Search results for: polymerase chain reaction (PCR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: polymerase chain reaction (PCR)

91 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 20
90 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles

Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska

Abstract:

In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.

Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2

Procedia PDF Downloads 246
89 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 152
88 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium

Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.

Keywords: GABA, Lactobacillus, HPLC, dairy sludge

Procedia PDF Downloads 99
87 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses

Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux

Abstract:

Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.

Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide

Procedia PDF Downloads 107
86 Phenotypical and Molecular Characterization of Burkholderia mallei from Horses with Glanders: Preliminary Data

Authors: A. F. C. Nassar, D. K. Tessler, L. Okuda, C. Del Fava, D. P. Chiebao, A. H. C. N. Romaldini, A. P. Alvim, M. J. Sanchez-Vazquez, M. S. Rosa, J. C. Pompei, R. Harakava, M. C. S. Araujo, G. H. F. Marques, E. M. Pituco

Abstract:

Glanders is a zoonotic disease of Equidae caused by the bacterium Burkholderia mallei presented in acute or chronic clinical forms with inflammatory nodules in the respiratory tract, lymphangitis and caseous lymph nodes. There is not a treatment with veterinary drugs to this life-threatening disease; thus, its occurrence must be notified to official animal health services and any infected animal must be eliminated. This study aims to detect B. mallei from horses euthanized in outbreaks of glanders in Brazil, providing a better understanding of the bacterial characteristics and determine a proper protocol for isolation. The work was carried out with the collaboration of the Ministry of Agriculture and the Sao Paulo State Animal Health Department, while its procedures were approved by the Committee of Ethics in Animal Experimentation from the Instituto Biologico (CETEA n°156/2017). To the present time, 16 horses from farms with outbreaks of glanders detected by complement fixation test (CFT) serology method were analyzed. During the necropsy, samples of possibly affected organs (lymph nodes, lungs, heart, liver, spleen, kidneys and trachea) were collected for bacterial isolation, molecular tests and pathology. Isolation was performed using two enriched mediums, a potato infusion agar with 5% sheep blood, 4% glycerol and antibiotics (penicilin100U/ mL), and another with the same ingredients except the antibiotic. A PCR protocol was modified for this study using primers design to identify a region of the Flip gen of B. mallei. Thru isolation, 12.5% (2/16) animals were confirmed positive using only the enriched medium with antibiotic and confirmed by PCR: from mediastinal and submandibular lymph nodes and lungs in one animal and from mediastinal lymph node in the other. The detection of the bacterium using PCR showed positivity of 100% (16/16) horses from 144 samples of organs. Pathology macroscopic lesions observed were catarrhal nasal discharge, fetlock ulcers, emaciation, lymphangitis in limbs, suppurative lymphangitis, lymph node enlargement, star shaped liver, and spleen scars, adherence of the renal capsule, pulmonary hemorrhage, and miliary nodules. Microscopic lesions were suppurative bronchopneumonia with microabscesses and Langhans giant cells in lungs; lymph nodes with abscesses and intense lymphoid reaction; hemosiderosis and abscesses in spleen. Positive samples on PCR will be sequenced later and analyzed comparing with previous records in the literature. A throughout description of the recent acute cases of glanders occurring in Brazil and characterization of the bacterium related will contribute to advances in the knowledge of the pathogenicity, clinical symptoms, and epidemiology of this zoonotic disease. Acknowledgment: This project is sponsored by FAPESP.

Keywords: equines, bacterial isolation, zoonosis, PCR, pathology

Procedia PDF Downloads 106
85 Small Town Big Urban Issues the Case of Kiryat Ono, Israel

Authors: Ruth Shapira

Abstract:

Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.

Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification

Procedia PDF Downloads 335
84 In Vitro Intestine Tissue Model to Study the Impact of Plastic Particles

Authors: Ashleigh Williams

Abstract:

Micro- and nanoplastics’ (MNLPs) omnipresence and ecological accumulation is evident when surveying recent environmental impact studies. For example, in 2014 it was estimated that at least 52.3 trillion plastic microparticles are floating at sea, and scientists have even found plastics present remote Arctic ice and snow (5,6). Plastics have even found their way into precipitation, with more than 1000 tons of microplastic rain precipitating onto the Western United States in 2020. Even more recent studies evaluating the chemical safety of reusable plastic bottles found that hundreds of chemicals leached into the control liquid in the bottle (ddH2O, ph = 7) during a 24-hour time period. A consequence of the increased abundance in plastic waste in the air, land, and water every year is the bioaccumulation of MNLPs in ecosystems and trophic niches of the animal food chain, which could potentially cause increased direct and indirect exposure of humans to MNLPs via inhalation, ingestion, and dermal contact. Though the detrimental, toxic effects of MNLPs have been established in marine biota, much less is known about the potentially hazardous health effects of chronic MNLP ingestion in humans. Recent data indicate that long-term exposure to MNLPs could cause possible inflammatory and dysbiotic effects. However, toxicity seems to be largely dose-, as well as size-dependent. In addition, the transcytotic uptake of MNLPs through the intestinal epithelia in humans remain relatively unknown. To this point, the goal of the current study was to investigate the mechanisms of micro- and nanoplastic uptake and transcytosis of Polystyrene (PE) in human stem-cell derived, physiologically relevant in vitro intestinal model systems, and to compare the relative effect of particle size (30 nm, 100 nm, 500 nm and 1 µm), and concentration (0 µg/mL, 250 µg/mL, 500 µg/mL, 1000 µg/mL) on polystyrene MNLP uptake, transcytosis and intestinal epithelial model integrity. Observational and quantitative data obtained from confocal microscopy, immunostaining, transepithelial electrical resistance (TEER) measurements, cryosectioning, and ELISA cytokine assays of the proinflammatory cytokines Interleukin-6 and Interleukin-8 were used to evaluate the localization and transcytosis of polystyrene MNPs and its impact on epithelial integrity in human-derived intestinal in vitro model systems. The effect of Microfold (M) cell induction on polystyrene micro- and nanoparticle (MNP) uptake, transcytosis, and potential inflammation was also assessed and compared to samples grown under standard conditions. Microfold (M) cells, link the human intestinal system to the immune system and are the primary cells in the epithelium responsible for sampling and transporting foreign matter of interest from the lumen of the gut to underlying immune cells. Given the uptake capabilities of Microfold cells to interact both specifically and nonspecific to abiotic and biotic materials, it was expected that M- cell induced in vitro samples would have increased binding, localization, and potentially transcytosis of Polystyrene MNLPs across the epithelial barrier. Experimental results of this study would not only help in the evaluation of the plastic toxicity, but would allow for more detailed modeling of gut inflammation and the intestinal immune system.

Keywords: nanoplastics, enteroids, intestinal barrier, tissue engineering, microfold (M) cells

Procedia PDF Downloads 64
83 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 248
82 Prevalence of Antibiotic-Resistant Bacteria Isolated from Fresh Vegetables Retailed in Eastern Spain

Authors: Miguel García-Ferrús, Yolanda Domínguez, M Angeles Castillo, M Antonia Ferrús, Ana Jiménez-Belenguer

Abstract:

