Search results for: pressure metered area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12133

Search results for: pressure metered area

11923 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller

Authors: Y. Galerkin, E. Popova, K. Soldatova

Abstract:

There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio π*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.

Keywords: supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock

Procedia PDF Downloads 441
11922 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions

Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang

Abstract:

Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.

Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity

Procedia PDF Downloads 113
11921 Principal Components Analysis of the Causes of High Blood Pressure at Komfo Anokye Teaching Hospital, Ghana

Authors: Joseph K. A. Johnson

Abstract:

Hypertension affects 20 percent of the people within the ages 55 upward in Ghana. Of these, almost one-third are unaware of their condition. Also at the age of 55, more men turned to have hypertension than women. After that age, the condition becomes more prevalent with women. Hypertension is significantly more common in African Americans of both sexes than the racial or ethnic groups. This study was conducted to determine the causes of high blood pressure in Ashanti Region, Ghana. The study employed One Hundred and Seventy (170) respondents. The sample population for the study was all the available respondents at the time of the data collection. The research was conducted using primary data where convenience sampling was used to locate the respondents. A set of questionnaire were used to gather the data for the study. The gathered data was analysed using principal component analysis. The study revealed that, personal description, lifestyle behavior and risk awareness as some of the causes of high blood pressure in Ashanti Region. The study therefore recommend that people must be advice to see to their personal characteristics that may contribute to high blood pressure such as controlling of their temper and how to react perfectly to stressful situations. They must be educated on the factors that may increase the level of their blood pressure such as the essence of seeing a medical doctor before taking in any drug. People must also be made known by the public health officers to those lifestyles behaviour such as smoking and drinking of alcohol which are major contributors of high blood pressure.

Keywords: high blood pressure, principal component analysis, hypertension, public health

Procedia PDF Downloads 461
11920 Coastal Erosion Control Alternatives with Geosynthetics: Study Case of Ponta Negra Beach, Natal, Brazil

Authors: M. A. Medeiros, A. A. N. Dantas, F. A. N. França, R. F. Amaral

Abstract:

There are several alternatives of coastal erosion control with geosynthetics. As an important stage of any Civil Engineering project, literature review is necessary in order to evaluate these alternatives and to guide the decisions. Ponta Negra beachfront has a very intensive urban pressure. In addition, a very short sand area induces high intensity erosion processes. Different attempts of solving the problem were already built. However, erosion issues are still an important concern since these structures collapsed. Geosynthetics present a great potential to be applied in this area. In order to study coastal erosion control alternatives with the use of geosynthetics, this paper presents a literature review about this subject. Several studies were collected in which beach conditions are similar to those found in Ponta Negra beach. It was possible to evaluate the alternatives that might be used in the area. Further studies include the application of such techniques in pilot areas and the evaluation of the erosion process. Finally, the best alternative for futures studies on Ponta Negra beach is geocontainers of geotextiles.

Keywords: geosynthetics, coastal erosion control, alternatives, Ponta Negra beach

Procedia PDF Downloads 127
11919 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 464
11918 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 93
11917 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition

Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.

Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation

Procedia PDF Downloads 293
11916 Soil Reinforcement by Fibers Using Triaxial Compression Test

Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima

Abstract:

In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.

Keywords: soil, monotonic, triaxial test, root fiber, undrained

Procedia PDF Downloads 386
11915 Land Suitability Approach as an Effort to Design a Sustainable Tourism Area in Pacet Mojokerto

Authors: Erina Wulansari, Bambang Soemardiono, Ispurwono Soemarno

Abstract:

Designing sustainable tourism area is defined as an attempt to design an area, that brings the natural environmental conditions as components are available with a wealth of social conditions and the conservation of natural and cultural heritage. To understanding tourism area in this study is not only focus on the location of the tourist object, but rather to a tourist attraction around the area, tourism objects such as the existence of residential area (settlement), a commercial area, public service area, and the natural environmental area. The principle of success in designing a sustainable tourism area is able to integrate and balance between the limited space and the variety of activities that’s always continuously to growth up. The limited space in this area of tourism needs to be managed properly to minimize the damage of environmental as a result of tourism activities hue. This research aims to identify space in this area of tourism through land suitability approach as an effort to create a sustainable design, especially in terms of ecological. This study will be used several analytical techniques to achieve the research objectives as superimposing analysis with GIS 9.3 software and Analysis Hierarchy Process. Expected outcomes are in the form of classification and criteria of usable space in designing embodiment tourism area. In addition, this study can provide input to the order of settlement patterns as part of the environment in the area of sustainable tourism.

