Search results for: power management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14720

Search results for: power management

14570 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 110
14569 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid

Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine

Abstract:

New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.

Keywords: control strategy, drive cycle, hybrid vehicle, simulation

Procedia PDF Downloads 349
14568 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit

Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang

Abstract:

A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.

Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series

Procedia PDF Downloads 308
14567 Performance Analysis of Carbon Nanotube for VLSI Interconnects and Their Comparison with Copper Interconnects

Authors: Gagnesh Kumar, Prashant Gupta

Abstract:

This paper investigates the performance of the bundle of single wall carbon nanotubes (SWCNT) for low-power and high-speed interconnects for future VLSI applications. The power dissipation, delay and power delay product (PDP) of SWCNT bundle interconnects are examined and compared with that of the Cu interconnects at 22 nm technology node for both intermediate and global interconnects. The results show that SWCNT bundle consume less power and also faster than Cu for intermediate and global interconnects. It is concluded that the metallic SWCNT has been regarded as a viable candidate for intermediate and global interconnects in future technologies.

Keywords: carbon nanotube, SWCNT, low power, delay, power delay product, global and intermediate interconnects

Procedia PDF Downloads 292
14566 Water Saving in Electricity Generation System Considering Natural Gas Limitation

Authors: Mehdi Ganjkhani, Sobhan Badakhshan, Seyedvahid Hosseini

Abstract:

Power plants exploit striking proportion of underground water consumption. Correspondingly, natural gas-fired power plants need less water than the other conventional power plants. Therefore, shifting unit commitment planning toward these power plants would help to save water consumption. This paper discusses the impacts of water consumption limitation on natural gas consumption and vice versa as a short-term water consumption management solution. To do so, conventional unit commitment problem is extended by adding water consumption and natural gas constraints to the previous constrains. The paper presents the impact of water saving on natural gas demands as well as natural gas shortage on water demand. Correspondingly, the additional cost of electricity production according to the aforementioned constraints is evaluated. Finally, a test system is applied to investigate potentials and impacts of water saving and natural gas shortage. Different scenarios are conducted and the results are presented. The results of the study illustrate that in order to use less water for power production it needs to use more natural gas. Meanwhile, natural gas shortage causes to utilize more amount of water in aggregate.

Keywords: electric energy generation system, underground water sources, unit commitment, water consumption saving, natural gas

Procedia PDF Downloads 155
14565 Supervisory Board in the Governance of Cooperatives: Disclosing Power Elements in the Selection of Directors

Authors: Kari Huhtala, Iiro Jussila

Abstract:

The supervisory board is assumed to use power in the governance of a firm, but the actual use of power has been scantly investigated. The research question of the paper is “How does the supervisory board use power in the selection of the board of directors”. The data stem from 11 large Finnish agricultural cooperatives. The research approach was qualitative including semi-structured interviews of the board of directors and supervisory board chairpersons. The results were analyzed and interpreted against theories of social power. As a result, the use of power is approached from two perspectives: (1) formal position-based authority and (2) informal power. Central elements of power were the mandate of the supervisory board, the role of the supervisory board, the supervisory board chair, the nomination committee, collaboration between the supervisory board and the board of directors, the role of regions and the role of the board of directors. The study contributes to the academic discussion on corporate governance in cooperatives and on the supervisory board in the context of the two-tier model. Additional research of the model in other countries and of other types of cooperatives would further academic understanding of supervisory boards.

Keywords: board, co-operative, supervisory board, selection, director

Procedia PDF Downloads 144
14564 Simple and Concise Maximum Power Control Circuit for PV Power Generation

Authors: Keiju Matsui, Mikio Yasubayashi, Masayoshi Umeno

Abstract:

Consumption of energy is increasing every year, and yet does not the decline at all. The main energy source is fossil fuels such as petroleum and natural gas. Since it is the finite resources, they will be exhausted someday. Moreover, to make the fossil fuel an energy source causes an environment problem. In such way, one solution of the problems is the solar battery that is remarkable as one of the alternative energies. Under such circumstances, in this paper, we propose a novel maximum power control circuit for photovoltaic power generation system with simple and fast-response operation. In addition to an application to the solar battery, since this control system is possible to operate with simple circuit and fast-response, the polar value control like the maximum or the minimum value tracking for general application could be easily realized.

