
7275 Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran

Authors: L.Jowkar. M.Samiee

Abstract:

Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin.

Keywords: Arc CN-Run off, rain-runoff, return period, watershed

Procedia PDF Downloads 100
7274 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia

Authors: Arragaw Alemayehu, Woldeamlak Bewket

Abstract:

The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.

Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend

Procedia PDF Downloads 405
7273 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos

Abstract:

The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: classification, fuzzy logic, tolerance relations, rainfall data

Procedia PDF Downloads 278
7272 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: flood, HEC-HMS, prediction, rainfall, runoff

Procedia PDF Downloads 363
7271 Potential of Landslides Based On Maximum Monthly Rainfall in Sumber Sari Village Watershed Tirtomoyo Wonogiri Indonesia

Authors: Heny Pratiwi, Niken Silmi Surjandari, Noegroho Djarwanti

Abstract:

This study was conducted to determine the potential for landslides as a result of monthly rainfall in a watershed. Rainfall data that will be used is rainfall from years 2007-2011. Research methods created by modeling the slope on some variation of angle in a row 30◦, 45◦, and 60◦ with a homogeneous layer of soil. Slope Stability Analysis using Method Fellenius. The results of the slope stability analysis without rain on slope 30◦, 45◦, and 60◦ respectively 1.3846, 1.0115, and 0.7284. Results in the absence of rain showed that the slope on the slope 45◦ are in critical condition and on a slope with a slope 60◦ already avalanche with safety factor value <1. The results in the rainy conditions shows slopes 30◦ are in critical condition with a value factor <1 due to the intensity of monthly rainfall> 250 mm/month.

Keywords: slope stability, monthly rainfall, infiltration, safety factor, Fellenius method

Procedia PDF Downloads 418
7270 Climate Change Scenario Phenomenon in Malaysia: A Case Study in MADA Area

Authors: Shaidatul Azdawiyah Abdul Talib, Wan Mohd Razi Idris, Liew Ju Neng, Tukimat Lihan, Muhammad Zamir Abdul Rasid

Abstract:

Climate change has received great attention worldwide due to the impact of weather causing extreme events. Rainfall and temperature are crucial weather components associated with climate change. In Malaysia, increasing temperatures and changes in rainfall distribution patterns lead to drought and flood events involving agricultural areas, especially rice fields. Muda Agricultural Development Authority (MADA) is the largest rice growing area among the 10 granary areas in Malaysia and has faced floods and droughts in the past due to changing climate. Changes in rainfall and temperature patter affect rice yield. Therefore, trend analysis is important to identify changes in temperature and rainfall patterns as it gives an initial overview for further analysis. Six locations across the MADA area were selected based on the availability of meteorological station (MetMalaysia) data. Historical data (1991 to 2020) collected from MetMalaysia and future climate projection by multi-model ensemble of climate model from CMIP5 (CNRM-CM5, GFDL-CM3, MRI-CGCM3, NorESM1-M and IPSL-CM5A-LR) have been analyzed using Mann-Kendall test to detect the time series trend, together with standardized precipitation anomaly, rainfall anomaly index, precipitation concentration index and temperature anomaly. Future projection data were analyzed based on 3 different periods; early century (2020 – 2046), middle century (2047 – 2073) and late-century (2074 – 2099). Results indicate that the MADA area does encounter extremely wet and dry conditions, leading to drought and flood events in the past. The Mann-Kendall (MK) trend analysis test discovered a significant increasing trend (p < 0.05) in annual rainfall (z = 0.40; s = 15.12) and temperature (z = 0.61; s = 0.04) during the historical period. Similarly, for both RCP 4.5 and RCP 8.5 scenarios, a significant increasing trend (p < 0.05) was found for rainfall (RCP 4.5: z = 0.15; s = 2.55; RCP 8.5: z = 0.41; s = 8.05;) and temperature (RCP 4.5: z = 0.84; s = 0.02; RCP 8.5: z = 0.94; s = 0.05). Under the RCP 4.5 scenario, the average temperature is projected to increase up to 1.6 °C in early century, 2.0 °C in the middle century and 2.4 °C in the late century. In contrast, under RCP 8.5 scenario, the average temperature is projected to increase up to 1.8 °C in the early century, 3.1 °C in the middle century and 4.3 °C in late century. Drought is projected to occur in 2038 and 2043 (early century); 2052 and 2069 (middle century); and 2095, 2097 to 2099 (late century) under RCP 4.5 scenario. As for RCP 8.5 scenario, drought is projected to occur in 2021, 2031 and 2034 (early century); and 2069 (middle century). No drought is projected to occur in the late century under the RCP 8.5 scenario. Thus, this information can be used for the analysis of the impact of climate change scenarios on rice growth and yield besides other crops found in MADA area. Additionally, this study, it would be helpful for researchers and decision-makers in developing applicable adaptation and mitigation strategies to reduce the impact of climate change.