Keywords: sustainable tourism area, land suitability, limited space, environment, criteria

Procedia PDF Downloads 468
11914 Response of Full-Scale Room Building Against Blast Loading

Authors: Eid Badshah, Amjad Naseer, Muhammad Ashraf

Abstract:

In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario.

Keywords: peak pressure, composition-B, TNT, pressure sensor, scaled distance, masonry

Procedia PDF Downloads 100
11913 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels

Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He

Abstract:

The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.

Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure

Procedia PDF Downloads 109
11912 Effect of Endurance Exercise Training on Blood Pressure in Elderly Female Patients with Hypertension

Authors: Elham Ahmadi

Abstract:

This study is conducted with the aim of investigating the effect of moderate physical activity (60% of maximal heart rate-MHR) on blood pressure in an elderly female with hypertension. Hypertension is considered a modifiable risk factor for cardiovascular disease through physical activity. The purpose and significance of this study were to investigate the role of exercise as an alternative therapy since some patients exhibit sensitivity/intolerance to some drugs. Initially, 65 hypertensive females (average age = 49.7 years) (systolic blood pressure, SBP >140 mmHg and/or diastolic blood pressure, DBP>85 mmHg) and 25 hypertensive females as a control group (average age = 50.3 years and systolic blood pressure, SBP >140 mmHg and/or diastolic blood pressure, DBP>85 mmHg) were selected. The subjects were divided based on their age, duration of disease, physical activity, and drug consumption. Then, blood pressure and heart rate (HR) were measured in all of the patients using a sphygmomanometer (pre-test). The exercise sessions consisted of warm-up, aerobic activity, and cooling down (total duration of 20 minutes for the first session up to 55 minutes in the last session). At the end of the 12th session (mid-test) and final session (24th session), blood pressure was measured for the last time (post-test). The control group was without any exercise during the study. The results were analyzed using a t-test. Our results indicated that moderate physical activity was effective in lowering blood pressure by 6.4/5.6–mm Hg for SBP and 2.4/4.3mm Hg for DBP in hypertensive patients, irrespective of age, duration of disease, and drug consumption ( P<.005). The control group indicates no changes in BP. Physical activity programs with moderate intensity (approximately at 60% MHR), three days per week, can be used not only as a preventive measure for diastolic hypertension (DBP>90 mmHg high blood pressure) but also as an alternative to drug therapy in the treatment of hypertension, as well.

Keywords: endurance exercise, elderly female, hypertension, physical activity

Procedia PDF Downloads 68
11911 Structural Analysis of Multi-Pressure Integrated Vessel for Sport-Multi-Artificial Environment System

Authors: Joon-Ho Lee, Jeong-Hwan Yoon, Jung-Hwan Yoon, Sangmo Kang, Su-Yeon Hong, Hyun-Woo Jeong, Jaeick Chae

Abstract:

There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sports multi-environment simultaneously. In this study, we design a multi-pressure (positive/atmospheric/negative pressure) integrated vessel that can be used for the sport-multi-artificial environment system. We presented additional vessel designs with enlarged space for the tall users; with reinforcement pads added to reduce the maximum stress in the joints of its shells, and then carried out numerical analysis for the structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell, and the entrance, the safety of the structure was checked with the allowable stress of its material.

Keywords: structural analysis, multi-pressure, integrated vessel, sport-multi-artificial environment

Procedia PDF Downloads 501
11910 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem

Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn

Abstract:

At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.

