Search results for: radiological and chemical toxicity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5309

Search results for: radiological and chemical toxicity

5069 The Impact of COVID-19 Waste on Aquatic Organisms: Nano/microplastics and Molnupiravir in Salmo trutta Embryos and Lervae

Authors: Živilė Jurgelėnė, Vitalijus Karabanovas, Augustas Morkvėnas, Reda Dzingelevičienė, Nerijus Dzingelevičius, Saulius Raugelė, Boguslaw Buszewski

Abstract:

The short- and long-term effects of COVID-19 antiviral drug molnupiravir and micro/nanoplastics on the early development of Salmo trutta were investigated using accumulation and exposure studies. Salmo trutta were used as standardized test organisms in toxicity studies of COVID-19 waste contaminants. The 2D/3D imaging was performed using confocal fluorescence spectral imaging microscopy to assess the uptake, bioaccumulation, and distribution of molnupiravir and micro/nanoplastics complex in live fish. Our study results demonstrated that molnupiravir may interact with a micro/nanoplastics and modify their spectroscopic parameters and toxicity to S. trutta embryos and larvae. The 0.2 µm size microplastics at a concentration of 10 mg/L were found to be stable in aqueous media than 0.02 µm, and 2 µm sizes polymeric particles. This study demonstrated that polymeric particles can adsorb molnupiravir that are present in mixtures and modify the accumulation of molnupiravir in Salmo trutta embryos and larvae. In addition, 2D/3D confocal fluorescence imaging showed that the single polymeric particle hardly accumulates and couldn't penetrate outer tissues of the tested organism. However, co-exposure micro/nanoplastics and molnupiravir could significantly enhance the polymeric particles capability of accumulating on surface tissues and penetrating surface tissue of fish in early development. Exposure to molnupiravir at 2 g/L concentration and co-exposure to micro/nanoplastics and molnupiravir did not bring about survival changes in in the early stages of Salmo trutta development, but we observed the reduction in heart rate and decrease in gill ventilation. The statistical analysis confirmed that micro/nanoplastics used in combination with molnupiravir enhance the toxicity of the latter micro/nanoplastics to embryos and larvae. This research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: fish, micro/nanoplastics, molnupiravir, toxicity

Procedia PDF Downloads 59
5068 Dental Fluorosis in Domestic Animals Inhabiting Industrial Area of Udaipur, Rajasthan, India

Authors: Lalita Panchal, Zulfiya Sheikh

Abstract:

Fluoride is essential for teeth and bones development not only for human beings but also for animals. But excess intake of fluoride causes harmful effects on health. Fluorosis is a worldwide health hazard and India is also one of the endemic countries. Udaipur district of Rajasthan is also prone to fluorosis and superphosphate industries are aggravating fluoride toxicity in this area. Grazing fields for animals in the close vicinity of the industries, fodder and water are fluoride contaminated. Fluoride toxicity in the form of dental fluorosis was observed in domestic animals, inhabiting industrial area near Udaipur, where superphosphate fertilizer plants are functioning and releasing fluoride and fumes and effluents into the surroundings. These fumes and gases directly affect the vegetation of grazing field, thus allowing entry of fluoride into the food chain. A survey was conducted in this area to assess the severity of fluorosis, in 2015-16. It was a house to house survey and animal owners were asked for their fodder and water supply. Anterior teeth of the animal were observed. Domestic animals exhibited mild to severe signs of dental fluorosis. Teeth showed deep brown staining, patches, lines and abrasions. Even immature animals were affected badly. Most of the domestic animals were affected, but goats of this area showed chronic symptoms of fluorosis. Due to abrasion of teeth and paining teeth their chewing or grazing capacity and appetite reduced. Eventually, it reduced the life span of animals and increased the mortality rate.

Keywords: domestic animals, fluoride toxicity, industrial fluorosis, superphosphate fertilizers

Procedia PDF Downloads 261
5067 The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions

Authors: Felora Rafiei, Shahram Shoaei

Abstract:

The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers.

