Search results for: perpendicular to grain stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4586

Search results for: perpendicular to grain stress

4556 Some Yield Parameters of Wheat Genotypes

Authors: Shatha A. Yousif, Hatem Jasim, Ali R. Abas, Dheya P. Yousef

Abstract:

To study the effect of the cross direction in bead wheat, three hybrid combinations (Babyle 113 , Iratome), (Sawa , Tamose2) and (Al Hashymya Al Iraq) were tested for plant height, number of tillers/m, number of grains per spike, weight of grains per spike, 1000-grain weight and grain yield. The results revealed that the direction of the cross had significant effect the number of grain/spike, tillers/m and grain yields. Grain yield was positively and significantly correlated with 1000-grain weight, number of grains per spike and tillers. Depend on the result of heritability and genetic advance it was suggested that 1000-grain weight number of grains per spike and tillers should be given emphasis for future wheat yield improvement programs.

Keywords: correlation, genetic advance, heritability, wheat, yield traits

Procedia PDF Downloads 399
4555 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 38
4554 Structure of Grain Boundaries in α-Zirconium and Niobium

Authors: Divya Singh, Avinash Parashar

Abstract:

Due to superior mechanical, creep and nuclear cross section, zirconium and niobium (Zr-Nb) based alloys are commonly used as nuclear materials for the manufacturing of fuel cladding and pressure tubes in nuclear power plants. In this work, symmetrical tilt grain boundary (STGB) structures in α-Zr are studied for their structure and energies along two tilt axes- [0001] and [0-110] using MD based simulations. Tilt grain boundaries are obtained along [0001] tilt axis, and special twin structures are obtained along [0-110] tilt axis in α-Zr. For Nb, STGBs are constructed along [100] and [110] axis using atomistic simulations. The correlation between GB structures and their energies is subsequently examined. A close relationship is found to exist between individual GB structure and its energy in both α-Zr and Nb. It is also concluded that the energies of the more coherent twin grain boundaries are lower than the symmetrical tilt grain boundaries.

Keywords: grain boundaries, molecular dynamics, grain boundary energy, hcp crystal

Procedia PDF Downloads 231
4553 Deformation and Energy Absorption of Corrugated Tubes

Authors: Mohammad R. Rahim, Shagil Akhtar, Prem K. Bharti, Syed Muneeb Iqbal

Abstract:

Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations.

Keywords: ANSYS Workbench, deformation and energy absorption, corrugated tubes, quasi-static compression

Procedia PDF Downloads 350
4552 Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium

Authors: Huseyin Zengin, Muhammet Emre Turan, Yunus Turen, Hayrettin Ahlatci, Yavuz Sun

Abstract:

This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably.

Keywords: microalloyed steels, prior austenite grains, second phase particles, grain coarsening temperature

Procedia PDF Downloads 232
4551 Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades

Authors: M. Javahar, H. B. Dong

Abstract:

Single crystal components manufactured using Ni-base Superalloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection, which is used to obtain the single crystal morphology from a plethora of columnar grains. For this purpose, different designs of grain selectors are employed and the most common type is the spiral grain selector. A typical spiral grain selector includes a starter block and a spiral (helix) located above. It has been found that the grains with orientation well aligned to the thermal gradient survive in the starter block by competitive grain growth while the selection of the single crystal grain occurs in the spiral part. In the present study, 2D spiral selectors with different geometries were designed and produced using a state-of-the-art Bridgeman Directional Solidification casting furnace to investigate the competitive growth during grain selection in 2d grain selectors. The principal advantage of using a 2-D selector is to facilitate the wax injection process in investment casting by enabling significant degree of automation. The automation within the process can be derived by producing 2D grain selector wax patterns parts using a split die (metal mold model) coupled with wax injection stage. This will not only produce the part with high accuracy but also at an acceptable production rate.