Keywords: maximum power control, inter-connection, photovoltaic power generation, PI controller, multiplier, exclusive-or, power system

Procedia PDF Downloads 424
14563 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Authors: Wilfred Fritz

Abstract:

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Keywords: harmonics, power quality, pulse width modulation, total harmonic distortion

Procedia PDF Downloads 203
14562 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic

Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani

Abstract:

Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.

Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter

Procedia PDF Downloads 342
14561 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, aluminium clad PCB, IP 65 enclosure, motor inverter, thermal simulation

Procedia PDF Downloads 100
14560 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions

Authors: Cheng-Chi Yu, Chi-Shiun Chiou

Abstract:

This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.

Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission

Procedia PDF Downloads 264
14559 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System

Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray

Abstract:

The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.

Keywords: back-propagation algorithm, load instability, neural network, power distribution system

Procedia PDF Downloads 404
14558 Solar Power Satellites: Reconsideration Based on Novel Approaches

Authors: Alex Ellery

Abstract:

Solar power satellites (SPS), despite their promise as a clean energy source, have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current $20,000/kg to < $200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to $2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many. Here, I present a novel approach to reduce the specific cost of solar power satellites to ~$1/kg by leveraging two enabling technologies – in-situ resource utilization and 3D printing. The power of such technologies will open up enormous possibilities for providing additional options for combating climate change whilst meeting demands for global energy. From the constraints imposed by in-situ resource utilization, a novel approach to solar energy conversion in SPS may be realized.

Keywords: clean energy sources, in-situ resource utilisation, solar power satellites, thermionic emission

Procedia PDF Downloads 397
14557 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: vertical-cavity surface-emitting lasers, VCSELs, optical power generation, power consumption, square wave modulation

Procedia PDF Downloads 138
14556 Study on Planning of Smart GRID Using Landscape Ecology

Authors: Sunglim Lee, Susumu Fujii, Koji Okamura

Abstract:

Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.

Keywords: landscape ecology, IT, smart grid, aerial photograph, simulation

Procedia PDF Downloads 417
14555 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power

Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir

Abstract:

In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.

Keywords: laser diode, light amplification, injected current, output power

Procedia PDF Downloads 362
14554 On the Transition of Europe’s Power Sector: Economic Consequences of National Targets

Authors: Geoffrey J. Blanford, Christoph Weissbart

Abstract:

The prospects for the European power sector indicate that it has to almost fully decarbonize in order to reach the economy-wide target of CO2-emission reduction. We apply the EU-REGEN model to explain the penetration of RES from an economic perspective, their spatial distribution, and the complementary role of conventional generation technologies. Furthermore, we identify economic consequences of national energy and climate targets. Our study shows that onshore wind power will be the most crucial generation technology for the future European power sector. Its geographic distribution is driven by resource quality. Gas power will be the major conventional generation technology for backing-up wind power. Moreover, a complete phase out of coal power proves to be not economically optimal. The paper demonstrates that existing national targets have a negative impact, especially on the German region with higher prices and lower revenues. The remaining regions profit are hardly affected. We encourage an EU-wide coordination on the expansion of wind power with harmonized policies. Yet, this requires profitable market structures for both, RES and conventional generation technologies.

Keywords: European, policy evaluation, power sector investment, technology choices

Procedia PDF Downloads 265
14553 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 319
14552 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 632
14551 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control

Procedia PDF Downloads 307
14550 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China

Authors: Yan-Shen Yang, Bai-Chen Xie

Abstract:

Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.

Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model

Procedia PDF Downloads 99
14549 Challenges with Synchrophasor Technology Deployments in Electric Power Grids

Authors: Emmanuel U. Oleka, Anil Khanal, Gary L. Lebby, Ali R. Osareh

Abstract:

Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology.