Keywords: climate projection, drought, flood, rainfall, RCP 4.5, RCP 8.5, temperature

Procedia PDF Downloads 49
7269 Spatial Variation of WRF Model Rainfall Prediction over Uganda

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo

Abstract:

Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.

Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model

Procedia PDF Downloads 289
7268 Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes

Authors: Bouziane Mohamed Tewfik

Abstract:

In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

Keywords: unsaturated soil, slope stability, rainfall infiltration, numerical analysis

Procedia PDF Downloads 438
7267 The Mitidja between Drought and Water Pollution

Authors: Aziez Ouahiba, Remini Boualam, Habi Mohamed

Abstract:

the growth and the development of a pay are strongly related to the existence or the absence of water in this area, The sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, global warming fact that temperature is increasingly high and rainfall is increasingly low which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: rainfall, groundwater of mitidja, irrigation, pollution

Procedia PDF Downloads 377
7266 Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa

Authors: Abiodun M. Adeola, Hannes Rautenbach, Gbenga J. Abiodun, Thabo E. Makgoale, Joel O. Botai, Omolola M. Adisa, Christina M. Botai

Abstract:

There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province.

Keywords: correlation, malaria, rainfall, seasonal, trends

Procedia PDF Downloads 174
7265 Study of Temperature and Precipitation Changes Based on the Scenarios (IPCC) in the Caspian Sea City: Case Study in Gillan Province

Authors: Leila Rashidian, Mina Rajabali

Abstract:

Industrialization has made progress and comfort for human beings in many aspects. It is not only achievement for the global environment but also factor for destruction and disruption of the Earth's climate. In this study, we used LARS.WG model and down scaling of general circulation climate model HADCM-3 daily precipitation amounts, minimum and maximum temperature and daily sunshine hours. These data are provided by the meteorological organization for Caspian Sea coastal station such as Anzali, Manjil, Rasht, Lahijan and Astara since their establishment is from 1982 until 2010. According to the IPCC scenarios, including series A1b, A2, B1, we tried to simulate data from 2010 to 2040. The rainfall pattern has changed. So we have a rainfall distribution inappropriate in different months.

Keywords: climate change, Lars.WG, HADCM3, Gillan province, climatic parameters, A2 scenario

Procedia PDF Downloads 237
7264 Trends in Extreme Rainfall Events in Tasmania, Australia

Authors: Orpita U. Laz, Ataur Rahman

Abstract:

Climate change will affect various aspects of hydrological cycle such as rainfall. A change in rainfall will affect flood magnitude and frequency in future which will affect the design and operation of hydraulic structures. In this paper, trends in sub-hourly, sub-daily, and daily extreme rainfall events from 18 rainfall stations located in Tasmania, Australia are examined. Two non-parametric tests (Mann-Kendall and Spearman’s Rho) are applied to detect trends at 10%, 5%, and 1% significance levels. Sub-hourly (6, 12, 18, and 30 minutes) annual maximum rainfall events have been found to experience statistically significant upward trends at 10 % level of significance. However, sub-daily durations (1 hour, 3 and 12 hours) exhibit decreasing trends and no trends exists for longer duration rainfall events (e.g. 24 and 72 hours). Some of the durations (e.g. 6 minutes and 6 hours) show similar results (with upward trends) for both the tests. For 12, 18, 60 minutes and 3 hours durations both the tests show similar downward trends. This finding has important implication for Tasmania in the design of urban infrastructure where shorter duration rainfall events are more relevant for smaller urban catchments such as parking lots, roof catchments and smaller sub-divisions.