Keywords: biological fertilizer, chemical fertilizer, yield component, yield, corn

Procedia PDF Downloads 337
5066 Effect of Chronic Exposure to Diazinon on Glucose Homeostasis and Oxidative Stress in Pancreas of Rats and the Potential Role of Mesna in Ameliorating This Effect

Authors: Azza El-Medany, Jamila El-Medany

Abstract:

Residential and agricultural pesticide use is widespread in the world. Their extensive and indiscriminative use, in addition with their ability to interact with biological systems other than their primary targets constitute a health hazards to both humans and animals. The toxic effects of pesticides include alterations in metabolism; there is a lack of knowledge that organophosphates can cause pancreatic toxicity. The primary goal of this work is to study the effects of chronic exposure to Diazinon an organophosphate used in agriculture on pancreatic tissues and evaluate the ameliorating effect of Mesna as antioxidant on the toxicity of Diazinon on pancreatic tissues.40 adult male rats, their weight ranged between 300-350 g. The rats were classified into three groups; control (10 rats) was received corn oil at a dose of 1 0 mg/kg/day by gavage once a day for 2 months. Diazinon (15 rats) was received Diazinon at a dose of 10 mg/kg/day dissolved in corn oil by gavage once a day for 2 months. Treated group (15 rats), were received Mesna 180mg/kg once a week by gavage 15 minutes before administration of Diazinon for 2 months. At the end of the experiment, animals were anesthetized, blood samples were taken by cardiac puncture for glucose and insulin assays and pancreas was removed and divided into 3 portions; first portion for histopathological study; second portion for ultrastructural study; third portion for biochemical study using Elisa Kits including determination of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), myeloperoxidase activity (MPO), interleukin 1β (IL-1β). A significant increase in the levels of MDA, TNF-α, MPO activity, IL-1β, serum glucose levels in the toxicated group with Diazinon were observed, while a significant reduction was noticed in GSH in serum insulin levels. After treatment with Mesna a significant reduction was observed in the previously mentioned parameters except that there was a significant rise in GSH in insulin levels. Histopathological and ultra-structural studies showed destruction in pancreatic tissues and β cells were the most affected cells among the injured islets as compared with the control group. The current study try to spot light about the effects of chronic exposure to pesticides on vital organs as pancreas also the role of oxidative stress that may be induced by them in evoking their toxicity. This study shows the role of antioxidant drugs in ameliorating or preventing the toxicity. This appears to be a promising approach that may be considered as a complementary treatment of pesticide toxicity.

Keywords: Diazinon, reduced glutathione, myeloperoxidase activity, tumor necrosis factor α, Mesna

Procedia PDF Downloads 207
5065 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based

Procedia PDF Downloads 113
5064 Contraction and Membrane Potential of C2C12 with GTXs

Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto

Abstract:

Culture techniques of skeletal muscle cells are advanced in the field of regenerative medicine and applied research of cultured muscle. As applied research of cultured muscle, myopathy (muscles disease) treatment is expected and development bio of actuator is also expected in biomedical engineering. Grayanotoxins (GTXs) is known as neurotoxins that enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as well as a phytotoxin. In this study, we investigated the effect of GTXs on muscle cells (C2C12) contraction and membrane potential. Contraction of myotubes is induced by applied external electrical stimulation. Contraction and membrane potential change of skeletal muscle cells are induced by injection of current. We, therefore, concluded that effect of Grayanotoxins on contraction and membrane potential of C2C12 relate to acute toxicity of GTXs.

Keywords: skeletal muscle cells C2C12, grayanotoxins, contraction, membrane potential, acute toxicity, pytotoxin, motubes

Procedia PDF Downloads 484
5063 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic

Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña

Abstract:

Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.

Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation

Procedia PDF Downloads 383
5062 Chemical Durability of Textured Glass-coat Suitable for Building Application

Authors: Adejo Andrew Ojonugwa, Jomboh Jeff Kator, Garkida Adele Dzikwi

Abstract:

This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material.

Keywords: chemical durability, glass-coat, building, recycling

Procedia PDF Downloads 82
5061 Some Conjectures and Programs about Computing the Detour Index of Molecular Graphs of Nanotubes

Authors: Shokofeh Ebrtahimi

Abstract:

Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G.Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.[1] The pioneers of the chemical graph theory are Alexandru Balaban, Ante Graovac, Ivan Gutman, Haruo Hosoya, Milan Randić and Nenad TrinajstićLet G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new program for computing the detour index of molecular graphs of nanotubes by heptagons is determineded. Some Conjectures about detour index of Molecular graphs of nanotubes is included.