Keywords: electric power grid, grid visualization, phasor measurement unit, synchrophasor

Procedia PDF Downloads 524
14548 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm

Authors: Khaled Ben Oualid Medani, Samir Sayah

Abstract:

The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm

Procedia PDF Downloads 90
14547 Public Perceptions of Solar Energy in South-West Nigeria

Authors: Kugbeme Isumonah

Abstract:

The Nigerian State has continued to battle huge power supply challenges. Erratic supply, low voltage, and billing issues characterize its power sector. Solar power is increasingly being advocated for as a potential to Nigeria’s energy crisis. This study investigates how the Nigerian public perceives solar power. It employs the use of an open-ended online survey eliciting responses from participants resident in two of South-West Nigeria’s largest cities (Lagos and Ibadan). The study found that general attitudes towards solar power are positive, and the energy source is viewed with great optimism within the context of solutions to Nigeria’s energy issues. It also found no significant variation in public perceptions of solar power along demographic lines. Further, it found that finance represents the biggest barrier to broader solar power adoption. The results of this study provide evidence for policy formulation geared towards addressing finance difficulties that currently impede expansion of solar power use in Nigeria.

Keywords: public perceptions, solar energy, Nigeria, attitudes

Procedia PDF Downloads 74
14546 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study of Fars’ Livestock and Poultry Manufacturing Companies

Authors: Mohsen Yaghmoor, Sima Radmanesh

Abstract:

Rapid environmental changes have been threaten the life of many organizations .Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity & inability of human resource have been identified and reviewed at glance. Afterward there were two questions they are “what are the factors effecting productivity and enabling of human resource” . And ”what are the priority order based on effective management of human resource in Fars Poultry Complex". A specified questionnaire has been designed in order to priorities and effectiveness of the identified factors. Six factors specify to consist of: Individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then specify a questionnaire for priority and effect measurement of specified factor that reach after collect information and using statistical tests of keronchbakh alpha coefficient r=0.792 that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test categorize their effect. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. At last it has been indicated to approaches to increase making power full and productivity of manpower.

Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation

Procedia PDF Downloads 219
14545 Assessment of Records Management in Registry Department of Kebbi State University of Science and Technology, Aliero Nigeria

Authors: Murtala Aminu, Salisu Adamu Aliero, Adamu Muhammed

Abstract:

Records are a vital asset in ensuring that the institution is governed effectively and efficiently, and is accountable to its staff, students and the community that it serves. The major purpose of this study was to assess record management of the registry department of Kebbi state University of science and technology Aliero. To be able to achieve this objective, research questions were formulated and answers obtained, which centered on records creation, record management policy, challenges facing records management. The review of related literature revealed that there is need for records to be properly managed and in doing so there is need for good records management policy that clearly spells out the various programs required for effective records management. Survey research method was used involving questionnaire, and observation. The findings revealed that the registry department of the University still has a long way to go with respect to day-today records management. The study recommended provision for adequate, modern, safe and functional storage facilities, sufficient and regular funding, recruitment of trained personnel, on the job training for existing staff, computerization of all units records, and uninterrupted power supply to all parts of the unit as a means of ensuring proper records management.

Keywords: records, management, records management policy, registry

Procedia PDF Downloads 289
14544 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability

Authors: Ahmed Cherif Megri, HossamEldin ElSherif

Abstract:

In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.

Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization

Procedia PDF Downloads 40
14543 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools

Authors: M. Radunovic

Abstract:

Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.

Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management

Procedia PDF Downloads 92
14542 Low-Power Digital Filters Design Using a Bypassing Technique

Authors: Thiago Brito Bezerra

Abstract:

This paper presents a novel approach to reduce power consumption of digital filters based on dynamic bypassing of partial products in their multipliers. The bypassing elements incorporated into the multiplier hardware eliminate redundant signal transitions, which appear within the carry-save adders when the partial product is zero. This technique reduces the power consumption by around 20%. The circuit implementation was made using the AMS 0.18 um technology. The bypassing technique applied to the circuits is outlined.

Keywords: digital filter, low-power, bypassing technique, low-pass filter

Procedia PDF Downloads 355
14541 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran

Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr

Abstract:

Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.

Keywords: climate, change, thermal, power plants

Procedia PDF Downloads 50