Keywords: climate change, design rainfall, Mann-Kendall test, trends, Spearman’s Rho, Tasmania

Procedia PDF Downloads 182
7263 Impact of Climate on Productivity of Major Cereal Crops in Sokoto State, Nigeria

Authors: M. B. Sokoto, L. Tanko, Y. M. Abdullahi

Abstract:

The study aimed at examining the impact of climatic factors (rainfall, minimum and maximum temperature) on the productivity of major cereals in Sokoto state, Nigeria. Secondary data from 1997-2008 were used in respect of annual yield of Major cereals crops (maize, millet, rice, and sorghum (t ha-1). Data in respect of climate was collected from Sokoto Energy Research Centre (SERC) for the period under review. Data collected was analyzed using descriptive statistics, correlation and regression analysis. The result of the research reveals that there is variation in the trend of the climatic factors and also variation in cereals output. The effect of average temperature on yields has a negative effect on crop yields. Similarly, rainfall is not significant in explaining the effect of climate on cereal crops production. The study has revealed to some extend the effect of climatic variables, such as rainfall, relative humidity, maximum and minimum temperature on major cereals production in Sokoto State. This will assist in planning ahead in cereals production in the area. Other factors such as soil fertility, correct timing of planting and good cultural practices (such as spacing of strands), protection of crops from weeds, pests and diseases and planting of high yielding varieties should also be taken into consideration for increase yield of cereals.

Keywords: cereals, climate, impact, major, productivity

Procedia PDF Downloads 357
7262 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 337
7261 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown

Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson

Abstract:

This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Keywords: capacity randomness, flow breakdown, freeway capacity, rainfall

Procedia PDF Downloads 357
7260 Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study

Authors: Yu-Da Chen, Chia-Chun Wu

Abstract:

The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible.

Keywords: antecedent soil moisture content, soil loss, runoff coefficient, rainfall-runoff erosivity

Procedia PDF Downloads 27
7259 Analyzing the Climate Change Impact and Farmer's Adaptability Strategies in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Sonia

Abstract:

The agriculture sector is deemed more vulnerable to climate change as its variation can directly affect the crop’s productivity, but farmers’ adaptation strategies play a vital role in climate change-agriculture relationship. Therefore, this research has been undertaken to assess the Climate Change impact on wheat productivity and farmers’ adaptability strategies in Khyber Pakhtunkhwa province, Pakistan. The panel dataset was analyzed to gauge the impact of changing climate variables (i.e., temperature, rainfall, and humidity) on wheat productivity from 1985 to 2015. Amid the study period, the fixed effect estimates confirmed an inverse relationship of temperature and rainfall on the wheat yield. The impact of temperature is observed to be detrimental as compared to the rainfall, causing 0.07 units reduction in the production of wheat with 1C upsurge in temperature. On the flip side, humidity revealed a positive association with the wheat productivity by confirming that high humidity could be beneficial to the production of the crop over time. Thus, this study ensures significant nexus between agricultural production and climatic parameters. However, the farming community in the underlying study area has limited knowledge about the adaptation strategies to lessen the detrimental impact of changing climate on crop yield. It is recommended that farmers should be well equipped with training and advanced agricultural management practices under the realm of climate change. Moreover, innovative technologies pertinent to the agriculture system should be encouraged to handle the challenges arising due to variations in climate factors.

Keywords: climate change, fixed effect model, panel data, wheat productivity

Procedia PDF Downloads 91
7258 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia

Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka

Abstract:

There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.

Keywords: elevation, forest cover, rainfall, slope

Procedia PDF Downloads 511
7257 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 258
7256 Identification of Rainfall Trends in Qatar

Authors: Abdullah Al Mamoon, Ataur Rahman

Abstract:

Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.

Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar

Procedia PDF Downloads 528
7255 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District

Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A

Abstract:

There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).

Keywords: simulation, noise exposure, weather, proxy

Procedia PDF Downloads 348
7254 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 68