Keywords: chemical graph, detour matrix, Detour index, carbon nanotube

Procedia PDF Downloads 257
5060 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem

Authors: Ernesto Linan, Linda Cruz, Lucero Becerra

Abstract:

In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.

Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics

Procedia PDF Downloads 182
5059 Bio-Guided of Active New Alkaloids from Alstonia Brassi Toxicity Antitumour Activity in Silico and Molecular Modeling

Authors: Mesbah Khaled, Bouraoui Ouissal, Benkiniouar Rachid, Belkhiri Lotfi

Abstract:

Alstonia, which are tropical plants with a wide geographical distribution, have been divided into different sections by different authors based on previous studies of several species within the genus. Monachino divides Alstonia into 5 sections, while Pichon divides it into 3 sections. Several plants belonging to this genus, such as Alstonia brassii, have been used in traditional folk medicine to treat ailments such as fever, malaria and dysentery]. Previous studies focusing on the chemical composition of these plants have successfully identified indol alkaloids with cytotoxic, anti-diabetic and anti-inflammatory properties. The newly discovered monomers are structurally similar to the backbones of picralin, affinisin and macrolin. On the other hand, all recently isolated dimeric compounds have a macrolin moiety. In this study, a computational analysis was performed on a series of novel molecules, including both monomeric and dimeric compounds with different structural frameworks. This investigation represents the first computational study of these molecules using an in silico approach incorporating 2D-QSAR data. The analysis involved various computational techniques, including 2D-QSAR modelling, molecular docking studies and subsequent validation by molecular dynamics simulation and assessment of ADMET properties. The chemical composition was identified by 1D and 2D NMR. Eight new alkaloids were isolated, 5 monomers and 3 dimers. In this section, we focus on the biological activity of 4 new alkaloids belonging to two different skeletons, the affinisine skeleton.

Keywords: affinisine, talcarpine, macroline, cytotoxicity, alkaloids

Procedia PDF Downloads 208
5058 Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature

Authors: David J. Thomson, Joshua C. J. Chew

Abstract:

Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided.

Keywords: lithium toxicity, pathogenesis, SILENT, syndrome of irreversible lithium-effectuated neurotoxicity

Procedia PDF Downloads 467
5057 Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood

Authors: Anahita Yarahmadi, Nazanin Mahboobi, Nahid Sadat Rahmatpour Nori, Mohammad Hossein Bijeh Keshavarzi, Mohammad Javad Shakori

Abstract:

This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics.

Keywords: Artemisia annua L, bio-fertilizer, chemical fertilizer, vermicompost

Procedia PDF Downloads 419
5056 Phytoremediation of Chromium Using Vigna mungo, Vigna radiata and Cicer arietinum

Authors: Swarna Shikha, Pammi Gauba

Abstract:

Heavy metal pollution in water bodies and soil is a major and ever increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. By using specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called as phytoremediation. The aim of this study was to find the effect of phytoextraction of Chromium in hydroponics culture by using Vigna mungo, Vigna radiata and Cicer arietinum. The plants were allowed to grow in static hydroponic culture at 0, 50, 250, 500 and 750 ppm concentrations of Chromium dichromate. The germination percentage was determined. It was found that the germination percentage of the seeds decreased with an increase in the concentration of the heavy metals. The maximum permissible limit of Cr for Vigna radiate and Cicer arietinum was 500 ppm and toxicity was observed whereas at even at 750 ppm no toxicity was observed in Vigna mungo. The main aim of our experiment was to study the impact of Chromium on all the three selected plants.

Keywords: phytoremediation, phytoextraction metal-accumulation, heavy metals, pollutants

Procedia PDF Downloads 317
5055 Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators.