Keywords: grain selector, single crystal, directional solidification, CMSX-4 superalloys, investment casting

Procedia PDF Downloads 553
4550 The Impact of Corn Grain Consolidation on the Emission of Volatile Organic Compounds

Authors: Marek Gancarz, Katarzyna Grądecka-Jakubowska, Urszula Malaga-Toboła, Rafał Kornas, Aleksandra Żytek, Robert Rusinek

Abstract:

The aim of the research was to determine the emission of volatile organic compounds (VOCs) from corn grain depending on the degree of consolidation of the bulk material, imitating the processes occurring in silos during material storage. An electronic nose and a gas chromatograph were used for VOC analysis. Corn grain was densified under pressure of 40 and 80 kPa. Control samples of corn grain were not compacted and had bulk density. The analyzes were carried out at 14% and 17% humidity (w.b. – wet basis). The measurement system enabled quantitative and qualitative analyzes of volatile compounds and their emission intensity during the 10-day storage period. The study determined the profile of volatile compounds as a function of storage time and grain density level. The test results showed that the highest emission of volatile compounds was recorded in the first four days of storage of corn grain. VOC emissions, as well as grain moisture and volume, can be helpful in determining the quality of material stored in silos and its subsequent suitability for consumption.

Keywords: maize, consolidation, storage, VOCs, GC-MS, chemometrics

Procedia PDF Downloads 49
4549 Investigation of Genetic Variation for Agronomic Traits among the Recombinant Inbred Lines of Wheat from the Norstar × Zagross Cross under Water Stress Condition

Authors: Mohammad Reza Farzami Pour

Abstract:

Determination of genetic variation is useful for plant breeding and hence production of more efficient plant species under different conditions, like drought stress. In this study, a sample of 28 recombinant inbred lines (RILs) of wheat developed from the cross of Norstar and Zagross varieties, together with their parents, were evaluated for two years (2010-2012) under normal and water stress conditions using split plot design with three replications. Main plots included two irrigation treatments of 70 and 140 mm evaporation from Class A pan and sub-plots consisted of 30 genotypes. The effect of genotypes and interaction of genotypes with years and water regimes were significant for all characters. Significant genotypic effect implies the existence of genetic variation among the lines under study. Heritability estimates were high for 1000 grain weight (0.87). Biomass and grain yield showed the lowest heritability values (0.42 and 0.50, respectively). Highest genotypic and phenotypic coefficients of variation (GCV and PCV) belonged to harvest index. Moderate genetic advance for most of the traits suggested the feasibility of selection among the RILs under investigation. Some RILs were higher yielding than either parent at both environments.

Keywords: wheat, genetic gain, heritability, recombinant inbred lines

Procedia PDF Downloads 288
4548 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

Authors: C. Lanzerstorfer, M. Hinterberger

Abstract:

The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.

Keywords: iron ore concentrate, flowability, moisture content, wall friction angle

Procedia PDF Downloads 292
4547 Effect of Viscosity in Void Structure with Interacting Variable Charge Dust Grains

Authors: Nebbat El Amine

Abstract:

The void is a dust free region inside the dust cloud in the plasma. It is found that the dust grain charge variation lead to the extension of the void. Moreover, for bigger dust grains, it is seen that the wave-like structure recedes when charge variation is dealt with. Furthermore, as the grain-grain distance is inversely proportional to density, the grain-grain interaction gets more important for a denser dust population and is to be included in momentum equation. For the result indicate above, the plasma is considered non viscous. But in fact, it’s not always true. Some authors measured experimentally the viscosity of this background and found that the viscosity of dusty plasma increase with background gas pressure. In this paper, we tack account the viscosity of the fluid, and we compare the result with that found in the recent work.

