Search results for: produced%20water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3818

Search results for: produced%20water

98 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 52
97 Environmental Impacts Assessment of Power Generation via Biomass Gasification Systems: Life Cycle Analysis (LCA) Approach for Tars Release

Authors: Grâce Chidikofan, François Pinta, A. Benoist, G. Volle, J. Valette

Abstract:

Statement of the Problem: biomass gasification systems may be relevant for decentralized power generation from recoverable agricultural and wood residues available in rural areas. In recent years, many systems have been implemented in all over the world as especially in Cambodgia, India. Although they have many positive effects, these systems can also affect the environment and human health. Indeed, during the process of biomass gasification, black wastewater containing tars are produced and generally discharged in the local environment either into the rivers or on soil. However, in most environmental assessment studies of biomass gasification systems, the impact of these releases are underestimated, due to the difficulty of identification of their chemical substances. This work deal with the analysis of the environmental impacts of tars from wood gasification in terms of human toxicity cancer effect, human toxicity non-cancer effect, and freshwater ecotoxicity. Methodology: A Life Cycle Assessment (LCA) approach was adopted. The inventory of tars chemicals substances was based on experimental data from a downdraft gasification system. The composition of six samples from two batches of raw materials: one batch made of tree wood species (oak+ plane tree +pine) at 25 % moisture content and the second batch made of oak at 11% moisture content. The tests were carried out for different gasifier load rates, respectively in the range 50-75% and 50-100%. To choose the environmental impacts assessment method, we compared the methods available in SIMAPRO tool (8.2.0) which are taking into account most of the chemical substances. The environmental impacts for 1kg of tars discharged were characterized by ILCD 2011+ method (V.1.08). Findings Experimental results revealed 38 important chemical substances in varying proportion from one test to another. Only 30 are characterized by ILCD 2011+ method, which is one of the best performing methods. The results show that wood species or moisture content have no significant impact on human toxicity noncancer effect (HTNCE) and freshwater ecotoxicity (FWE) for water release. For human toxicity cancer effect (HTCE), a small gap is observed between impact factors of the two batches, either 3.08E-7 CTUh/kg against 6.58E-7 CTUh/kg. On the other hand, it was found that the risk of negative effects is higher in case of tar release into water than on soil for all impact categories. Indeed, considering the set of samples, the average impact factor obtained for HTNCE varies respectively from 1.64 E-7 to 1.60E-8 CTUh/kg. For HTCE, the impact factor varies between 4.83E-07 CTUh/kg and 2.43E-08 CTUh/kg. The variability of those impact factors is relatively low for these two impact categories. Concerning FWE, the variability of impact factor is very high. It is 1.3E+03 CTUe/kg for tars release into water against 2.01E+01 CTUe/kg for tars release on soil. Statement concluding: The results of this study show that the environmental impacts of tars emission of biomass gasification systems can be consequent and it is important to investigate the ways to reduce them. For environmental research, these results represent an important step of a global environmental assessment of the studied systems. It could be used to better manage the wastewater containing tars to reduce as possible the impacts of numerous still running systems all over the world.

Keywords: biomass gasification, life cycle analysis, LCA, environmental impact, tars

Procedia PDF Downloads 253
96 Fungal Cellulase/Xylanase Complex and Their Industrial Applications

Authors: L. Kutateldze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, I. Khokhashvili, T. Sadunishvili

Abstract:

Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application.

Keywords: cellulase/xylanase, cellulose hydrolysis, microscopic fungi, thermophilic strain

Procedia PDF Downloads 262
95 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 39
94 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles

Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica

Abstract:

Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.

Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation

Procedia PDF Downloads 269
93 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks

Authors: Nicholas Aerne, John P. Parmigiani

Abstract:

There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.

Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply

Procedia PDF Downloads 178
92 Assessment of Ecosystem Readiness for Adoption of Circularity: A Multi-Case Study Analysis of Textile Supply Chain in Pakistan

Authors: Azhar Naila, Steuer Benjamin

Abstract:

Over-exploitation of resources and the burden on natural systems have provoked worldwide concerns about the potential resource as well as supply risks in the future. It has been estimated that the consumption of materials and resources will double by 2060, substantially mounting the amount of waste and emissions produced by individuals, organizations, and businesses, which necessitates sustainable technological innovations to address the problem. Therefore, there is a need to design products and services purposefully for material resource efficiency. This directs us toward the conceptualization and implementation of the ‘Circular Economy (CE),’ which has gained considerable attention among policymakers, researchers, and businesses in the past decade. A large amount of literature focuses on the concept of CE. However, contextual empirical research on the need to embrace CE in an emerging economy like Pakistan is still scarce, where the traditional economic model of take-make-dispose is quite common. Textile exports account for approximately 61% of Pakistan's total exports, and the industry provides employment for about 40% of the country's total industrial workforce. The industry provides job opportunities to above 10 million farmers, with cotton as the main crop of Pakistan. Consumers, companies, as well as the government have explored very limited CE potential in the country. This gap has motivated us to carry out the present study. The study is based on a mixed method approach, for which key informant interviews have been conducted to get insight into the present situation of the ecosystem readiness for the adoption of CE in 20 textile manufacturing industries. The subject study has been conducted on the following areas i) the level of understanding of the CE concept among key stakeholders in the textile manufacturing industry ii) Companies are pushing boundaries to invest in circularity-based initiatives, exploring the depths of risk-taking iii) the current national policy framework support the adoption of CE. Qualitative assessment has been undertaken using MAXQDA to analyze the data received after the key informant interviews. The data has been transcribed and coded for further analysis. The results show that most of the key stakeholders have a clear understanding of the concept, whereas few consider it to be only relevant to the end-of-life treatment of waste generated from the industry. Non-governmental organizations have been observed to be key players in creating awareness among the manufacturing industries. Maximum companies have shown their consent to invest in initiatives related to the adoption of CE. Whereas a few consider themselves far behind the race due to a lack of financial resources and support from responsible institutions. Mostly, the industries have an ambitious vision for integrating CE into the company’s policy but seem not to be ready to take any significant steps to nurture a culture for experimentation. However, the government is not playing any vital role in the transition towards CE; rather, they have been busy with the state’s uncertain political situation. Presently, Pakistan does not have any policy framework that supports the transition towards CE. Acknowledging the present landscape a well-informed CE transition is immediately required.

