Search results for: Diazinon
8 The Effect of Acute Toxicity and Thyroid Hormone Treatments on Hormonal Changes during Embryogenesis of Acipenser persicus
Authors: Samaneh Nazeri, Bagher Mojazi Amiri, Hamid Farahmand
Abstract:
Production of high quality fish eggs with reasonable hatching rate makes a success in aquaculture industries. It is influenced by the environmental stimulators and inhibitors. Diazinon is a widely-used pesticide in Golestan province (Southern Caspian Sea, North of Iran) which is washed to the aquatic environment (3 mg/L in the river). It is little known about the effect of this pesticide on the embryogenesis of sturgeon fish, the valuable species of the Caspian Sea. Hormonal content of the egg is an important factor to guaranty the successful passes of embryonic stages. In this study, the fate of Persian sturgeon embryo to 24, 48, 72, and 96-hours exposure of diazinon (LC50 dose) was tested. Also, the effect of thyroid hormones (T3 and T4) on these embryos was tested concurrently or separately with diazinon LC 50 dose. Fertilized eggs are exposed to T3 (low dose: 1 ng/ml, high dose: 10 ng/ml), T4 (low dose: 1 ng/ml, high dose: 10 ng/ml). Six eggs were randomly selected from each treatment (with three replicates) in five developmental stages (two cell- division, neural, heart present, heart beaten, and hatched larvae). The possibility of changing T3, T4, and cortisol contents of the embryos were determined in all treated groups and in every mentioned embryonic stage. The hatching rate in treated groups was assayed at the end of the embryogenesis to clarify the effect of thyroid hormones and diazinon. The results indicated significant differences in thyroid hormone contents, but no significant differences were recognized in cortisol levels at various early life stages of embryos. There was also significant difference in thyroid hormones in (T3, T4) + diazinon treated embryos (P˂0.05), while no significant difference between control and treatments in cortisol levels was observed. The highest hatching rate was recorded in HT3 treatment, while the lowest hatching rate was recorded for diazinon LC50 treatment. The result confirmed that Persian sturgeon embryo is less sensitive to diazinon compared to teleost embryos, and thyroid hormones may increase hatching rate even in the presence of diazinon.Keywords: Persian sturgeon, diazinon, thyroid hormones, cortisol, embryo
Procedia PDF Downloads 3047 Effect of Chronic Exposure to Diazinon on Glucose Homeostasis and Oxidative Stress in Pancreas of Rats and the Potential Role of Mesna in Ameliorating This Effect
Authors: Azza El-Medany, Jamila El-Medany
Abstract:
Residential and agricultural pesticide use is widespread in the world. Their extensive and indiscriminative use, in addition with their ability to interact with biological systems other than their primary targets constitute a health hazards to both humans and animals. The toxic effects of pesticides include alterations in metabolism; there is a lack of knowledge that organophosphates can cause pancreatic toxicity. The primary goal of this work is to study the effects of chronic exposure to Diazinon an organophosphate used in agriculture on pancreatic tissues and evaluate the ameliorating effect of Mesna as antioxidant on the toxicity of Diazinon on pancreatic tissues.40 adult male rats, their weight ranged between 300-350 g. The rats were classified into three groups; control (10 rats) was received corn oil at a dose of 1 0 mg/kg/day by gavage once a day for 2 months. Diazinon (15 rats) was received Diazinon at a dose of 10 mg/kg/day dissolved in corn oil by gavage once a day for 2 months. Treated group (15 rats), were received Mesna 180mg/kg once a week by gavage 15 minutes before administration of Diazinon for 2 months. At the end of the experiment, animals were anesthetized, blood samples were taken by cardiac puncture for glucose and insulin assays and pancreas was removed and divided into 3 portions; first portion for histopathological study; second portion for ultrastructural study; third portion for biochemical study using Elisa Kits including determination of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), myeloperoxidase activity (MPO), interleukin 1β (IL-1β). A significant increase in the levels of MDA, TNF-α, MPO activity, IL-1β, serum glucose levels in the toxicated group with Diazinon were observed, while a significant reduction was noticed in GSH in serum insulin levels. After treatment with Mesna a significant reduction was observed in the previously mentioned parameters except that there was a significant rise in GSH in insulin levels. Histopathological and ultra-structural studies showed destruction in pancreatic tissues and β cells were the most affected cells among the injured islets as compared with the control group. The current study try to spot light about the effects of chronic exposure to pesticides on vital organs as pancreas also the role of oxidative stress that may be induced by them in evoking their toxicity. This study shows the role of antioxidant drugs in ameliorating or preventing the toxicity. This appears to be a promising approach that may be considered as a complementary treatment of pesticide toxicity.Keywords: Diazinon, reduced glutathione, myeloperoxidase activity, tumor necrosis factor α, Mesna
Procedia PDF Downloads 2426 Assessment of Reproductive Toxicity of Diazinon Pesticide in Male Wistar Rats
Authors: Mohammad Alfaifi
Abstract:
Organophosphates are among the most widely used synthetic insect pesticides. The widespread use of organophosphates has stimulated research into the possible existence of effects related with their reproductive toxic activity. The present study aimed to assess the effects of diazinon (DIZ) on male reproductive system. DIZ at the dose levels of 1.5, 3.0 and 9.0 mg/kg b. wt./day was administered orally to male rats of Wistar strain for 30 days to evaluate the toxic alterations in testicular histology, biochemistry, sperm dynamics, and testosterone levels. The body weight of animals did not show any significant changes, however, a significant reduction was observed in testes weight. DIZ also brought about marked reduction in epididymal and testicular sperm counts in exposed males and a decrease in serum testosterone concentration. Histopathological examination of testes showed mild to severe degenerative changes in seminiferous tubules at various dose levels. Fertility test showed 79% negative results. All these toxic effects are moderate at low doses and become severe at higher dose levels. From the results of the present study it is concluded that DIZ induces severe testicular damage and results in reduction in sperm count and thus affect fertility. Small changes in sperm counts are known to have adverse affects on human fertility. Therefore, application of such insecticide should be limited to a designed programme.Keywords: reproductive toxicity, fertility, diazinon, sperm count
Procedia PDF Downloads 3195 Evaluation of Reproductive Toxicity of Diazinon Pesticide in Male Wistar Rats
Authors: Mohammad Alfaifi, Mohammed Alshehri
Abstract:
Organophosphates are among the most widely used synthetic insect pesticides. The widespread use of organophosphates has stimulated research into the possible existence of effects related with their reproductive toxic activity. The present study aimed to assess the effects of diazinon (DIZ) on male reproductive system. DIZ at the dose levels of 1.5, 3.0 and 9.0 mg/kg b. wt./day was administered orally to male rats of Wistar strain for 30 days to evaluate the toxic alterations in testicular histology, biochemistry, sperm dynamics and testosterone levels. The body weight of animals did not show any significant changes; however, a significant reduction was observed in testes weight. DIZ also brought about a marked reduction in epididymal and testicular sperm counts in exposed males and a decrease in serum testosterone concentration. Histopathological examination of testes showed mild to severe degenerative changes in seminiferous tubules at various dose levels. Fertility test showed 79% negative results. All these toxic effects are moderate at low doses and become severe at higher dose levels. From the results of the present study, it is concluded that DIZ induces severe testicular damage and results in a reduction in sperm count and thus affect fertility. Small changes in sperm counts are known to have adverse effects on human fertility. Therefore, application of such insecticide should be limited to a designed programme.Keywords: organophosphates, reproductive toxicity, diazinon, fertility
Procedia PDF Downloads 4124 Host Preference, Impact of Host Transfer and Insecticide Susceptibility among Aphis gossypii Group (Order: Hemiptera) in Jamaica
Authors: Desireina Delancy, Tannice Hall, Eric Garraway, Dwight Robinson
Abstract:
Aphis gossypii, as a pest, directly damages its host plant by extracting phloem sap (sucking) and indirectly damages it by the transmission of viruses, ultimately affecting the yield of the host. Due to its polyphagous nature, this species affects a wide range of host plants, some of which may serve as a reservoir for colonisation of important crops. In Jamaica, there have been outbreaks of viral plant pathogens that were transmitted by Aphis gossypii. Three such examples are Citrus tristeza virus, the Watermelon mosaic virus, and Papaya ringspot virus. Aphis gossypii also heavily colonized economically significant host plants, including pepper, eggplant, watermelon, cucumber, and hibiscus. To facilitate integrated pest management, it is imperative to understand the biology of the aphid and its host preference. Preliminary work in Jamaica has indicated differences in biology and host preference, as well as host variety within the species. However, specific details of fecundity, colony growth, host preference, distribution, and insecticide resistance of Aphis gossypii were unknown to the best of our knowledge. The aim was to investigate the following in relation to Aphis gossypii: influence of the host plant on colonization, life span, fecundity, population size, and morphology; the impact of host transfer on fecundity and population size as a measure of host preference and host transfer success and susceptibility to four commonly used insecticides. Fecundity and colony size were documented daily from aphids acclimatized on Capsicum chinense Jacquin 1776, Cucumis sativus Linnaeus 1630, Gossypium hirsutum Linnaeus 1751 and Abelmoschus esculentus (L.) Moench 1794 for three generations. The same measures were used after third instar aphids were transferred among the hosts as a measure of suitability and success. Mortality, and fecundity of survivors, were determined after aphids were exposed to varying concentrations of Actara®, Diazinon™, Karate Zeon®, and Pegasus®. Host preference results indicated that, over a 24-day period, Aphis gossypii reached its largest colony size on G. hirsutum (x̄ 