Keywords: CPTU, pore water pressure, pile rebound

Procedia PDF Downloads 292
11909 Scale-Up Study of Gas-Liquid Two Phase Flow in Downcomer

Authors: Jayanth Abishek Subramanian, Ramin Dabirian, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Downcomers are important conduits for multiphase flow transfer from offshore platforms to the seabed. Uncertainty in the predictions of the pressure drop of multiphase flow between platforms is often dominated by the uncertainty associated with the prediction of holdup and pressure drop in the downcomer. The objectives of this study are to conduct experimental and theoretical scale-up study of the downcomer. A 4-in. diameter vertical test section was designed and constructed to study two-phase flow in downcomer. The facility is equipped with baffles for flow area restriction, enabling interchangeable annular slot openings between 30% and 61.7%. Also, state-of-the-art instrumentation, the capacitance Wire-Mesh Sensor (WMS) was utilized to acquire the experimental data. A total of 76 experimental data points were acquired, including falling film under 30% and 61.7% annular slot opening for air-water and air-Conosol C200 oil cases as well as gas carry-under for 30% and 61.7% opening utilizing air-Conosol C200 oil. For all experiments, the parameters such as falling film thickness and velocity, entrained liquid holdup in the core, gas void fraction profiles at the cross-sectional area of the liquid column, the void fraction and the gas carry under were measured. The experimental results indicated that the film thickness and film velocity increase as the flow area reduces. Also, the increase in film velocity increases the gas entrainment process. Furthermore, the results confirmed that the increase of gas entrainment for the same liquid flow rate leads to an increase in the gas carry-under. A power comparison method was developed to enable evaluation of the Lopez (2011) model, which was created for full bore downcomer, with the novel scale-up experiment data acquired from the downcomer with the restricted area for flow. Comparison between the experimental data and the model predictions shows a maximum absolute average discrepancy of 22.9% and 21.8% for the falling film thickness and velocity, respectively; and a maximum absolute average discrepancy of 22.2% for fraction of gas carried with the liquid (oil).

Keywords: two phase flow, falling film, downcomer, wire-mesh sensor

Procedia PDF Downloads 141
11908 Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD

Authors: S. C. Gupta

Abstract:

The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out.

Keywords: wind flow, buildings, static pressure wind tunnel testing, CFD

Procedia PDF Downloads 474
11907 Appearance and Magnitude of Dynamic Pressure in Micro-Scale of Subsonic Airflow around Symmetric Objects

Authors: Shehret Tilvaldyev, Jorge Flores-Garay, Alfredo Villanueva, Erwin Martinez, Lazaro Rico

Abstract:

The efficiency of modern transportation is severely compromised by the prevalence of turbulent drag. The high level of turbulent skin-friction occurring, e.g., on the surface of an aircraft, automobiles or the carriage of a high-speed train, is responsible for excess fuel consumption and increased carbon emissions. The environmental, political, and economic pressure to improve fuel efficiency and reduce carbon emissions associated with transportation means that reducing turbulent skin-friction drag is a pressing engineering problem. The dynamic pressure of subsonic airflow around solid objects creates lift, but also induces drag force. This paper is presenting the results of laboratory experiments, investigating appearance and magnitude of dynamic pressure in micro scale of subsonic air flow around right cylinder and symmetrical airfoil.

Keywords: airflow, dynamic pressure, micro scale, symmetric object

Procedia PDF Downloads 355
11906 Numerical Investigation and Optimization of the Effect of Number of Blade and Blade Type on the Suction Pressure and Outlet Mass Flow Rate of a Centrifugal Fan

Authors: Ogan Karabas, Suleyman Yigit

Abstract:

Number of blade and blade type of centrifugal fans are the most decisive factor on the field of application, noise level, suction pressure and outlet mass flow rate. Nowadays, in order to determine these effects on centrifugal fans, numerical studies are carried out in addition to experimental studies. In this study, it is aimed to numerically investigate the changes of suction pressure and outlet mass flow rate values of a centrifugal fan according to the number of blade and blade type. Centrifugal fans of the same size with forward, backward and straight blade type were analyzed by using a simulation program and compared with each other. This analysis was carried out under steady state condition by selecting k-Ɛ turbulence model and air is assumed incompressible. Then, 16, 32 and 48 blade centrifugal fans were again analyzed by using same simulation program, and the optimum number of blades was determined for the suction pressure and the outlet mass flow rate. According to the results of the analysis, it was obtained that the suction pressure in the 32 blade fan was twice the value obtained in the 16 blade fan. In addition, the outlet mass flow rate increased by 45% with the increase in the number of blade from 16 to 32. There is no significant change observed on the suction pressure and outlet mass flow rate when the number of blades increased from 32 to 48. In the light of the analysis results, the optimum blade number was determined as 32.