Keywords: circular economy, textile supply chain, textile manufacturing industries, resource efficiency, ecosystem readiness, multi-case study analysis

Procedia PDF Downloads 26
91 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh

Authors: Taif Rocky, Uttam Saha, Mahobul Islam

Abstract:

With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.

Keywords: kitchen waste, secondary town, biogas, segregation

Procedia PDF Downloads 188
90 Municipalities as Enablers of Citizen-Led Urban Initiatives: Possibilities and Constraints

Authors: Rosa Nadine Danenberg

Abstract:

In recent years, bottom-up urban development has started growing as an alternative to conventional top-down planning. In large proportions, citizens and communities initiate small-scale interventions; suddenly seeming to form a trend. As a result, more and more cities are witnessing not only the growth of but also an interest in these initiatives, as they bear the potential to reshape urban spaces. Such alternative city-making efforts cause new dynamics in urban governance, with inevitable consequences for the controlled city planning and its administration. The emergence of enabling relationships between top-down and bottom-up actors signals an increasingly common urban practice. Various case studies show that an enabling relationship is possible, yet, how it can be optimally realized stays rather underexamined. Therefore, the seemingly growing worldwide phenomenon of ‘municipal bottom-up urban development’ necessitates an adequate governance structure. As such, the aim of this research is to contribute knowledge to how municipalities can enable citizen-led urban initiatives from a governance innovation perspective. Empirical case-study research in Stockholm and Istanbul, derived from interviews with founders of four citizen-led urban initiatives and one municipal representative in each city, provided valuable insights to possibilities and constraints for enabling practices. On the one hand, diverging outcomes emphasize the extreme oppositional features of both cases (Stockholm and Istanbul). Firstly, both cities’ characteristics are drastically different. Secondly, the ideologies and motifs for the initiatives to emerge vary widely. Thirdly, the major constraints for citizen-led urban initiatives to relate to the municipality are considerably different. Two types of municipality’s organizational structures produce different underlying mechanisms which demonstrate the constraints. The first municipal organizational structure is steered by bureaucracy (Stockholm). It produces an administrative division that brings up constraints such as the lack of responsibility, transparency and continuity by municipal representatives. The second structure is dominated by municipal politics and governmental hierarchy (Istanbul). It produces informality, lack of transparency and a fragmented civil society. In order to cope with the constraints produced by both types of organizational structures, the initiatives have adjusted their organization to the municipality’s underlying structures. On the other hand, this paper has in fact also come to a rather unifying conclusion. Interestingly, the suggested possibilities for an enabling relationship underline converging new urban governance arrangements. This could imply that for the two varying types of municipality’s organizational structures there is an accurate governance structure. Namely, the combination of a neighborhood council with a municipal guide, with allowance for the initiatives to adopt a politicizing attitude is found as coinciding. Especially its combination appears key to redeem varying constraints. A municipal guide steers the initiatives through bureaucratic struggles, is supported by coproduction methods, while it balances out municipal politics. Next, a neighborhood council, that is politically neutral and run by local citizens, can function as an umbrella for citizen-led urban initiatives. What is crucial is that it should cater for a more entangled relationship between municipalities and initiatives with enhanced involvement of the initiatives in decision-making processes and limited involvement of prevailing constraints pointed out in this research.

Keywords: bottom-up urban development, governance innovation, Istanbul, Stockholm

Procedia PDF Downloads 193
89 Spinetoram10% WG+Sulfoxaflor 30% WG: A Promising Green Chemistry to Manage Pest Complex in Bt Cotton

Authors: Siddharudha B. Patil

Abstract:

Cotton is a premier commercial fibre crop of India subjected to ravages of insect pests. Sucking pests viz thrips, Thrips tabaci,(lind) leaf hopper Amrsca devastance,(dist) miridbug, Poppiocapsidea beseratense (Dist) and bollworms continue to inflict damage Bt Cotton right from seeding stage. Their infestation impact cotton yield to an extent of 30-40 percent. Chemical control is still adoptable as one of the techniques for combating these pests. Presently, growers have many challenges in selecting effective chemicals which fit in with an integrated pest management. Spinetoram has broad spectrum with excellent insecticidal activity against both sucking pests and bollworms. Hence, it is expected to make a great contribution to stable production and quality improvement of agricultural products. Spinetoram is a derivative of biologically active substances (Spinosyns) produced by soil actinomycetes, Saccharopolypara spinosa which is semi synthetic active ingredient representing Spinosyn chemical class of insecticide and has demonstrated higher level of efficacy with reduced risk on beneficial arthropods. The efforts were made in the present study to test the efficacy of Spinetoram against sucking pests and bollworms in comparison with other insecticides in Bt Cotton under field condition. Field experiment was laid out during 2013-14 and 2014-15 at Agricultural Research station Dharwad (Karnataka-India) in a randomized block design comprising eight treatments and three replications. Bt cotton genotype, Bunny BG-II was sown in a plot size of 5.4 m x5.4 m. Recommend agronomical practices were followed. The Spinetoram 12% SC alone and incombination with sulfaxaflore with varied dosages against pest complex was tested. Performance was compared with Spinosad 45% SC and thiamethoxam 25% WG. The results of consecutive seasons revealed that nonsignificant difference in thrips and leafhopper population and varied significantly after 3 days of imposition. Among the treatments, combiproduct, Spinetoram 10%WG + Sulfoxaflor 30% WG@ 140 gai/ha registered lowest population of thrips (3.91/3 leaves) and leaf hoppers (1.08/3 leaves) followed by its lower dosages viz 120 gai/ha (4.86/3 leaves and 1.14/3 leaves of thrips and leaf hoppers, respectively) and 100 gai/ha (6.02 and 1.23./3 leaves of thrips and leaf hoppers respectively) being at par, significantly superior to rest of the treatments. On the contrary, the population of thrips, leaf hopper and miridbugs in untreated control was on higher side. Similarly the higher dosage of Spinetoram 10% WG+ Sulfoxaflor 30% WG (140 gai/ha) proved its bioefficacy by registering lowest miridbug incidence of 1.70/25 squares, followed by its lower dosage (1.78 and 1.83/25 squares respectively) Further observation made on bollworms incidence revealed that the higher dosage of Spinetoram 10% WG+Sulfoxaflor 30% WG (140 gai/ha) registered lowest percentage of boll damage (7.22%), more number of good opened bolls (36.89/plant) and higher seed cotton yield (19.45q/ha) followed by rest of its lower dosages, Spinetoram 12% SC alone and Spinosad 45% SC being at par significantly superior to rest of the treatments. However, significantly higher boll damage (15.13%) and lower seed cotton yield (14.45 q/ha) was registered in untreated control. Thus Spinetoram10% WG+Sulfoxaflor 30% WG can be a promising option for pest management in Bt Cotton.

Keywords: Spinetoram10% WG+Sulfoxaflor 30% WG, sucking pests, bollworms, Bt cotton, management

Procedia PDF Downloads 212
88 International Coffee Trade in Solidarity with the Zapatista Rebellion: Anthropological Perspectives on Commercial Ethics within Political Antagonistic Movements

Authors: Miria Gambardella

Abstract:

The influence of solidarity demonstrations towards the Zapatista National Liberation Army has been constantly present over the years, both locally and internationally, guaranteeing visibility to the cause, shaping the movement’s choices, and influencing its hopes of impact worldwide. Most of the coffee produced by the autonomous cooperatives from Chiapas is exported, therefore making coffee trade the main income from international solidarity networks. The question arises about the implications of the relations established between the communities in resistance in Southeastern Mexico and international solidarity movements, specifically on the strategies adopted to conciliate army's demands for autonomy and economic asymmetries between Zapatista cooperatives producing coffee and European collectives who hold purchasing power. In order to deepen the inquiry on those topics, a year-long multi-site investigation was carried out. The first six months of fieldwork were based in Barcelona, where Zapatista coffee was first traded in Spain and where one of the historical and most important European solidarity groups can be found. The last six months of fieldwork were carried out directly in Chiapas, in contact with coffee producers, Zapatista political authorities, international activists as well as vendors, and the rest of the network implicated in coffee production, roasting, and sale. The investigation was based on qualitative research methods, including participatory observation, focus groups, and semi-structured interviews. The analysis did not only focus on retracing the steps of the market chain as if it could be considered a linear and unilateral process, but it rather aimed at exploring actors’ reciprocal perceptions, roles, and dynamics of power. Demonstrations of solidarity and the money circulation they imply aim at changing the system in place and building alternatives, among other things, on the economic level. This work analyzes the formulation of discourse and the organization of solidarity activities that aim at building opportunities for action within a highly politicized economic sphere to which access must be regularly legitimized. The meaning conveyed by coffee is constructed on a symbolic level by the attribution of moral criteria to transactions. The latter participate in the construction of imaginaries that circulate through solidarity movements with the Zapatista rebellion. Commercial exchanges linked to solidarity networks turned out to represent much more than monetary transactions. The social, cultural, and political spheres are invested by ethics, which penetrates all aspects of militant action. It is at this level that the boundaries of different collective actors connect, contaminating each other: merely following the money flow would have been limiting in order to account for a reality within which imaginary is one of the main currencies. The notions of “trust”, “dignity” and “reciprocity” are repeatedly mobilized to negotiate discontinuous and multidirectional flows in the attempt to balance and justify commercial relations in a politicized context that characterizes its own identity through demonizing “market economy” and its dehumanizing powers.