Antibiotic resistance is a growing public health concern worldwide, and it is now regarded as a critical issue within the "One Health" approach that affects human and animal health, agriculture, and environmental waste management. This concept focuses on the interconnected nature of human, animal and environmental health, and WHO highlights zoonotic diseases, food safety, and antimicrobial resistance as three particularly relevant areas for this framework. Fresh vegetables are garnering attention in the food chain due to the presence of pathogens and because they can act as a reservoir for Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG). These fresh products are frequently consumed raw, thereby contributing to the spread and transmission of antibiotic resistance. Therefore, the aim of this research was to study the microbiological quality, the prevalence of ARB, and their role in the dissemination of ARG in fresh vegetables intended for human consumption. For this purpose, 102 samples of fresh vegetables (30 lettuce, 30 cabbage, 18 strawberries and 24 spinach) from different retail establishments in Valencia (Spain) have been analyzed to determine their microbiological quality and their role in spreading ARB and ARG. The samples were collected and examined according to standardized methods for total viable bacteria, coliforms, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes and Salmonella spp. Isolation was made in culture media supplemented with antibiotics (cefotaxime and meropenem). A total of 239 strains resistant to beta-lactam antibiotics (Third-Generation Cephalosporins and Carbapenems) were isolated. Thirty Gram-negative isolates were selected and biochemically identified or partial sequencing of 16S rDNA. Their sensitivity to 12 antibiotic discs was determined using the Kirby-Bauer disc diffusion technique to different therapeutic groups. To determine the presence of ARG, PCR assays for the direct sample and selected isolate DNA were performed for main expanded spectrum beta-lactamase (ESBL)-, carbapenemase-encoding genes and plasmid-mediated quinolone resistance genes. From the total samples, 68% (24/24 spinach, 28/30 lettuce and 17/30 cabbage) showed total viable bacteria levels over the accepted standard 10(2)-10(5) cfu/g range; and 48% (24/24 spinach, 19/30 lettuce and 6/30) showed coliforms levels over the accepted standard 10(2)-10(4) cfu/g range. In 9 samples (3/24 spinach, 3/30 lettuce, 3/30 cabbage; 9/102 (9%)) E. coli levels were higher than the standard 10(3) cfu/g limit. Listeria monocytogenes, Salmonella and STEC have not been detected. Six different bacteria species were isolated from samples. Stenotrophomonas maltophilia (64%) was the prevalent species, followed by Acinetobacter pitii (14%) and Burkholderia cepacia (7%). All the isolates were resistant to at least one tested antibiotic, including meropenem (85%) and ceftazidime (46%). Of the total isolates, 86% were multidrug-resistant and 68% were ESBL productors. Results of PCR showed the presence of resistance genes to beta-lactams blaTEM (4%) and blaCMY-2 (4%), to carbapenemes blaOXA-48 (25%), blaVIM (7%), blaIMP (21%) and blaKPC (32%), and to quinolones QnrA (7%), QnrB (11%) and QnrS (18%). Thus, fresh vegetables harboring ARB and ARG constitute a potential risk to consumers. Further studies must be done to detect ARG and how they propagate in non-medical environments.

Keywords: ESBL, β-lactams, resistances, fresh vegetables.

Procedia PDF Downloads 43
81 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 248
80 Assessment of Antioxidant and Cholinergic Systems, and Liver Histopathologies in Lithobates catesbeianus Exposed to the Waters of an Urban Stream

Authors: Diego R. Boiarski, Camila M. Toigo, Thais M. Sobjak, Andrey F. P. Santos, Silvia Romao, Ana T. B. Guimaraes

Abstract:

Anthropogenic activities promote changes in the community’s structures and decrease the species abundance of amphibians. Biological communities of fluvial systems are assemblies of organisms that have adapted to regional conditions, including the physical environment and food resources, and are further refined through interactions with other species. The aim of this study was to assess neurotoxic alterations and in the antioxidant system on tadpoles of Lithobates catesbeianus exposed to waters from Cascavel River, in the south of Brazil. A total of 420 L of water was collected from the Cascavel River, 140 L from each of the three different locations: Site 1 – headwater; Site 2 – stretch of the stream that runs through an urbanized area; Site 3 – a stretch from the rural area. Twelve tadpoles were acclimated in each aquarium (100 L of water) for seven days. The water from each aquarium was replaced with the ones sampled from the river, except the one from the control aquarium. After seven days, a portion of the liver was removed and conditioned for ChE, SOD, CAT and LPO analysis; other part of the tissue was conditioned for histological analysis. The statistical analysis performed was one-way ANOVA, followed by post-hoc Tukey-HSD test, and the multivariate principal components analysis. It was not observed any neurotoxic effect, but a slight increase in SOD activity and elevation of CAT activity in both urban and rural environment. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to the waters from the rural area. The results of the present study demonstrate the alteration of the antioxidant system, as well as liver histopathologies in tadpoles exposed mainly to waters collected in urban and rural environments. These alterations may cause the reduction in the velocity of the metamorphosis process from the tadpoles. Further, were observed histological alterations, highlighting necrotic areas mainly among the animals exposed to urban waters. Those damages can lead to metabolic dysfunction, interfering with survival capacity, diminishing not only individual fitness but for the whole population. In the interpretation synthesis of all biomarkers, the cellular damage gradient is perceptible, characterized by the variables related to the antioxidant system, due to the flow direction of the stream. This result is indicative that along the course of the creek occurs dumping of organic material, which promoted an acute response upon tadpoles of L. catesbeianus. and it was also observed the difference in tissue damage between the experimental groups and the control group, the latter presenting histological alterations, but to a lesser degree than the animals exposed to the waters of the Cascavel river. These damages, caused by reactive oxygen species possibly resulting from the contamination by organic compounds, can lead the animals to a series of metabolic dysfunctions, interfering with its metamorphosis capacity. Interruption of metamorphosis may affect survival, which may impair its growth, development and reproduction, diminishing not only the fitness of each individual but in a long-term, to the entire population.