Keywords: blade type, centrifugal fan, cfd, outlet mass flow rate, suction pressure

Procedia PDF Downloads 379
11905 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations

Authors: Ahmed El-Banbi, Ahmed El-Maraghi

Abstract:

PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.

Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure

Procedia PDF Downloads 41
11904 A Comparative Study of Localized Rainfall and Air Pollution between the Urban Area of Sungai Penchala with Sub-Urban and Green Area in Malaysia

Authors: Mohd N. Ahmad, Lariyah Mohd Sidek

Abstract:

The study had shown that Sungai Penchala (urban) was experiencing localized rainfall and hazardous air pollution due to urbanization. The high rainfall that partly added by localized rain had been seen as a threat of causing the flash floods and water quality deterioration in the area. The air pollution that consisted of mainly particulate matter (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) gave an alarming air pollution index (API) to the surrounding area. Comparison among urban area (Sungai Penchala), sub-urban (Gombak), and green areas (Jerantut plus Temerloh) with respect to the rainfall parameters and air pollutants, it was found that the degree of intensities of the parameters was positively related with the urbanization. The air pollutants especially NO2, SO2, and CO were in tandem with the increase of the rainfall. Specifically, if the water catchment area is physically near to the urban area, then the authorities need to look into related urban development program by considering the management of emitted pollutants with respect to the ecological setting of the urban area.

Keywords: urbanization, green area localized rainfall, air pollution, sub-urban area

Procedia PDF Downloads 496
11903 Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes

Authors: Zoubida Lounis, Naouel Boumesla, Abd El Kader Bengueddach

Abstract:

The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality.

Keywords: composite materials, syntheisis, catalysts, mesoporous materials, microporous materials

Procedia PDF Downloads 359
11902 Compact Settlement: The Direction of Chinese Future Urban Residential Area Sustainable Development

Authors: Yajing Jiang, Jing Wu

Abstract:

Residential area construction links many problems such as population resources, ecology, social values, public services and transportation in the city. After Chinese housing reform, a large number of residential area development accompanied by the loss of agricultural and ecological land. To explore the future of Chinese urban residential area, this article concentrates on how the 'Compact Settlement' behaves in improving the living environment and saving the resources. Through the research of residential area in Hangzhou, there are some determines that increasing the development intensity of the area can indeed bring some improvement in the overall environment. In conclusion, possible design alternatives are discussed for leading Chinese urban development towards a more sustainable path.

Keywords: compact city development, environmental sustainability, residential area, Hangzhou

Procedia PDF Downloads 279
11901 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks

Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova

Abstract:

CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.

Keywords: adsorption, CO₂, high pressure, porous materials

Procedia PDF Downloads 126
11900 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column

Procedia PDF Downloads 133
11899 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving

Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard

Abstract:

Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.

Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time

Procedia PDF Downloads 29
11898 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics

Authors: Varun K, Pramod B. Balareddy

Abstract:

Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.

Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient

Procedia PDF Downloads 228
11897 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels

Authors: S. Ansari Sadrabadi, G. H. Rahimi

Abstract:

In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.

Keywords: FGM, cylindrical pressure tubes, small deformation theory, yield onset, thermal loading

Procedia PDF Downloads 390
11896 Relationship between Left Ventricle Position and Hemodynamic Parameters during Cardiopulmonary Resuscitation in a Pig Model

Authors: Hyun Chang Kim, Yong Hun Jung, Kyung Woon Jeung

Abstract:

Background: From the viewpoint of cardiac pump theory, the area of the left ventricle (LV) subjected to compression increases as the LV lies closer to the sternum, possibly resulting in higher blood flow in patients with LV closer to the sternum. However, no study has evaluated LV position during cardiac arrest or its relationship with hemodynamic parameters during cardiopulmonary resuscitation (CPR). The objectives of this study were to determine whether the position of the LV relative to the anterior-posterior axis representing the direction of chest compression shifts during cardiac arrest and to examine the relationship between LV position and hemodynamic parameters during CPR. Methods: Subcostal view echocardiograms were obtained from 15 pigs with the transducer parallel to the long axis of the sternum before inducing ventricular fibrillation (VF) and during cardiac arrest. Computed tomography was performed in three pigs to objectively observe LV position during cardiac arrest. LV position parameters including the shortest distance between the anterior-posterior axis and the mid-point of the LV chamber (DAP-MidLV), the shortest distance between the anterior-posterior axis and the LV apex (DAP-Apex), and the area fraction of the LV located on the right side of the anterior-posterior axis (LVARight/LVATotal) were measured. Results: DAP-MidLV, DAP-Apex, and LVARight/LVATotal decreased progressively during untreated VF and basic life support (BLS), and then increased during advanced cardiovascular life support (ACLS). A repeated measures analysis of variance revealed significant time effects for these parameters. During BLS, the end-tidal carbon dioxide and systolic right atrial pressure were significantly correlated with the LV position parameters. During ACLS, systolic arterial pressure and systolic right atrial pressure were significantly correlated with DAP-MidLV and DAP-Apex. Conclusions: LV position changed significantly during cardiac arrest compared to the pre-arrest baseline. LV position during CPR had significant correlations with hemodynamic parameters.