381.80), with January – February being the most fecund period. Host transfer experiments were all significantly different, with the most significant occurring between transfers from C. chinense to C. sativus (p < 0.05). Colony sizes were found to increase significantly every 5 days, which has implications for regimes implemented to monitor and evaluate plots. Insecticides ranked on lethality are Karate Zeon®> Actara®> Pegasus® > Diazinon™. The highest LC50 values were obtained for aphids on G. hirsutum and C. chinense was with Pegasus® and for those on C. sativus with Diazinon™. Survivors of insecticide treatments had colony sizes on average that were 98 % less than untreated aphids. Cotton was preferred both in the field and in the glasshouse. It is on cotton the aphids settled first, had the highest fecundity, and the lowest mortality. Cotton can serve as reservoir for (re)populating other cotton or different host species based on migration due to overcrowding, heavy showers, high wind, or ant attendance. Host transfer success between all three hosts is highly probable within an intercropping system. Survivors of insecticide treatments can successfully repopulate host plants.Keywords: Aphis gossypii, host-plant preference, colonization sequence, host transfers, insecticide susceptibility
Procedia PDF Downloads 983 Organochlorine and Organophosphorus Pesticide Residues in Fish Samples from Lake Chad, Baga, North Eastern Nigeria
Authors: J. C. Akan, F. I. Abdulrahman, Z. M. Chellube
Abstract:
The aim of this study was to determine the levels of some organochlorine (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, p,p’-DDT, α-BHC, γ-BHC, lindane, Endosulfan sulphate, dieldrin and aldrin and organophosphorus (Dichlorvos, Diazinon, Chlorpyrifos, fenitrothion and Fenitrothion) pesticide residues in the gills, liver, stomach, kidney and flesh of four fish species (Tilapia zilli, Clarias anguillaris Hetrotis niloticus and Oreochronmis niloticus) between the periods of September 2010 to October, 2011. Samples were collected from Kwantan turare in Lake Chad, Baga, Borno State, Nigeria. Extraction of the fish samples and de-fattening of the fish sample extracts were performed using standard procedures. Analysis of the fish samples for pesticide residues were carried out using Shimadzu GC/MS (GC – 17A), equipped with fluorescence detector. Large differences in the levels of pesticide residues were observed between tissues within each fish. The concentrations of all the organophosphorus pesticides were higher in the organs of Oreochronmis niloticus, while Hetrotis niloticus shows the lowest. For organochlorine pesticides, the organs of Tilapia zilli showed the highest concentrations, while Hetrotis niloticus shows the lowest. The highest pesticide concentrations were observed in gills and liver tissues of all the species of fish study, while the lowest concentrations were observed in flesh. Based on the above results, it can therefore be concluded that the concentrations of pesticide in the four fish species study did exceed the permissible limits set by FAO and FEPA.Keywords: organochlorine, organophosphorus, pesticides, accumulation, fish, lake chad
Procedia PDF Downloads 7022 Elimination of Contaminants of Emerging Concerns by Peracetic Acid and Advanced Oxidation Process
Authors: Abdul Rahim Al Umairi, Mohamed Gamal El-Din
Abstract:
The removal of the selected contaminants of emerging concerns (CECs) presented under related environmental conditions by Peracetic Acid (PAA) and PAA-UV photolysis processes was examined in this study. A mixture of (CECs) (pesticides and pharmaceutical compounds) was prepared inclean water and treated with different doses of PAA (3.2, 6.4, and 9.6 mg/L) under different pH values (5.2, 7.2, and 9.2). The results revealed that the reactivity of the selected CECs with PAA was classified into three groups: Group 1 poorly reactive (removal <25%), Group2 moderately reactive (removal 25% to 50%), and Group 3 highly reactive (> 50%). Group1 includes atrazine (ATZ) and fluconazole (FCL), Group2 includes carbamazepine (CBZ), sulfamethoxazole (SMX), trimethoprim (TMP), mecoprop (MCPP), diazinon (DZN) and Group 3 includes perfluorooctanoic acid (PFOA) and clindamycin (CLN). The pH was found to affect the CECs' degradation differently, for Group 1 and Group 3, better removal was achieved in the acidand alkaline medium. In contrast, for Group 2 pH effects were not well pronounced. PAA-UV photolysis processes were explored to degrade the recalcitrant indicators compounds: ATZ (Group1) and SMX(Group2). PAA-UV process showed no improvement in the removal of ATZ. In contrast, PAA-UV removed SMX drastically with a pseudo decay rate constant of 0.014 cm2/mJ compared to 0.002 cm2/mJ by UV alone. The contribution of hydroxyl radical to the degradation process using the PAA-UV process was found to be negligible. This study illustratedPAA's capability on the degradation of the CECs presented in relative environmental conditions and unveiled the potential of using PAA-UV processes as advanced oxidation processes.Keywords: advanced oxidation process, contaminants of emerging concerns, peracetic acid, hydroxyl radical
Procedia PDF Downloads 1301 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method
Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik
Abstract:
The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.Keywords: contaminants, fish, pesticides residues, QuEChERS method
Procedia PDF Downloads 220