Keywords: coffee trade, economic anthropology, international cooperation, Zapatista National Liberation Army

Procedia PDF Downloads 56
87 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 41
86 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules

Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel

Abstract:

The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.

Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling

Procedia PDF Downloads 103
85 Application of 3D Apparel CAD for Costume Reproduction

Authors: Zi Y. Kang, Tracy D. Cassidy, Tom Cassidy

Abstract:

3D apparel CAD is one of the remarkable products in advanced technology which enables intuitive design, visualisation and evaluation of garments through stereoscopic drape simulation. The progressive improvements of 3D apparel CAD have led to the creation of more realistic clothing simulation which is used not only in design development but also in presentation, promotion and communication for fashion as well as other industries such as film, game and social network services. As a result, 3D clothing technology is becoming more ubiquitous in human culture and lives today. This study considers that such phenomenon implies that the technology has reached maturity and it is time to inspect the status of current technology and to explore its potential uses in ways to create cultural values to further move forward. For this reason, this study aims to generate virtual costumes as culturally significant objects using 3D apparel CAD and to assess its capability, applicability and attitudes of the audience towards clothing simulation through comparison with physical counterparts. Since the access to costume collection is often limited due to the conservative issues, the technology may make valuable contribution by democratization of culture and knowledge for museums and its audience. This study is expected to provide foundation knowledge for development of clothing technology and for expanding its boundary of practical uses. To prevent any potential damage, two replicas of the costumes in the 1860s and 1920s at the Museum of London were chosen as samples. Their structural, visual and physical characteristics were measured and collected using patterns, scanned images of fabrics and objective fabric measurements with scale, KES-F (Kawabata Evaluation System of Fabrics) and Titan. Commercial software, DC Suite 5.0 was utilised to create virtual costumes applying collected data and the following outcomes were produced for the evaluation: Images of virtual costumes and video clips showing static and dynamic simulation. Focus groups were arranged with fashion design students and the public for evaluation which exposed the outcomes together with physical samples, fabrics swatches and photographs. The similarities, application and acceptance of virtual costumes were estimated through discussion and a questionnaire. The findings show that the technology has the capability to produce realistic or plausible simulation but expression of some factors such as details and capability of light material requires improvements. While the use of virtual costumes was viewed as more interesting and futuristic replacements to physical objects by the public group, the fashion student group noted more differences in detail and preferred physical garments highlighting the absence of tangibility. However, the advantages and potential of virtual costumes as effective and useful visual references for educational and exhibitory purposes were underlined by both groups. Although 3D apparel CAD has sufficient capacity to assist garment design process, it has limits in identical replication and more study on accurate reproduction of details and drape is needed for its technical improvements. Nevertheless, the virtual costumes in this study demonstrated the possibility of the technology to contribute to cultural and knowledgeable value creation through its applicability and as an interesting way to offer 3D visual information.

Keywords: digital clothing technology, garment simulation, 3D Apparel CAD, virtual costume

Procedia PDF Downloads 186
84 Oil and Proteins of Sardine (Sardina Pilchardus) Compared with Casein or Mixture of Vegetable Oils Improves Dyslipidemia and Reduces Inflammation and Oxidative Stress in Hypercholesterolemic and Obese Rats

Authors: Khelladi Hadj Mostefa, Krouf Djamil, Taleb-Dida Nawel

Abstract:

Background: Obesity results from a prolonged imbalance between energy intake and energy expenditure, as depending on basal metabolic rate. Oils and proteins from sea have important therapeutic (such as obesity and hypercholesterolemia) and antioxidant effects. Sardine are a widely consumed fish in the Mediterranean region. Its consumption provides humans with various nutrients such as oils (rich in omega 3 plyunsaturated fatty acids)) and proteins. Methods: Sardine oil (SO) and sardine proteins (SP) were extracted and purified. Mixture of vegetable oils (olive-walnut-sunflower) were prepared from oils produced in Algeria. Eighteen wistar rats are fed a high fat diet enriched with 1% cholesterol for 30 days to induce obesity and hypercholesterolemia. The rats are divided into 3 groups. The first group consumes 20% sardine protein combined with 5% sardine oil (38% SFA (saturated fatty acids), 31% MIFA (monounsaturated fatty acids) and 31% PIFA (polyunsaturated fatty acids)) (SPso). The second group consumes 20% sardine protein combined with 5% of a mixture of vegetable oils (VO) containing 13% SFA, 58% MIFA and 29% PIFA (PSvo), and the third group consuming 20% casein combined with 5% of the mixture of vegetable oils and serves as a semi-synthetic reference (CASvo). Body weights and glycaemia are measured weekly After 28 days of experimentation, the rats are sacrificed, the blood and the liver removed. Serum assays of total cholesterol (TC) and triglycerides (TG) were performed by enzymatic colorimetric methods. Evaluation of lipid peroxidation was performed by assaying thiobarbituric acid reactive species (TBARS) and hydroperoxides values. The protein oxidation was performed by assaying carbonyl derivatives values. Finally, evaluation of antioxidant defense is made by measuring the activity of antioxidant enzymes, the superoxide dismutase (SOD) and the catalase (CAT).Results: After 28 days, the body weight (BW) of the rats increased significantly in SPso and SPvo groups compared to CAS group, by +11% and 7%, respectively. Cholesterolemia (TC) increased significantly in the SPso and SPvo groups compared to the CAS group (P<0.01), while triglyceridemia (TG) decreased significantly in the SPso group compared to SPvo and CAS groups (P<0.01). Albumin (marker of inflammation) increased in the PSs group compared to SPvo and CAS groups by +35% and +13%, respectively. The serum TBARS levels are -40% lower in SPso group compared to SPvo group, and they are -80% and -76% lower in SPso compared to SPvo and CAS groups, respectively. The level of carbonyls derivatives in the serum and liver are significantly reduced in the SPso group compared to the SPvo and CAS groups. Superoxide dismutase (SOD) activity decreased in liver of SPso group compared to SPvo group (P<0.01). While that of CAT is increased in liver tissue of SPso group compared to SPvo group (P<0.01). Conclusion: Sardine oil combined with sardine protein has a hypotriglyceridemic effect, reduces body weight, attenuates inflammation and seems to protect against lipid peroxidation and protein oxidation and increases antioxidant defense in hypercholesterolemic and obese rats. This could be in favor of a protective effect against obesity and cardiovascular diseases.