Keywords: smoke toxicity, large-scale tests, iso 9705, analyser, novel equipment

Procedia PDF Downloads 46
5054 An Investigation of Peptide Functionalized Gold Nanoparticles On Colon Cancer Cells For Biomedical Application

Authors: Rolivhuwa Bishop Ramagoma1*, Lynn Cairncross1, , Saartjie Roux1

Abstract:

According to the world health organisation, colon cancer is among the most common cancers diagnosed in both men and women. Specifically, it is the second leading cause of cancer related deaths accounting for over 860 000 deaths worldwide in 2018. Currently, chemotherapy has become an essential component of most cancer treatments. Despite progress in cancer drug development over the previous years, traditional chemotherapeutic drugs still have low selectivity for targeting tumour tissues and are frequently constrained by dose-limiting toxicity. The creation of nanoscale delivery vehicles capable of directly directing treatment into cancer cells has recently caught the interest of researchers. Herein, the development of peptide-functionalized polyethylene glycol gold nanoparticles (Peptide-PEG-AuNPs) as a cellular probe and delivery agent is described, with the higher aim to develop a specific diagnostic prototype and assess their specificity not only against cell lines but primary human cells as well. Gold nanoparticles (AuNPs) were synthesized and stabilized through chemical conjugation. The synthesized AuNPs were characterized, stability in physiological solutions was assessed, their cytotoxicity against colon carcinoma and non-carcinoma skin fibroblasts was also studied. Furthermore, genetic effect through real-time polymerase chain reaction (RT-PCR), localization and uptake, peptide specificity were also determined. In this study, different peptide-AuNPs were found to have preferential toxicity at higher concentrations, as revealed by cell viability assays, however, all AuNPs presented immaculate stability for over 3 months following the method of synthesis. The final obtained peptide-PEG-AuNP conjugates showed good biocompatibility in the presence of high ionic solutions and biological media and good cellular uptake. Formulation of colon cancer specific targeting peptide was successful, additionally, the genes/pathways affected by the treatments were determined through RT-PCR. Primary cells study is still on going with promising results thus far.

Keywords: nanotechnology, cancer, diagnosis, therapeutics, gold nanoparticles.

Procedia PDF Downloads 53
5053 X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications

Authors: Guohua Cao, Xu Dong

Abstract:

X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future.

Keywords: molecular imaging, X-ray fluorescence, chemical sensitivity, X-ray scattering

Procedia PDF Downloads 159
5052 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production

Authors: Reda Abdel-Aziz

Abstract:

Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.

Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment

Procedia PDF Downloads 294
5051 In Vitro Antifungal Activity of Essential Oil Artemisia Absinthium

Authors: Bouchenak Fatima, Lmegharbi Abdelbaki, Houssem Degaichia, Benrebiha Fatima

Abstract:

The essential oil composition of the leaf of Artemisia absinthium from region of Cherchell (The south of Algeria) was investigated by GC, GC-MS. 27 constituents were identified correspond to 84, 63% of the total oil. The major components are Thujone (60, 82%), Chamazulènel (16, 62%), ρ-cymène (4, 29%) and 2-carène (4.25%). The antimicrobial activity of oil was tested in vitro by two methods (agar diffusion and microdilution) on three plant pathogenic fungi. This oil has been tested for antimicrobial activity against three pathogenic fungi (Botrytis cinerea, Fusarium culmorum and Helminthosporium Sp.).The study of activity was evaluated by two methods: Method of diffusion in gelose and the minimum inhibitory concentration MIC. This oil exhibited an interesting antimicrobial activity. A preliminary study showed that this oil presented high toxicity against this fungus. These results, although preliminary show a good antifungal activity, to limit and inhibit stop the development of those pathogen agent.

Keywords: artemisia absinthian, extraction process, chemical study, antifungal activity

Procedia PDF Downloads 441
5050 Effect of Antimony on Microorganisms in Aerobic and Anaerobic Environments

Authors: Barrera C. Monserrat, Sierra-Alvarez Reyes, Pat-Espadas Aurora, Moreno Andrade Ivan

Abstract:

Antimony is a toxic and carcinogenic metalloid considered a pollutant of priority interest by the United States Environmental Protection Agency. It is present in the environment in two oxidation states: antimonite (Sb (III)) and antimony (Sb (V)). Sb (III) is toxic to several aquatic organisms, but the potential inhibitory effect of Sb species for microorganisms has not been extensively evaluated. The fate and possible toxic impact of antimony on aerobic and anaerobic wastewater treatment systems are unknown. For this reason, the objective of this study was to evaluate the microbial toxicity of Sb (V) and Sb (III) in aerobic and anaerobic environments. Sb(V) and Sb(III) were used as potassium hexahydroxoantimonate (V) and potassium antimony tartrate, respectively (Sigma-Aldrich). The toxic effect of both Sb species in anaerobic environments was evaluated on methanogenic activity and the inhibition of hydrogen production of microorganisms from a wastewater treatment bioreactor. For the methanogenic activity, batch experiments were carried out in 160 mL serological bottles; each bottle contained basal mineral medium (100 mL), inoculum (1.5 g of VSS/L), acetate (2.56 g/L) as substrate, and variable concentrations of Sb (V) or Sb (III). Duplicate bioassays were incubated at 30 ± 2°C on an orbital shaker (105 rpm) in the dark. Methane production was monitored by gas chromatography. The hydrogen production inhibition tests were carried out in glass bottles with a working volume of 0.36 L. Glucose (50 g/L) was used as a substrate, pretreated inoculum (5 g VSS/L), mineral medium and varying concentrations of the two species of antimony. The bottles were kept under stirring and at a temperature of 35°C in an AMPTSII device that recorded hydrogen production. The toxicity of Sb on aerobic microorganisms (from a wastewater activated sludge treatment plant) was tested with a Microtox standardized toxicity test and respirometry. Results showed that Sb (III) is more toxic than Sb (V) for methanogenic microorganisms. Sb (V) caused a 50% decrease in methanogenic activity at 250 mg/L. In contrast, exposure to Sb (III) resulted in a 50% inhibition at a concentration of only 11 mg/L, and an almost complete inhibition (95%) at 25 mg/L. For hydrogen-producing microorganisms, Sb (III) and Sb (V) inhibited 50% of this production with 12.6 mg/L and 87.7 mg/L, respectively. The results for aerobic environments showed that 500 mg/L of Sb (V) do not inhibit the Allivibrio fischeri (Microtox) activity or specific oxygen uptake rate of activated sludge. In the case of Sb (III), this caused a loss of 50% of the respiration of the microorganisms at concentrations below 40 mg/L. The results obtained indicate that the toxicity of the antimony will depend on the speciation of this metalloid and that Sb (III) has a significantly higher inhibitory potential compared to Sb (V). It was shown that anaerobic microorganisms can reduce Sb (V) to Sb (III). Acknowledgments: This work was funded in part by grants from the UA-CONACYT Binational Consortium for the Regional Scientific Development and Innovation (CAZMEX), the National Institute of Health (NIH ES- 04940), and PAPIIT-DGAPA-UNAM (IN105220).

Keywords: aerobic inhibition, antimony reduction, hydrogen inhibition, methanogenic toxicity

Procedia PDF Downloads 127
5049 Nuclear Materials and Nuclear Security in India: A Brief Overview

Authors: Debalina Ghoshal

Abstract:

Nuclear security is the ‘prevention and detection of, and response to unauthorised removal, sabotage, unauthorised access, illegal transfer or other malicious acts involving nuclear or radiological material or their associated facilities.’ Ever since the end of Cold War, nuclear materials security has remained a concern for global security. However, with the increase in terrorist attacks not just in India especially, security of nuclear materials remains a priority. Therefore, India has made continued efforts to tighten its security on nuclear materials to prevent nuclear theft and radiological terrorism. Nuclear security is different from nuclear safety. Physical security is also a serious concern and India had been careful of the physical security of its nuclear materials. This is more so important since India is expanding its nuclear power capability to generate electricity for economic development. As India targets 60,000 MW of electricity production by 2030, it has a range of reactors to help it achieve its goal. These include indigenous Pressurised Heavy Water Reactors, now standardized at 700 MW per reactor Light Water Reactors, and the indigenous Fast Breeder Reactors that can generate more fuel for the future and enable the country to utilise its abundant thorium resource. Nuclear materials security can be enhanced through two important ways. One is through proliferation resistant technologies and diplomatic efforts to take non proliferation initiatives. The other is by developing technical means to prevent any leakage in nuclear materials in the hands of asymmetric organisations. New Delhi has already implemented IAEA Safeguards on their civilian nuclear installations. Moreover, the IAEA Additional Protocol has also been ratified by India in order to enhance its transparency of nuclear material and strengthen nuclear security. India is a party to the IAEA Conventions on Nuclear Safety and Security, and in particular the 1980 Convention on the Physical Protection of Nuclear Material and its amendment in 2005, Code of Conduct in Safety and Security of Radioactive Sources, 2006 which enables the country to provide for the highest international standards on nuclear and radiological safety and security. India's nuclear security approach is driven by five key components: Governance, Nuclear Security Practice and Culture, Institutions, Technology and International Cooperation. However, there is still scope for further improvements to strengthen nuclear materials and nuclear security. The NTI Report, ‘India’s improvement reflects its first contribution to the IAEA Nuclear Security Fund etc. in the future, India’s nuclear materials security conditions could be further improved by strengthening its laws and regulations for security and control of materials, particularly for control and accounting of materials, mitigating the insider threat, and for the physical security of materials during transport. India’s nuclear materials security conditions also remain adversely affected due to its continued increase in its quantities of nuclear material, and high levels of corruption among public officials.’ This paper would study briefly the progress made by India in nuclear and nuclear material security and the step ahead for India to further strengthen this.

Keywords: India, nuclear security, nuclear materials, non proliferation

Procedia PDF Downloads 322
5048 Phytoremediation of Pharmaceutical Emerging Contaminant-Laden Wastewater: A Techno-Economic and Sustainable Development Approach

Authors: Reda A. Elkhyat, Mahmoud Nasr, Amel A. Tammam, Mohamed A. Ghazy

Abstract:

Pharmaceuticals and personal care products (PPCPs) are a unique group of emerging contaminants continuously introduced into the aquatic ecosystem at concentrations capable of inducing adverse effects on humans and aquatic organisms, even at trace levels ranging from ppt to ppm. Amongst the common pharmaceutical emerging pollutants detected in several aquatic environments, acetaminophen has been recognized for its high toxicity. Once released into the aquatic environment, acetaminophen could be degraded by the microbial community and adsorption/ uptake by the plants. Although many studies have investigated the hazard risks of acetaminophen pollutants on aquatic animals, the number of studies demonstrating its removal efficiency and effects on the aquatic plant still needs to be expanded. In this context, this study aims to apply the aquatic plant-based phytoremediation system to eliminate this emerging contaminant from domestic wastewater. The phytoremediation experiment was performed in a hydroponic system containing Eichhornia crassipes and operated under the natural environment at 25°C to 30°C. This system was subjected to synthetic domestic wastewater with the maximum initial chemical oxygen demand (COD) of 390 mg/L and three different acetaminophen concentrations of 25, 50, and 200 mg/L. After 17 d of operation, the phytoremediation system achieved removal efficiencies of about 100% and 85.6±4.2% for acetaminophen and COD, respectively.Moreover, the Eichhornia crassipes could withstand the toxicity associated with increasing the acetaminophen concentrations from 25 to 200 mg/L. This high treatment performance could be assigned to the well-adaptation of the water hyacinth to the phytoremediation factors. Moreover, it has been proposed that this phytoremediation system could be largely supported by phytodegradation and plant uptaking mechanisms; however, detecting the generated intermediates, metabolites, and degradation products are still under investigation. Applying this free-floating plant in wastewater treatment and reducing emerging contaminants would meet the targets of SDGs 3, 6, and. 14. The cost-benefit analysis was performed for the phytoremediation system. The phytoremediation system is financially viable as the net profit was 2921 US $/ y with a payback period of nine years.