Keywords: heart arrest, cardiopulmonary resuscitation, heart ventricle, hemodynamics

Procedia PDF Downloads 163
11895 A Preliminary Outcome of the Effect of an Accumulating 10,000 Daily Steps on Blood Pressure and Diabetes in Overweight Thai Participants

Authors: Kornanong Yuenyongchaiwat, Duangnate Pepatsitipong, Panthip Sangprasert

Abstract:

High blood pressure and diabetes have been suggested as being non-communicable disease (NCDs), and there is one of the components of the definition of metabolic syndrome. Therefore, the purpose of this study was to evaluate the effect of a 12-week pedometer based community walking intervention on change in resting blood pressure and blood glucose in participants with overweight in the community setting. Method: Participants were recruited both males and females who had a sedentary lifestyle aged 35-59 years (mean aged 49.67 years). A longitudinal quasi-experimental study was designed with 35 overweight participants who had body mass index ≥ 25 kg/m2. These volunteers were assigned to the 12-week pedometer-based walking program (an accumulated at least 10,000 steps a day). Blood pressure and blood glucose were measured initially before and after 12-week intervention. Results: Systolic blood pressure and heart rate were significantly lower in 30 individuals who had accumulated 10,000 steps d-1 in the intervention group at 12 week follow-up (-13.74 mmHg and 5.3 bpm, respectively). In addition, reduction in blood glucose (-14.89 mmol) in the intervention participants was statistically significant (p < .001). A regression analysis indicated that reductions in systolic blood pressure were significantly related to the increase in steps per day. Conclusion: The accumulation of least 10,000 steps d-1 resulted in decreased resting systolic blood pressure and blood glucose in overweight participants. This has also shown that an increase in physical activity in overweight participants with sedentary lifestyle by accumulating at least 10,000 steps a day can reduce the risk of cardiovascular disease (e.g., hypertension and diabetes).

Keywords: blood glucose, blood pressure, diabetes, hypertension, physical activity, walking

Procedia PDF Downloads 254
11894 Evaluation of Resting Systolic and Diastolic Blood Pressure of Staff of Multi-National Petroleum Company in Warri, Nigeria

Authors: Ekpon Oghenetega Philip, Tayire Okabare Favour, Boye Ejobowah Thomas

Abstract:

The study evaluated the resting systolic blood pressure (RSBP) and resting diastolic blood pressure (RDBP) of staff of a multi-national petroleum company in Nigeria with the aim of helping the staff maintain optimal health which is necessary to carry out their secular work. Eleven healthy male (age 36.9±10.48 years, mean±S.D) and 38 healthy female (39.99±12.23 years, mean±S.D) staff of the multi-national petroleum company performed an incremental exercise on a treadmill and cycle ergometers to determine RSBP and RDBP. An assessment of the health status of the staff of the company was carried out using a physical activity readiness questionnaire (PAR-Q) to determine their suitability for the program. Analysis of the t-test for male staff of RSBP shows that it was statistically significant with a calculated t value of 2.19, α = 0.05 and t-calculated for RSBP of female staff was 1.897, α = 0.05 showing a significance. While the t-calculated RSBP for male staff of the multi-national company is 0.44 with α =0.05 and the female RDBP is 4.129, α = 0.05 and they are all significant. It was recommended that staff of the company should regularly visit the company gym during their leisure hours to maintain optimum health.

Keywords: systolic blood pressure, diastolic blood pressure, exercise, pressure staff

Procedia PDF Downloads 254