Keywords: voids, dusty plasmas, variable charge, viscosity

Procedia PDF Downloads 58
4546 Index and Mechanical Geotechnical Properties and Their Control on the Strength and Durability of the Cainozoic Calcarenites in KwaZulu-Natal, South Africa

Authors: Luvuno N. Jele, Warwick W. Hastie, Andrew Green

Abstract:

Calcarenite is a clastic sedimentary beach rock composed of more than 50% sand sized (0.0625 – 2 mm) carbonate grains. In South Africa, these rocks occur as a narrow belt along most of the coast of KwaZulu-Natal and sporadically along the coast of the Eastern Cape. Calcarenites contain a high percentage of calcium carbonate, and due to a number of its physical and structural features, like porosity, cementing material, sedimentary structures, grain shape, and grain size; they are more prone to chemical and mechanical weathering. The objective of the research is to study the strength and compressibility characteristics of the calcarenites along the coast of KwaZulu-Natal to be able to better understand the geotechnical behaviour of these rocks, which may help to predict areas along the coast which may be potentially susceptible to failure/differential settling resulting in damage to property. A total of 148 cores were prepared and analyzed. Cores were analyzed perpendicular and parallel to bedding. Tests were carried out in accordance with the relevant codes and recommendations of the International Society for Rock Mechanics, American Standard Testing Methods, and Committee of Land and Transport Standard Specifications for Road and Bridge Works for State Road Authorities. Test carried out included: x-ray diffraction, petrography, shape preferred orientation (SPO), 3-D Tomography, rock porosity, rock permeability, ethylene glycol, slake durability, rock water absorption, Duncan swelling index, triaxial compressive strength, Brazilian tensile strength and uniaxial compression test with elastic modulus. The beach-rocks have a uniaxial compressive strength (UCS) ranging from 17,84Mpa to 287,35Mpa and exhibit three types of failure; (1) single sliding shear failure, (2) complete cone development, and (3) splitting failure. Brazilian tensile strength of the rocks ranges from 2.56 Mpa to 12,40 Ma, with those tested perpendicular to bedding showing lower tensile strength. Triaxial compressive tests indicate calcarenites have strength ranging from 86,10 Mpa to 371,85 Mpa. Common failure mode in the triaxial test is a single sliding shear failure. Porosity of the rocks varies from 1.25 % to 26.52 %. Rock tests indicate that the direction of loading, whether it be parallel to bedding or perpendicular to bedding, plays no significantrole in the strength and durability of the calcarenites. Porosity, cement type, and grain texture play major roles.UCS results indicate that saturated cores are weaker in strength compared to dry samples. Thus, water or moisture content plays a significant role in the strength and durability of the beach-rock. Loosely packed, highly porous and low magnesian-calcite bearing calcarenites show a decrease in strength compared to the densely packed, low porosity and high magnesian-calcite bearing calcarenites.

Keywords: beach-rock, calcarenite, cement, compressive, failure, porosity, strength, tensile, grains

Procedia PDF Downloads 70
4545 Deformation Mechanisms of Mg-Based Composite Studied by Neutron Diffraction and Acoustic Emission

Authors: G. Farkas, K. Mathis, J. Pilch, P. Minarik

Abstract:

Deformation mechanisms in an Mg-Al-Ca alloy reinforced with short alumina fibres were studied by acoustic emission and in-situ neutron diffraction method. The fibres plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. In-situ neutron diffraction tests were measured at different temperatures from room temperature (RT) to 200°C. The measurement shows the lattice strain changes in the matrix and also in the reinforcement phase depending on macroscopic compressive deformation and stress. In case of parallel fibre plane orientation, the increment of compressive lattice strain is lower in the matrix and higher in the fibres in comparison to perpendicular fibre orientation. Furthermore, acoustic emission results indicate a larger twinning activity and more frequent fibre cracking in sample with perpendicular fibre plane orientation. Both types of mechanisms are more dominant at elevated temperatures.