Keywords: rat, obesity, hypercholesterolemia, sardine protein, sardine oil, vegetable oils mixture, lipid peroxidation, protein oxidation, antioxidant defense

Procedia PDF Downloads 39
83 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 163
82 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 213
81 Sandstone-Hosted Copper Mineralization in Oligo-Miocene-Red-Bed Strata, Chalpo North East of Iran: Constraints from Lithostratigraphy, Lithogeochemistry, Mineralogy, Mass Change Technique, and Ree Distribution

Authors: Mostafa Feiz, Hossein Hadizadeh, Mohammad Safari

Abstract:

The Chalpo copper area is located in northeastern Iran, which is part of the structural zone of central Iran and the back-arc basin of Sabzevar. This sedimentary basin accumulated in destructive-Oligomiocene sediments is named the Nasr-Chalpo-Sangerd (NCS) basin. The sedimentary layers in this basin originated mainly from Upper Cretaceous ophiolitic rocks and intermediate to mafic-post ophiolitic volcanic rocks, deposited as a nonconformity. The mineralized sandstone layers in the Chalpo area include leached zones (with a thickness of 5 to 8 meters) and mineralized lenses with a thickness of 0.5 to 0.7 meters. Ore minerals include primary sulfide minerals, such as chalcocite, chalcopyrite, and pyrite, as well as secondary minerals, such as covellite, digenite, malachite, and azurite, formed in three stages that comprise primary, simultaneously, and supergene stage. The best agents that control the mineralization in this area include the permeability of host rocks, the presence of fault zones as the conduits for copper oxide solutions, and significant amounts of plant fossils, which create a reducing environment for the deposition of mineralized layers. Statistical studies on copper layers indicate that Ag, Cd, Mo, and S have the maximum positive correlation with Cu, whereas TiO₂, Fe₂O₃, Al₂O₃, Sc, Tm, Sn, and the REEs have a negative correlation. The calculations of mass changes on copper-bearing layers and primary sandstone layers indicate that Pb, As, Cd, Te, and Mo are enriched in the mineralized zones, whereas SiO₂, TiO₂, Fe₂O₃, V, Sr, and Ba are depleted. The combination of geological, stratigraphic, and geochemical studies suggests that the origin of copper may have been the underlying red strata that contained hornblende, plagioclase, biotite, alkaline feldspar, and labile minerals. Dehydration and hydrolysis of these minerals during the diagenetic process caused the leaching of copper and associated elements by circling fluids, which formed an oxidant-hydrothermal solution. Copper and silver in this oxidant solution might have moved upwards through the basin-fault zones and deposited in the reducing environments in the sandstone layers that have had abundant organic matters. Copper in these solutions probably was carried by chloride complexes. The collision of oxidant and reduced solutions caused the deposition of Cu and Ag, whereas some stable elements in oxidant environments (e.g., Fe₂O₃, TiO₂, SiO₂, REEs) become unstable in the reduced condition. Therefore, the copper-bearing sandstones in the study area are depleted from these elements resulting from the leaching process. The results indicate that during the mineralization stage, LREEs and MREEs were depleted, but Cu, Ag, and S were enriched. Based on field evidence, it seems that the circulation of connate fluids in the reb-bed strata, produced by diagenetic processes, encountered to reduced facies, which formed earlier by abundant fossil-plant debris in the sandstones, is the best model for precipitating sulfide-copper minerals.

Keywords: Chalpo, oligo-miocene red beds, sandstone-hosted copper mineralization, mass change, LREEs, MREEs

Procedia PDF Downloads 38
80 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage

Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti

Abstract:

Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.

Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage

Procedia PDF Downloads 130
79 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos

Authors: Thilini M. Yatanwala

Abstract:

CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.

Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection

Procedia PDF Downloads 153
78 Chemical, Biochemical and Sensory Evaluation of a Quadrimix Complementary Food Developed from Sorghum, Groundnut, Crayfish and Pawpaw Blends

Authors: Ogechi Nzeagwu, Assumpta Osuagwu, Charlse Nkwoala

Abstract:

Malnutrition in infants due to poverty, poor feeding practices, and high cost of commercial complementary foods among others is a concern in developing countries. The study evaluated the proximate, vitamin and mineral compositions, antinutrients and functional properties, biochemical, haematological and sensory evaluation of complementary food made from sorghum, groundnut, crayfish and paw-paw flour blends using standard procedures. The blends were formulated on protein requirement of infants (18 g/day) using Nutrisurvey linear programming software in ratio of sorghum(S), groundnut(G), crayfish(C) and pawpaw(P) flours as 50:25:10:15(SGCP1), 60:20:10:10 (SGCP2), 60:15:15:10 (SGCP3) and 60:10:20:10 (SGCP4). Plain-pap (fermented maize flour)(TCF) and cerelac (commercial complementary food) served as basal and control diets. Thirty weanling male albino rats aged 28-35 days weighing 33-60 g were purchased and used for the study. The rats after acclimatization were fed with gruel produced with the experimental diets and the control with water ad libitum daily for 35days. Effect of the blends on lipid profile, blood glucose, haematological (RBC, HB, PCV, MCV), liver and kidney function and weight gain of the rats were assessed. Acceptability of the gruel was conducted at the end of rat feeding on forty mothers of infants’ ≥ 6 months who gave their informed consent to participate using a 9 point hedonic scale. Data was analyzed for means and standard deviation, analysis of variance and means were separated using Duncan multiple range test and significance judged at 0.05, all using SPSS version 22.0. The results indicated that crude protein, fibre, ash and carbohydrate of the formulated diets were either comparable or higher than values in cerelac. The formulated diets (SGCP1- SGCP4) were significantly (P>0.05) higher in vitamin A and thiamin compared to cerelac. The iron content of the formulated diets SGCP1- SGCP4 (4.23-6.36 mg/100) were within the recommended iron intake of infants (0.55 mg/day). Phytate (1.56-2.55 mg/100g) and oxalate (0.23-0.35 mg/100g) contents of the formulated diets were within the permissible limits of 0-5%. In functional properties, bulk density, swelling index, % dispersibility and water absorption capacity significantly (P<0.05) increased and compared favourably with cerelac. The essential amino acids of the formulated blends were within the amino acid profile of the FAO/WHO/UNU reference protein for children 0.5 -2 years of age. Urea concentration of rats fed with SGCP1-SGCP4 (19.48 mmol/L),(23.76 mmol/L),(24.07 mmol/L),(23.65 mmol/L) respectively was significantly higher than that of rat fed cerelac (16.98 mmol/L); however, plain pap had the least value (9.15 mmol/L). Rats fed with SGCP1-SGCP4 (116 mg/dl), (119 mg/dl), (115 mg/dl), (117 mg/dl) respectively had significantly higher glucose levels those fed with cerelac (108 mg/dl). Liver function parameters (AST, ALP and ALT), lipid profile (triglyceride, HDL, LDL, VLDL) and hematological parameters of rats fed with formulated diets were within normal range. Rats fed SGCP1 gained more weight (90.45 g) than other rats fed with SGCP2-SGCP4 (71.65 g, 79.76 g, 75.68 g), TCF (20.13 g) and cerelac (59.06 g). In all the sensory attributes, the control was preferred with respect to the formulated diets. The formulated diets were generally adequate and may likely have potentials to meet nutrient requirements of infants as complementary food.

Keywords: biochemical, chemical evaluation, complementary food, quadrimix

Procedia PDF Downloads 134
77 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete

Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo

Abstract:

Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.

Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways

Procedia PDF Downloads 214
76 Impact of School Environment on Socio-Affective Development: A Quasi-Experimental Longitudinal Study of Urban and Suburban Gifted and Talented Programs

Authors: Rebekah Granger Ellis, Richard B. Speaker, Pat Austin

Abstract:

This study used two psychological scales to examine the level of social and emotional intelligence and moral judgment of over 500 gifted and talented high school students in various academic and creative arts programs in a large metropolitan area in the southeastern United States. For decades, numerous models and programs purporting to encourage socio-affective characteristics of adolescent development have been explored in curriculum theory and design. Socio-affective merges social, emotional, and moral domains. It encompasses interpersonal relations and social behaviors; development and regulation of emotions; personal and gender identity construction; empathy development; moral development, thinking, and judgment. Examining development in these socio-affective domains can provide insight into why some gifted and talented adolescents are not successful in adulthood despite advanced IQ scores. Particularly whether nonintellectual characteristics of gifted and talented individuals, such as emotional, social and moral capabilities, are as advanced as their intellectual abilities and how these are related to each other. Unique characteristics distinguish gifted and talented individuals; these may appear as strengths, but there is the potential for problems to accompany them. Although many thrive in their school environments, some gifted students struggle rather than flourish. In the socio-affective domain, these adolescents face special intrapersonal, interpersonal, and environmental problems. Gifted individuals’ cognitive, psychological, and emotional development occurs asynchronously, in multidimensional layers at different rates and unevenly across ability levels. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of gifted and talented adolescents. This quasi-experimental longitudinal study examined students in several gifted and talented education programs (creative arts school, urban charter schools, and suburban public schools) for (1) socio-affective development level and (2) whether a particular gifted and talented program encourages developmental growth. The following research questions guided the study: (1) How do academically and artistically talented gifted 10th and 11th grade students perform on psychometric scales of social and emotional intelligence and moral judgment? Do they differ from their age or grade normative sample? Are their gender differences among gifted students? (2) Does school environment impact 10th and 11th grade gifted and talented students’ socio-affective development? Do gifted adolescents who participate in a particular school gifted program differ in their developmental profiles of social and emotional intelligence and moral judgment? Students’ performances on psychometric instruments were compared over time and by type of program. Participants took pre-, mid-, and post-tests over the course of an academic school year with Defining Issues Test (DIT-2) assessing moral judgment and BarOn EQ-I: YV assessing social and emotional intelligence. Based on these assessments, quantitative differences in growth on psychological scales (individual and school) were examined. Change scores between schools were also compared. If a school showed change, artifacts (culture, curricula, instructional methodology) provided insight as to environmental qualities that produced this difference.