Keywords: American bullfrog, histopathology, oxidative stress, urban creeks pollution

Procedia PDF Downloads 156
79 SWOT Analysis on the Prospects of Carob Use in Human Nutrition: Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: Within the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region, with collaboration of Crete University and Hellenic Mediterranean University, a SWOT (strengths, weaknesses, opportunities, threats) survey was carried out, to evaluate the prospects of carob in human nutrition, in Crete. Results and conclusions: 1). Strengths: There exists a local production of carob for human consumption, based on international reports, and local-product reports. The data on products in the market (over 100 brands of carob food), indicates a sufficiency of carob materials offered in Crete. The variety of carob food products retailed in Crete indicates a strong demand-production-consumption trend. There is a stable number (core) of businesses that invest significantly (Creta carob, Cretan mills, etc.). The great majority of the relevant food stores (bakery, confectionary etc.) do offer carob products. The presence of carob products produced in Crete is strong on the internet (over 20 main professionally designed websites). The promotion of the carob food-products is based on their variety and on a few historical elements connected with the Cretan diet. 2). Weaknesses: The international prices for carob seed affect the sector; the seed had an international price of €20 per kg in 2021-22 and fell to €8 in 2022, causing losses to carob traders. The local producers do not sort the carobs they deliver for processing, causing 30-40% losses of the product in the industry. The occasional high price triggers the collection of degraded raw material; large losses may emerge due to the action of insects. There are many carob trees whose fruits are not collected, e.g. in Apokoronas, Chania. The nutritional and commercial value of the wild carob fruits is very low. Carob trees-production is recorded by Greek statistical services as "other cultures" in combination with prickly pear i.e., creating difficulties in retrieving data. The percentage of carob used for human nutrition, in contrast to animal feeding, is not known. The exact imports of carob are not closely monitored. We have no data on the recycling of carob by-products in Crete. 3). Opportunities: The development of a culture of respect for carob trade may improve professional relations in the sector. Monitoring carob market and connecting production with retailing-industry needs may allow better market-stability. Raw material evaluation procedures may be implemented to maintain carob value-chain. The state agricultural services may be further involved in carob-health protection. The education of farmers on carob cultivation/management, can improve the quality of the product. The selection of local productive varieties, may improve the sustainability of the culture. Connecting the consumption of carob with health-food products, may create added value in the sector. The presence and extent of wild carob threes in Crete, represents, potentially, a target for grafting. 4). Threats: The annual fluctuation of carob yield challenges the programming of local food industry activities. Carob is a forest species also - there is danger of wrong classification of crops as forest areas, where land ownership is not clear.

Keywords: human nutrition, carob food, SWOT analysis, crete, greece

Procedia PDF Downloads 52
78 Pharmacognostical, Phytochemical and Biological Studies of Leaves and Stems of Hippophae Salicifolia

Authors: Bhupendra Kumar Poudel, Sadhana Amatya, Tirtha Maiya Shrestha, Bharatmani Pokhrel, Mohan Prasad Amatya

Abstract:

Background: H. salicifolia is a dense, branched, multipurpose, deciduous, nitrogen fixing, thorny willow-like small to moderate tree, restricted to the Himalaya. Among the two species of Nepal (Hippophae salicifolia and H. tibetana), it has been traditionally used as food additive, anticancer (bark), and treating toothache, tooth inflammation (anti-inflammatory) and radiation injury; while people of Western Nepal have largely undermined its veiled treasure by using it for fuel, wood and soil stabilization only. Therefore, the main objective of this study was to explore biological properties (analgesic, antidiabetic, cytotoxic and anti-inflammatory properties of this plant. Methodology: The transverse section of leaves and stems were viewed under microscope. Extracts obtained from soxhlation subjected to tests for phytochemical and biological studies. Rats (used to study antidiabetic and anti-inflammatory properties) and mice (used to study analgesic, CNS depressant, muscle relaxant and locomotor properties) were assumed to be normally distributed; then ANOVA and post hoc tukey test was used to find significance. The data obtained were analyzed by SPSS 17 and Excel 2007. Results and Conclusion: Pharmacognostical analysis revealed the presence of long stellate trichomes, double layered vascular bundle 5-6 in number and double layered compact sclerenchyma. The preliminary phytochemical screening of the extracts was found to exhibit the positive reaction tests for glycoside, steroid, tannin, flavonoid, saponin, coumarin and reducing sugar. The brine shrimp lethality bioassay tested in 1000, 100 and 10 ppm revealed cytotoxic activity inherent in methanol, water, chloroform and ethyl acetate extracts with LC50 (μg/ml) values of 61.42, 99.77, 292.72 and 277.84 respectively. The cytotoxic activity may be due to presence of tannins in the constituents. Antimicrobial screening of the extracts by cup diffusion method using Staphylococcus aereus, Escherichia coli and Pseudomonas aeruginosa against standard antibiotics (oxacillin, gentamycin and amikacin respectively) portrayed no activity against the microorganisms tested. The methanol extract of the stems and leaves showed various pharmacological properties: and antidiabetic, anti-inflammatory, analgesic [chemical writhing method], CNS depressant, muscle relaxant and locomotor activities in a dose-dependent fashion, indicating the possibility of the presence of different constituents in the stems and leaves responsible for these biological activities. All the effects when analyzed by post hoc tukey test were found to be significant at 95% confidence level. The antidiabetic activity was presumed to be due to flavonoids present in extract. Therefore, it can be concluded that this plant’s secondary metabolites possessed strong antidiabetic, anti-inflammatory and cytotoxic activity which could be isolated for further investigation.

Keywords: Hippophae salicifolia, constituents, antidiabetic, inflammatory, brine shrimp

Procedia PDF Downloads 315
77 The Impacts of New Digital Technology Transformation on Singapore Healthcare Sector: Case Study of a Public Hospital in Singapore from a Management Accounting Perspective

Authors: Junqi Zou

Abstract:

As one of the world’s most tech-ready countries, Singapore has initiated the Smart Nation plan to harness the full power and potential of digital technologies to transform the way people live and work, through the more efficient government and business processes, to make the economy more productive. The key evolutions of digital technology transformation in healthcare and the increasing deployment of Internet of Things (IoTs), Big Data, AI/cognitive, Robotic Process Automation (RPA), Electronic Health Record Systems (EHR), Electronic Medical Record Systems (EMR), Warehouse Management System (WMS in the most recent decade have significantly stepped up the move towards an information-driven healthcare ecosystem. The advances in information technology not only bring benefits to patients but also act as a key force in changing management accounting in healthcare sector. The aim of this study is to investigate the impacts of digital technology transformation on Singapore’s healthcare sector from a management accounting perspective. Adopting a Balanced Scorecard (BSC) analysis approach, this paper conducted an exploratory case study of a newly launched Singapore public hospital, which has been recognized as amongst the most digitally advanced healthcare facilities in Asia-Pacific region. Specifically, this study gains insights on how the new technology is changing healthcare organizations’ management accounting from four perspectives under the Balanced Scorecard approach, 1) Financial Perspective, 2) Customer (Patient) Perspective, 3) Internal Processes Perspective, and 4) Learning and Growth Perspective. Based on a thorough review of archival records from the government and public, and the interview reports with the hospital’s CIO, this study finds the improvements from all the four perspectives under the Balanced Scorecard framework as follows: 1) Learning and Growth Perspective: The Government (Ministry of Health) works with the hospital to open up multiple training pathways to health professionals that upgrade and develops new IT skills among the healthcare workforce to support the transformation of healthcare services. 2) Internal Process Perspective: The hospital achieved digital transformation through Project OneCare to integrate clinical, operational, and administrative information systems (e.g., EHR, EMR, WMS, EPIB, RTLS) that enable the seamless flow of data and the implementation of JIT system to help the hospital operate more effectively and efficiently. 3) Customer Perspective: The fully integrated EMR suite enhances the patient’s experiences by achieving the 5 Rights (Right Patient, Right Data, Right Device, Right Entry and Right Time). 4) Financial Perspective: Cost savings are achieved from improved inventory management and effective supply chain management. The use of process automation also results in a reduction of manpower costs and logistics cost. To summarize, these improvements identified under the Balanced Scorecard framework confirm the success of utilizing the integration of advanced ICT to enhance healthcare organization’s customer service, productivity efficiency, and cost savings. Moreover, the Big Data generated from this integrated EMR system can be particularly useful in aiding management control system to optimize decision making and strategic planning. To conclude, the new digital technology transformation has moved the usefulness of management accounting to both financial and non-financial dimensions with new heights in the area of healthcare management.