Keywords: domestic wastewater, emerging pollutants, hydrophyte Eichhornia crassipes, paracetamol removal efficiency, sustainable development goals (SDGs)

Procedia PDF Downloads 86
5047 Hyparrhenia hirta: A Potential Protective Agent against DNA Damage and Liver Toxicity of Sodium Nitrate in Adult Rats

Authors: Hanen Bouaziz-Ketata, Ghada Ben Salah, Hichem Ben Salah, Kamel Jamoussi, Najiba Zeghal

Abstract:

The present study investigated the protective role of Hyparrhenia hirta on nitrate-induced liver damage. Experiments were carried out on adult rats divided into 3 groups, a control group and two treated groups. NaNO3 was administered daily by oral gavage at a dose of 400 mg/kg bw in treated groups either alone or coadministered with Hyparrhenia hirta methanolic extract via drinking water at a dose of 200 mg/kg bw for 50 days. Liver toxicity induced by NaNO3 was characterized by higher serum levels of glucose, total cholesterol and triglyceride and lower serum total protein than those of controls. Transaminases and lactate deshydrogenase activities in serum were elevated indicating hepatic cells’ damage after treatment with NaNO3. The hyperbilirubinemia and the increased serum gamma glutamyl transferase activities suggested the presence of cholestasis in NaNO3 exposed rats. In parallel, NaNO3 caused oxidant/antioxidant imbalance in the liver as reflected by the increased lipid peroxidation, the decreased total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities. Nitrate caused also a significant induction of DNA fragmentation as evidenced by the presence of a smear without ladder formation on agarose gel. Hyparrhenia hirta supplementation showed an improvement of all parameters cited above. We conclude that the present work provides ethnopharmacological relevance of Hyparrhenia hirta against the toxic effect of nitrate, suggesting its role as a potential antioxidant.

Keywords: Hyparrhenia hirta, liver, nitrate toxicity, oxidative stress, rat

Procedia PDF Downloads 511
5046 Monitoring Air Pollution Effects on Children for Supporting Public Health Policy: Preliminary Results of MAPEC_LIFE Project

Authors: Elisabetta Ceretti, Silvia Bonizzoni, Alberto Bonetti, Milena Villarini, Marco Verani, Maria Antonella De Donno, Sara Bonetta, Umberto Gelatti

Abstract:

Introduction: Air pollution is a global problem. In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and particulate matter as carcinogenic to human. The study of the health effects of air pollution in children is very important because they are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. Methods: The study was carried out on 6-8-year-old children living in five Italian towns in two different seasons. Two biomarkers of early biological effects, primary DNA damage detected with the comet assay and frequency of micronuclei, were investigated in buccal cells of children. Details of children diseases, socio-economic status, exposures to other pollutants and life-style were collected using a questionnaire administered to children’s parents. Child exposure to urban air pollution was assessed by analysing PM0.5 samples collected in the school areas for PAHs and nitro-PAHs concentration, lung toxicity and in vitro genotoxicity on bacterial and human cells. Data on the chemical features of the urban air during the study period were obtained from the Regional Agency for Environmental Protection. The project created also the opportunity to approach the issue of air pollution with the children, trying to raise their awareness on air quality, its health effects and some healthy behaviors by means of an educational intervention in the schools. Results: 1315 children were recruited for the study and participate in the first sampling campaign in the five towns. The second campaign, on the same children, is still ongoing. The preliminary results of the tests on buccal mucosa cells of children will be presented during the conference as well as the preliminary data about the chemical composition and the toxicity and genotoxicity features of PM0.5 samples. The educational package was tested on 250 children of the primary school and showed to be very useful, improving children knowledge about air pollution and its effects and stimulating their interest. Conclusions: The associations between levels of air pollutants, air mutagenicity and biomarkers of early effects will be investigated. A tentative model to calculate the global absolute risk of having early biological effects for air pollution and other variables together will be proposed and may be useful to support policy-making and community interventions to protect children from possible health effects of air pollutants.

Keywords: air pollution exposure, biomarkers of early effects, children, public health policy

Procedia PDF Downloads 304
5045 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study

Authors: Sami Ayad, Mengshan Lee

Abstract:

The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.

Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis

Procedia PDF Downloads 52
5044 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate

Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo

Abstract:

A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.