Keywords: neutron diffraction, acoustic emission, magnesium based composite, deformation mechanisms

Procedia PDF Downloads 131
4544 Effect of Tube Backward Extrusion (TBE) Process on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

Authors: H. Abdolvand, M. Riazat, H. Sohrabi, G. Faraji

Abstract:

An experimental investigation into the Tube Backward Extrusion (TBE) process on AZ31 magnesium alloy is studied. Microstructures and grain size distribution of the specimens before and after TBE process are investigated by optical microscopy. Tensile and Vickers microhardness tests along extrusion direction were performed at room temperature. It is found that the average grain size is refined remarkably from the initial 33 µm down to 3.5 µm after TBE process. Also, the microhardness increased significantly to 58 HV after the process from an initial value of 36 HV.

Keywords: tube backward extrusion, AZ31, grain size distribution, grain refinement

Procedia PDF Downloads 468
4543 Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi

Authors: Prangya P. Sahoo, B. S. Murty

Abstract:

The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids.

Keywords: grain growth kinetics, mechanical alloying, oxide dispersion, phase evolution

Procedia PDF Downloads 400
4542 Effect of Vanadium Addition to Aluminum Grain Refined by Ti or Ti + B on Its Microstructure, Mechanical Behavior, Fatigue Strength and Life

Authors: Adnan I. O. Zaid

Abstract:

As aluminum solidifies in columnar structure with large grain size which reduces its surface quality and mechanical strength; therefore it is normally grain refined either by titanium or titanium + boron (Ti or Ti + B). In this paper, the effect of addition of either Ti or Ti + B to commercially pure aluminum on its grain size, Vickers hardness, mechanical strength and fatigue strength and life is presented and discussed. Similarly, the effect of vanadium addition to Al grain refined by Ti or Ti+ B is presented and discussed. Two binary master alloys Al-Ti and Al-Vi were laboratory prepared from which five different micro-alloys in addition to the commercially pure aluminum namely Al-Ti, Al-Ti-B, Al-V, Al-Ti-V and Al-Ti-B-V were prepared for the investigation. Finally, the effect of their addition on the fatigue cracks initiation and propagation, using scanning electron microscope, SEM, is also presented and discussed. Photomirographs and photoscans are included in the paper.

Keywords: aluminum, fatigue, grain refinement, titanium, titanium+boron, vanadium

Procedia PDF Downloads 456
4541 The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22

Authors: Adnan I. O. Zaid

Abstract:

Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index.

Keywords: addition, grain refinement, mechanical characteristics, microstructure, rare earth elements, ZA-22, Zinc- aluminum alloy

Procedia PDF Downloads 484
4540 Grain Refinement of Al-7Si-0.4Mg Alloy by Combination of Al-Ti-B and Mg-Al2Ca Mater Alloys and Their Effects on Tensile Property

Authors: Young-Ok Yoon, Su-Yeon Lee, Seong-Ho Ha, Gil-Yong Yeom, Bong-Hwan Kim, Hyun-Kyu Lim, Shae K. Kim

Abstract:

Al-7Si-0.4Mg alloy (designated A356) is widely used in the automotive and aerospace industries as structural components due to an excellent combination of castability and mechanical properties. Grain refinement has a significant effect on the mechanical properties of castings, mainly since the distribution of secondary phase is changed. As a grain refiner, the Al-Ti-B master alloys containing TiAl3 and TiB2 particles have been widely used in Al foundries. The Mg loss and Mg based inclusion formation by the strong affinity of Mg to oxygen in the melting process of Mg contained alloys have been an issue. This can be significantly improved only by Mg+Al2Ca master alloy as an alloying element instead of pure Mg. Moreover, the eutectic Si modification and grain refinement is simultaneously obtained because Al2Ca behaves as Ca, a typical Si modifier. The present study is focused on the combined effects of Mg+Al2Ca and Al-Ti-B master alloys on the grain refiment of Al-7Si-0.4Mg alloy and their proper ratio for the optimum effect. The aim of this study, therefore, is to investigate the change of the microstructure in Al-7Si-0.4Mg alloy with different ratios of Ti and Al2Ca (detected Ca content) and their effects on the tensile property. The distribution and morphology of the secondary phases by the grain refinement will be discussed.