Keywords: balanced scorecard, digital technology transformation, healthcare ecosystem, integrated information system

Procedia PDF Downloads 131
76 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 422
75 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 363
74 Typology of Fake News Dissemination Strategies in Social Networks in Social Events

Authors: Mohadese Oghbaee, Borna Firouzi

Abstract:

The emergence of the Internet and more specifically the formation of social media has provided the ground for paying attention to new types of content dissemination. In recent years, Social media users share information, communicate with others, and exchange opinions on social events in this space. Many of the information published in this space are suspicious and produced with the intention of deceiving others. These contents are often called "fake news". Fake news, by disrupting the circulation of the concept and similar concepts such as fake news with correct information and misleading public opinion, has the ability to endanger the security of countries and deprive the audience of the basic right of free access to real information; Competing governments, opposition elements, profit-seeking individuals and even competing organizations, knowing about this capacity, act to distort and overturn the facts in the virtual space of the target countries and communities on a large scale and influence public opinion towards their goals. This process of extensive de-truthing of the information space of the societies has created a wave of harm and worries all over the world. The formation of these concerns has led to the opening of a new path of research for the timely containment and reduction of the destructive effects of fake news on public opinion. In addition, the expansion of this phenomenon has the potential to create serious and important problems for societies, and its impact on events such as the 2016 American elections, Brexit, 2017 French elections, 2019 Indian elections, etc., has caused concerns and led to the adoption of approaches It has been dealt with. In recent years, a simple look at the growth trend of research in "Scopus" shows an increasing increase in research with the keyword "false information", which reached its peak in 2020, namely 524 cases, reached, while in 2015, only 30 scientific-research contents were published in this field. Considering that one of the capabilities of social media is to create a context for the dissemination of news and information, both true and false, in this article, the classification of strategies for spreading fake news in social networks was investigated in social events. To achieve this goal, thematic analysis research method was chosen. In this way, an extensive library study was first conducted in global sources. Then, an in-depth interview was conducted with 18 well-known specialists and experts in the field of news and media in Iran. These experts were selected by purposeful sampling. Then by analyzing the data using the theme analysis method, strategies were obtained; The strategies achieved so far (research is in progress) include unrealistically strengthening/weakening the speed and content of the event, stimulating psycho-media movements, targeting emotional audiences such as women, teenagers and young people, strengthening public hatred, calling the reaction legitimate/illegitimate. events, incitement to physical conflict, simplification of violent protests and targeted publication of images and interviews were introduced.

Keywords: fake news, social network, social events, thematic analysis

Procedia PDF Downloads 35
73 Planning Fore Stress II: Study on Resiliency of New Architectural Patterns in Urban Scale

Authors: Amir Shouri, Fereshteh Tabe

Abstract:

Master planning and urban infrastructure’s thoughtful and sequential design strategies will play the major role in reducing the damages of natural disasters, war and or social/population related conflicts for cities. Defensive strategies have been revised during the history of mankind after having damages from natural depressions, war experiences and terrorist attacks on cities. Lessons learnt from Earthquakes, from 2 world war casualties in 20th century and terrorist activities of all times. Particularly, after Hurricane Sandy of New York in 2012 and September 11th attack on New York’s World Trade Centre (WTC) in 21st century, there have been series of serious collaborations between law making authorities, urban planners and architects and defence related organizations to firstly, getting prepared and/or prevent such activities and secondly, reduce the human loss and economic damages to minimum. This study will work on developing a model of planning for New York City, where its citizens will get minimum impacts in threat-full time with minimum economic damages to the city after the stress is passed. The main discussion in this proposal will focus on pre-hazard, hazard-time and post-hazard transformative policies and strategies that will reduce the “Life casualties” and will ease “Economic Recovery” in post-hazard conditions. This proposal is going to scrutinize that one of the key solutions in this path might be focusing on all overlaying possibilities on architectural platforms of three fundamental infrastructures, the transportation, the power related sources and defensive abilities on a dynamic-transformative framework that will provide maximum safety, high level of flexibility and fastest action-reaction opportunities in stressful periods of time. “Planning Fore Stress” is going to be done in an analytical, qualitative and quantitative work frame, where it will study cases from all over the world. Technology, Organic Design, Materiality, Urban forms, city politics and sustainability will be discussed in deferent cases in international scale. From the modern strategies of Copenhagen for living friendly with nature to traditional approaches of Indonesian old urban planning patterns, the “Iron Dome” of Israel to “Tunnels” in Gaza, from “Ultra-high-performance quartz-infused concrete” of Iran to peaceful and nature-friendly strategies of Switzerland, from “Urban Geopolitics” in cities, war and terrorism to “Design of Sustainable Cities” in the world, will all be studied with references and detailed look to analysis of each case in order to propose the most resourceful, practical and realistic solutions to questions on “New City Divisions”, “New City Planning and social activities” and “New Strategic Architecture for Safe Cities”. This study is a developed version of a proposal that was announced as winner at MoMA in 2013 in call for ideas for Rockaway after Sandy Hurricane took place.

Keywords: urban scale, city safety, natural disaster, war and terrorism, city divisions, architecture for safe cities

Procedia PDF Downloads 457
72 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India

Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar

Abstract:

The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.

Keywords: geochemistry, groundwater, malani igneous suite, tosham

Procedia PDF Downloads 188
71 In-Depth Investigations on the Sequences of Accidents of Powered Two Wheelers Based on Police Crash Reports of Medan, North Sumatera Province Indonesia, Using Decision Aiding Processes

Authors: Bangun F., Crevits B., Bellet T., Banet A., Boy G. A., Katili I.

Abstract:

This paper seeks the incoherencies in cognitive process during an accident of Powered Two Wheelers (PTW) by understanding the factual sequences of events and causal relations for each case of accident. The principle of this approach is undertaking in-depth investigations on case per case of PTW accidents based on elaborate data acquisitions on accident sites that officially stamped in Police Crash Report (PCRs) 2012 of Medan with criteria, involved at least one PTW and resulted in serious injury and fatalities. The analysis takes into account four modules: accident chronologies, perpetrator, and victims, injury surveillance, vehicles and road infrastructures, comprising of traffic facilities, road geometry, road alignments and weather. The proposal for improvement could have provided a favorable influence on the chain of functional processes and events leading to collision. Decision Aiding Processes (DAP) assists in structuring different entities at different decisional levels, as each of these entities has its own objectives and constraints. The entities (A) are classified into 6 groups of accidents: solo PTW accidents; PTW vs. PTW; PTW vs. pedestrian; PTW vs. motor-trishaw; and PTW vs. other vehicles and consecutive crashes. The entities are also distinguished into 4 decisional levels: level of road users and street systems; operational level (crash-attended police officers or CAPO and road engineers), tactical level (Regional Traffic Police, Department of Transportation, and Department of Public Work), and strategic level (Traffic Police Headquarters (TCPHI)), parliament, Ministry of Transportation and Ministry of Public Work). These classifications will lead to conceptualization of Problem Situations (P) and Problem Formulations (I) in DAP context. The DAP concerns the sequences process of the incidents until the time the accident occurs, which can be modelled in terms of five activities of procedural rationality: identification on initial human features (IHF), investigation on proponents attributes (PrAT), on Injury Surveillance (IS), on the interaction between IHF and PrAt and IS (intercorrelation), then unravel the sequences of incidents; filtering and disclosure, which include: what needs to activate, modify or change or remove, what is new and what is priority. These can relate to the activation or modification or new establishment of law. The PrAt encompasses the problems of environmental, road infrastructure, road and traffic facilities, and road geometry. The evaluation model (MP) is generated to bridge P and I since MP is produced by the intercorrelations among IHF, PrAT and IS extracted from the PCRs 2012 of Medan. There are 7 findings of incoherences: lack of knowledge and awareness on the traffic regulations and the risks of accidents, especially when riding between 0 < x < 10 km from house, riding between 22 p.m.–05.30 a.m.; lack of engagements on procurement of IHF Data by CAPO; lack of competency of CAPO on data procurement in accident-sites; no intercorrelation among IHF and PrAt and IS in the database systems of PCRs; lack of maintenance and supervision on the availabilities and the capacities of traffic facilities and road infrastructure; instrumental bias with wash-back impacts towards the TCPHI; technical robustness with wash-back impacts towards the CAPO and TCPHI.