Keywords: chemical reaction, MHD, double-diffusive, stretching plate

Procedia PDF Downloads 380
5043 Upgrading of Problem-Based Learning with Educational Multimedia to the Undergraduate Students

Authors: Sharifa Alduraibi, Abir El Sadik, Ahmed Elzainy, Alaa Alduraibi, Ahmed Alsolai

Abstract:

Introduction: Problem-based learning (PBL) is an active student-centered educational modality, influenced by the students' interest that required continuous motivation to improve their engagement. The new era of professional information technology facilitated the utilization of educational multimedia, such as videos, soundtracks, and photographs promoting students' learning. The aim of the present study was to introduce multimedia-enriched PBL scenarios for the first time in college of medicine, Qassim University, as an incentive for better students' engagement. In addition, students' performance and satisfaction were evaluated. Methodology: Two multimedia-enhanced PBL scenarios were implemented to the third years' students in the urinary system block. Radiological images, plain CT scan, and X-ray of the abdomen and renal nuclear scan correlated with their pathological gross photographs were added to the scenarios. One week before the first sessions, pre-recorded orientation videos for PBL tutors were submitted to clarify the multimedia incorporated in the scenarios. Other two traditional PBL scenarios devoid of multimedia demonstrating the pathological and radiological findings were designed. Results and Discussion: Comparison between the formative assessments' results by the end of the two PBL modalities was done. It revealed significant increase in students' engagement, critical thinking and practical reasoning skills during the multimedia-enhanced sessions. Students' perception survey showed great satisfaction with the new strategy. Conclusion: It could be concluded from the current work that multimedia created technology-based teaching strategy inspiring the student for self-directed thinking and promoting students' overall achievement.

Keywords: multimedia, pathology and radiology images, problem-based learning, videos

Procedia PDF Downloads 125
5042 Ameliorative Effect of Curcuma Longa against Arsenic Induced Reproductive Toxicity in Charles Foster Rats

Authors: Shazia Naheed Akhter, Rekha Kumari

Abstract:

An estimated 70 million population are exposed to arsenic poisoning in India in recent times. Arsenic contamination in the groundwater has caused serious health hazards among the exposed population. In Bihar, the first district was Bhojpur, where arsenic causing health issues were reported in 2002. Presently, there are 18 districts that are reported arsenic poisoning in the groundwater. The exposed population is firstly diseased with various symptoms such as skin manifestations, loss of appetite, constipation, hormonal disorders, etc. The long duration exposure has led to cause infertility in the male subjects. The present study thus aims to develop the antidote against arsenic-induced male reproductive toxicity in animal models. The study was carried out on Charles Foster Rats after the approval from Institutional Animal Ethics Committee. A total of n=18 rats (12 weeks old) of an average weight of 160 ± 20 g were used for the study. The study group included n=6 control and n= 12 treated with sodium arsenite orally at the dose of 8mg/Kg b.w daily for 40 days. The n= 6 animals were dissected and the rest n=6 was administered orally with Curcuma longa rhizome ethanolic extract at the dose of 600mg/Kg b.w per day for 40 days. At the end of the entire experiment, all the animals were dissected out and their reproductive organs were taken out, especially epididymis for sperm counts, sperm motility, sperm mortality, sperm morphology. The blood samples were collected for the hormonal assay (testosterone and luteinizing hormone), as well as for hematological and biochemical analysis. The study showed a high magnitude of degeneration in the reproductive organs of the rats in the arsenic-treated group. There were degenerative fluctuations in the sperm counts, sperm motility, sperm mortality, sperm morphology and in the hormonal parameters, as well as in the hematological and biochemical parameters in the arsenic-treated rats. But, after the administration of Curcuma longa, there was significant amelioration in all these parameters. Therefore, the present study shows that Curcuma longa plays a vital role to combat arsenic-induced male reproductive toxicity.

Keywords: sodium arsenite, Charles foster rats, ethanolic rhizome extract of curcuma longa, male reproductive toxicity, amelioration

Procedia PDF Downloads 193
5041 Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori

Authors: Muhammad Dildar Gogi, Muhammad Arshad, Muhammad Ahsan Khan, M. Sufian, Ahmad Nawaz, Mubashir Iqbal, Muhammad Junaid Nisar, Waleed Afzal Naveed

Abstract:

Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality.

Keywords: heavy-metals, larval-instars, lethal-concentration, mortality, silkworm

Procedia PDF Downloads 185
5040 Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)

Authors: Piyaporn Buaklang, Narisa Kengtrong Bordeerat

Abstract:

The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner.

Keywords: nanoparticles, genotoxicity, human lymphoblast cells (TK6), micronucleus

Procedia PDF Downloads 279