Keywords: Al-7Si-0.4Mg alloy, Al2Ca, Al-Ti-B alloy, grain refinement

Procedia PDF Downloads 403
4539 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 504
4538 Influence of Aluminium on Grain Refinement in As-Rolled Vanadium-Microalloyed Steels

Authors: Kevin Mark Banks, Dannis Rorisang Nkarapa Maubane, Carel Coetzee

Abstract:

The influence of aluminium content, reheating temperature, and sizing (final) strain on the as-rolled microstructure was systematically investigated in vanadium-microalloyed and C-Mn plate steels. Reheating, followed by hot rolling and air cooling simulations were performed on steels containing a range of aluminium and nitrogen contents. Natural air cooling profiles, corresponding to 6 and 20mm thick plates, were applied. The austenite and ferrite/pearlite microstructures were examined using light optical microscopy. Precipitate species and volume fraction were determined on selected specimens. No influence of aluminium content was found below 0.08% on the as-rolled grain size in all steels studied. A low Al-V-steel produced the coarsest initial austenite grain size due to AlN dissolution at low temperatures leading to abnormal grain growth. An Al-free V-N steel had the finest initial microstructure. Although the as-rolled grain size for 20mm plate was similar in all steels tested, the grain distribution was relatively mixed. The final grain size in 6mm plate was similar for most compositions; the exception was an as-cast V low N steel, where the size of the second phase was inversely proportional to the sizing strain. This was attributed to both segregation and a low VN volume fraction available for effective pinning of austenite grain boundaries during cooling. Increasing the sizing strain refined the microstructure significantly in all steels.

Keywords: aluminium, grain size, nitrogen, reheating, sizing strain, steel, vanadium

Procedia PDF Downloads 111
4537 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime

Authors: Edgar Ochoa, G. Torres-Villasenor

Abstract:

Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.

Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation

Procedia PDF Downloads 140
4536 Comparative Transcriptome Profiling of Low Light Tolerant and Sensitive Rice Varieties Induced by Low Light Stress at Active Tillering Stage

Authors: Darshan Panda, Lambodar Behera, M. J. Baig, Sudhanshu Sekhar

Abstract:

Low light intensity is a significant limitation for grain yield and quality in rice. However, yield is not significantly reduced in low-light tolerant rice varieties. The work, therefore, planned for comparative transcriptome profiling under low light stress to decipher the genes involved and molecular mechanism of low light tolerance in rice. At the active tillering stage, 50% low light exposure for one day, three days, and five days were given to Swarnaprabha (low light tolerant) and IR8 (low light sensitive) rice varieties. Illumina (HiSeq) platform was used for transcriptome sequencing. A total of 6,652 and 12,042 genes were differentially expressed due to low light intensity in Swarnaprabha and IR8, respectively, as compared to control. CAB, LRP, SBPase, MT15, TF PCL1, and Photosystem I & II complex related gene expressions were mostly increased in Swarnaprabha upon the longer duration of low light exposure, which was not found in IR8 as compared to control. Their expressions were validated by qRT-PCR. The overall study suggested that the maintenance of grain yield in the tolerant variety under low light might be the result of accelerated expression of the genes, which enable the plant to keep the photosynthetic processes moving at the same pace even under low light.

Keywords: rice, low light, photosynthesis, yield

Procedia PDF Downloads 165
4535 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior

Authors: Mohamed dammak

Abstract:

Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.

Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis

Procedia PDF Downloads 63
4534 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: Osamu Takakuwa, Yuta Mano, Hitoshi Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: hydrogen embrittlement, residual stress, surface finishing, stainless steel

Procedia PDF Downloads 349
4533 The Role of Deformation Strain and Annealing Temperature on Grain Boundary Engineering and Texture Evolution of Haynes 230

Authors: Mohsen Sanayei, Jerzy Szpunar

Abstract:

The present study investigates the effects of deformation strain and annealing temperature on the formation of twin boundaries, deformation and recrystallization texture evolution and grain boundary networks and connectivity. The resulting microstructures were characterized using Electron Backscatter Diffraction (EBSD) and X-Ray Diffraction (XRD) both immediately following small amount of deformation and after short time annealing at high temperature to correlate the micro and macro texture evolution of these alloys. Furthermore, this study showed that the process of grain boundary engineering, consisting cycles of deformation and annealing, is found to substantially reduce the mass and size of random boundaries and increase the proportion of low Coincidence Site Lattice (CSL) grain boundaries.

Keywords: coincidence site lattice, grain boundary engineering, electron backscatter diffraction, texture, x-ray diffraction

Procedia PDF Downloads 278
4532 Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K

Authors: Pavel Zabrodin

Abstract:

The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation.

Keywords: jump-like deformation, low temperature, plasticity, magnesium alloy

Procedia PDF Downloads 431
4531 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 338
4530 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 255
4529 Contrasting Patterns of Accumulation, Partitioning, and Reallocation Patterns of Dm and N Within the Maize Canopy Under Decreased N Availabilities

Authors: Panpan Fan, Bo Ming, Niels P. R. Anten, Jochem B. Evers, Yaoyao Li, Shaokun Li, Ruizhi Xie

Abstract:

The reallocation of dry matter (DM) and nitrogen (N) from vegetative tissues to the grain sinks are critical for grain yield. The objective of this study was to quantify the DM and N accumulation, partition, and reallocation at the single-leaf, different-organ, and individual-plant scales and clarify the responses to different levels of N availabilities. A two-year field experiment was conducted in Jinlin province, Northeast China, with three N fertilizer rates to create the different N availability levels: N0 (N deficiency), N1(low supply), and N2 (high supply). The results showed that grain N depends more on reallocations of vegetative organs compared with grain DM. Besides, vegetative organs reallocated more DM and N to grain under lower N availability, whereas more grain DM and grain N were derived from post-silking leaf photosynthesis and post-silking N uptake from the soil under high N availability. Furthermore, the reallocation amount and reallocation efficiency of leaf DM and leaf N content differed among leaf ranks and were regulated by N availability; specifically, the DM reallocation occurs mainly on senesced leaves, whereas the leaf N reallocation was in live leaves. These results provide a theoretical basis for deriving parameters in crop models for the simulation of the demand, uptake, partition, and reallocation processes of DM and N.

Keywords: dry matter, leaf N content, leaf rank, N availability, reallocation efficiency

Procedia PDF Downloads 90
4528 Influence of Nitrogen Fertilization on the Yields and Grain Quality of Winter Wheat under Different Environmental Conditions

Authors: Alicja Sułek, Grażyna Cacak-Pietrzak, Marta Wyzińska, Anna Nieróbca

Abstract:

In 2013/2014 and 2014/2015, a field experiment was conducted in two locations: Osiny and Wielichowo (Poland). The two-factor experiment was based on the method of randomized subblocks, in three replications. The first factor (A) was dose of nitrogen fertilization (two levels). The second factor (B) was nine winter wheat cultivars. It was found that winter wheat cultivars exhibited different reactions to higher nitrogen fertilization depending on the years and localities. Only KWS Dacanto cultivar under all growing conditions showed a significant increase in grain yield after the application of a higher level of nitrogen fertilization. The increase in nitrogen fertilization influenced the increase in gluten proteins content in wheat grain, but these changes were statistically significant only in the first year of the study. The quality of gluten does not depend on nitrogen fertilization. The quality of wheat grain depends on cultivars.

Keywords: fertilization, grain quality, winter wheat, yield

Procedia PDF Downloads 168
4527 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction

Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang

Abstract:

The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.

Keywords: surface machining, EBSD, subsurface layer, local deformation

Procedia PDF Downloads 302