Keywords: decision aiding processes, evaluation model, PTW accidents, police crash reports

Procedia PDF Downloads 130
70 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression

Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac

Abstract:

The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.

Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi

Procedia PDF Downloads 172
69 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy

Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai

Abstract:

Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.

Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy

Procedia PDF Downloads 103
68 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 137
67 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 194
66 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds

Authors: Vishal Kumar, Soumitra Satapathi

Abstract:

Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.

Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer

Procedia PDF Downloads 104
65 Empowering and Educating Young People Against Cybercrime by Playing: The Rayuela Method

Authors: Jose L. Diego, Antonio Berlanga, Gregorio López, Diana López

Abstract:

The Rayuela method is a success story, as it is part of a project selected by the European Commission to face the challenge launched by itself for achieving a better understanding of human factors, as well as social and organisational aspects that are able to solve issues in fighting against crime. Rayuela's method specifically focuses on the drivers of cyber criminality, including approaches to prevent, investigate, and mitigate cybercriminal behavior. As the internet has become an integral part of young people’s lives, they are the key target of the Rayuela method because they (as a victim or as a perpetrator) are the most vulnerable link of the chain. Considering the increased time spent online and the control of their internet usage and the low level of awareness of cyber threats and their potential impact, it is understandable the proliferation of incidents due to human mistakes. 51% of Europeans feel not well informed about cyber threats, and 86% believe that the risk of becoming a victim of cybercrime is rapidly increasing. On the other hand, Law enforcement has noted that more and more young people are increasingly committing cybercrimes. This is an international problem that has considerable cost implications; it is estimated that crimes in cyberspace will cost the global economy $445B annually. Understanding all these phenomena drives to the necessity of a shift in focus from sanctions to deterrence and prevention. As a research project, Rayuela aims to bring together law enforcement agencies (LEAs), sociologists, psychologists, anthropologists, legal experts, computer scientists, and engineers, to develop novel methodologies that allow better understanding the factors affecting online behavior related to new ways of cyber criminality, as well as promoting the potential of these young talents for cybersecurity and technologies. Rayuela’s main goal is to better understand the drivers and human factors affecting certain relevant ways of cyber criminality, as well as empower and educate young people in the benefits, risks, and threats intrinsically linked to the use of the Internet by playing, thus preventing and mitigating cybercriminal behavior. In order to reach that goal it´s necessary an interdisciplinary consortium (formed by 17 international partners) carries out researches and actions like Profiling and case studies of cybercriminals and victims, risk assessments, studies on Internet of Things and its vulnerabilities, development of a serious gaming environment, training activities, data analysis and interpretation using Artificial intelligence, testing and piloting, etc. For facilitating the real implementation of the Rayuela method, as a community policing strategy, is crucial to count on a Police Force with a solid background in trust-building and community policing in order to do the piloting, specifically with young people. In this sense, Valencia Local Police is a pioneer Police Force working with young people in conflict solving, through providing police mediation and peer mediation services and advice. As an example, it is an official mediation institution, so agreements signed by their police mediators have once signed by the parties, the value of a judicial decision.

Keywords: fight against crime and insecurity, avert and prepare young people against aggression, ICT, serious gaming and artificial intelligence against cybercrime, conflict solving and mediation with young people

Procedia PDF Downloads 97
64 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 71
63 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.

Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide

Procedia PDF Downloads 240
62 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions

Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule

Abstract:

Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.

Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination

Procedia PDF Downloads 101