Keywords: gifted and talented education, moral development, socio-affective development, socio-affective education

Procedia PDF Downloads 142
75 Microplastics in Fish from Grenada, West Indies: Problems and Opportunities

Authors: Michelle E. Taylor, Clare E. Morrall

Abstract:

Microplastics are small particles produced for industrial purposes or formed by breakdown of anthropogenic debris. Caribbean nations import large quantities of plastic products. The Caribbean region is vulnerable to natural disasters and Climate Change is predicted to bring multiple additional challenges to island nations. Microplastics have been found in an array of marine environments and in a diversity of marine species. Occurrence of microplastic in the intestinal tracts of marine fish is a concern to human and ecosystem health as pollutants and pathogens can associate with plastics. Studies have shown that the incidence of microplastics in marine fish varies with species and location. Prevalence of microplastics (≤ 5 mm) in fish species from Grenadian waters (representing pelagic, semi-pelagic and demersal lifestyles) harvested for human consumption have been investigated via gut analysis. Harvested tissue was digested in 10% KOH and particles retained on a 0.177 mm sieve were examined. Microplastics identified have been classified according to type, colour and size. Over 97% of fish examined thus far (n=34) contained microplastics. Current and future work includes examining the invasive Lionfish (Pterois spp.) for microplastics, investigating marine invertebrate species as well as examining environmental sources of microplastics (i.e. rivers, coastal waters and sand). Owing to concerns of pollutant accumulation on microplastics and potential migration into organismal tissues, we plan to analyse fish tissue for mercury and other persistent pollutants. Despite having ~110,000 inhabitants, the island nation of Grenada imported approximately 33 million plastic bottles in 2013, of which it is estimated less than 5% were recycled. Over 30% of the imported bottles were ‘unmanaged’, and as such are potential litter/marine debris. A revised Litter Abatement Act passed into law in Grenada in 2015, but little enforcement of the law is evident to date. A local Non-governmental organization (NGO) ‘The Grenada Green Group’ (G3) is focused on reducing litter in Grenada through lobbying government to implement the revised act and running sessions in schools, community groups and on local media and social media to raise awareness of the problems associated with plastics. A local private company has indicated willingness to support an Anti-Litter Campaign in 2018 and local awareness of the need for a reduction of single use plastic use and litter seems to be high. The Government of Grenada have called for a Sustainable Waste Management Strategy and a ban on both Styrofoam and plastic grocery bags are among recommendations recently submitted. A Styrofoam ban will be in place at the St. George’s University campus from January 1st, 2018 and many local businesses have already voluntarily moved away from Styrofoam. Our findings underscore the importance of continuing investigations into microplastics in marine life; this will contribute to understanding the associated health risks. Furthermore, our findings support action to mitigate the volume of plastics entering the world’s oceans. We hope that Grenada’s future will involve a lot less plastic. This research was supported by the Caribbean Node of the Global Partnership on Marine Litter.

Keywords: Caribbean, microplastics, pollution, small island developing nation

Procedia PDF Downloads 184
74 Pre-conditioning and Hot Water Sanitization of Reverse Osmosis Membrane for Medical Water Production

Authors: Supriyo Das, Elbir Jove, Ajay Singh, Sophie Corbet, Noel Carr, Martin Deetz

Abstract:

Water is a critical commodity in the healthcare and medical field. The utility of medical-grade water spans from washing surgical equipment, drug preparation to the key element of life-saving therapy such as hydrotherapy and hemodialysis for patients. A properly treated medical water reduces the bioburden load and mitigates the risk of infection, ensuring patient safety. However, any compromised condition during the production of medical-grade water can create a favorable environment for microbial growth putting patient safety at high risk. Therefore, proper upstream treatment of the medical water is essential before its application in healthcare, pharma and medical space. Reverse Osmosis (RO) is one of the most preferred treatments within healthcare industries and is recommended by all International Pharmacopeias to achieve the quality level demanded by global regulatory bodies. The RO process can remove up to 99.5% of constituents from feed water sources, eliminating bacteria, proteins and particles sizes of 100 Dalton and above. The combination of RO with other downstream water treatment technologies such as Electrodeionization and Ultrafiltration meet the quality requirements of various pharmacopeia monographs to produce highly purified water or water for injection for medical use. In the reverse osmosis process, the water from a liquid with a high concentration of dissolved solids is forced to flow through an especially engineered semi-permeable membrane to the low concentration side, resulting in high-quality grade water. However, these specially engineered RO membranes need to be sanitized either chemically or at high temperatures at regular intervals to keep the bio-burden at the minimum required level. In this paper, we talk about Dupont´s FilmTec Heat Sanitizable Reverse Osmosis membrane (HSRO) for the production of medical-grade water. An HSRO element must be pre-conditioned prior to initial use by exposure to hot water (80°C-85°C) for its stable performance and to meet the manufacturer’s specifications. Without pre-conditioning, the membrane will show variations in feed pressure operations and salt rejection. The paper will discuss the critical variables of pre-conditioning steps that can affect the overall performance of the HSRO membrane and demonstrate the data to support the need for pre-conditioning of HSRO elements. Our preliminary data suggests that there can be up to 35 % reduction in flow due to initial heat treatment, which also positively affects the increase in salt rejection. The paper will go into detail about the fundamental understanding of the performance change of HSRO after the pre-conditioning step and its effect on the quality of medical water produced. The paper will also discuss another critical point, “regular hot water sanitization” of these HSRO membranes. Regular hot water sanitization (at 80°C-85°C) is necessary to keep the membrane bioburden free; however, it can negatively impact the performance of the membrane over time. We will demonstrate several data points on hot water sanitization using FilmTec HSRO elements and challenge its robustness to produce quality medical water. The last part of this paper will discuss the construction details of the FilmTec HSRO membrane and features that make it suitable to pre-condition and sanitize at high temperatures.

Keywords: heat sanitizable reverse osmosis, HSRO, medical water, hemodialysis water, water for Injection, pre-conditioning, heat sanitization

Procedia PDF Downloads 184
73 Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

Authors: Steven W. Carruthers

Abstract:

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Keywords: effectiveness, equipercentile equating, IRT, learning games, linear equating, mean-sigma equating

Procedia PDF Downloads 172
72 Calpains; Insights Into the Pathogenesis of Heart Failure

Authors: Mohammadjavad Sotoudeheian

Abstract:

Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.

Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte

Procedia PDF Downloads 47
71 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh

Authors: Md. Nuru Miah, A. F. M. Akhter Uddin

Abstract:

Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.

Keywords: aloe vera, herbs and shrubs, market, interventions

Procedia PDF Downloads 61
70 Cell-free Bioconversion of n-Octane to n-Octanol via a Heterogeneous and Bio-Catalytic Approach

Authors: Shanna Swart, Caryn Fenner, Athanasios Kotsiopoulos, Susan Harrison

Abstract:

Linear alkanes are produced as by-products from the increasing use of gas-to-liquid fuel technologies for synthetic fuel production and offer great potential for value addition. Their current use as low-value fuels and solvents do not maximize this potential. Therefore, attention has been drawn towards direct activation of these aliphatic alkanes to more useful products such as alcohols, aldehydes, carboxylic acids and derivatives. Cytochrome P450 monooxygenases (P450s) can be used for activation of these aliphatic alkanes using whole-cells or cell-free systems. Some limitations of whole-cell systems include reduced mass transfer, stability and possible side reactions. Since the P450 systems are little studied as cell-free systems, they form the focus of this study. Challenges of a cell-free system include co-factor regeneration, substrate availability and enzyme stability. Enzyme immobilization offers a positive outlook on this dilemma, as it may enhance stability of the enzyme. In the present study, 2 different P450s (CYP153A6 and CYP102A1) as well as the relevant accessory enzymes required for electron transfer (ferredoxin and ferredoxin reductase) and co-factor regeneration (glucose dehydrogenase) have been expressed in E. coli and purified by metal affinity chromatography. Glucose dehydrogenase (GDH), was used as a model enzyme to assess the potential of various enzyme immobilization strategies including; surface attachment on MagReSyn® microspheres with various functionalities and on electrospun nanofibers, using self-assembly based methods forming Cross Linked Enzymes (CLE), Cross Linked Enzyme Aggregates (CLEAs) and spherezymes as well as in a sol gel. The nanofibers were synthesized by electrospinning, which required the building of an electrospinning machine. The nanofiber morphology has been analyzed by SEM and binding will be further verified by FT-IR. Covalent attachment based methods showed limitations where only ferredoxin reductase and GDH retained activity after immobilization which were largely attributed to insufficient electron transfer and inactivation caused by the crosslinkers (60% and 90% relative activity loss for the free enzyme when using 0.5% glutaraldehyde and glutaraldehyde/ethylenediamine (1:1 v/v), respectively). So far, initial experiments with GDH have shown the most potential when immobilized via their His-tag onto the surface of MagReSyn® microspheres functionalized with Ni-NTA. It was found that Crude GDH could be simultaneously purified and immobilized with sufficient activity retention. Immobilized pure and crude GDH could be recycled 9 and 10 times, respectively, with approximately 10% activity remaining. The immobilized GDH was also more stable than the free enzyme after storage for 14 days at 4˚C. This immobilization strategy will also be applied to the P450s and optimized with regards to enzyme loading and immobilization time, as well as characterized and compared with the free enzymes. It is anticipated that the proposed immobilization set-up will offer enhanced enzyme stability (as well as reusability and easy recovery), minimal mass transfer limitation, with continuous co-factor regeneration and minimal enzyme leaching. All of which provide a positive outlook on this robust multi-enzyme system for efficient activation of linear alkanes as well as the potential for immobilization of various multiple enzymes, including multimeric enzymes for different bio-catalytic applications beyond alkane activation.

Keywords: alkane activation, cytochrome P450 monooxygenase, enzyme catalysis, enzyme immobilization

Procedia PDF Downloads 201
69 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer

Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie

Abstract:

Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.

Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy

Procedia PDF Downloads 343