Search results for: oxygen deficient clusters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2173

Search results for: oxygen deficient clusters

2143 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: resonance enhancement, silver clusters, surface plasmon, two-photon ionization

Procedia PDF Downloads 402
2142 Computational Quantum Mechanics Study of Oxygen as Substitutional Atom in Diamond

Authors: K. M. Etmimi, A. A. Sghayer, A. M. Gsiea, A. M. Abutruma

Abstract:

Relatively few chemical species can be incorporated into diamond during CVD growth, and until recently the uptake of oxygen was thought to be low perhaps as a consequence of a short surface residence time. Within the literature, there is speculation regarding spectroscopic evidence for O in diamond, but no direct evidence. For example, the N3 and OK1 EPR centres have been tentatively assigned models made up from complexes of substitutional N and substitutional oxygen. In this study, we report density-functional calculations regarding the stability, electronic structures, geometry and hyperfine interaction of substitutional oxygen in diamond and show that the C2v, S=1 configuration very slightly lower in energy than the other configurations (C3v, Td, and C2v with S=0). The electronic structure of O in diamond generally gives rise to two defect-related energy states in the band gap one a non-degenerate a1 state lying near the middle of the energy gap and the other a threefold-degenerate t2 state located close to the conduction band edges. The anti-bonding a1 and t2 states will be occupied by one to three electrons for O+, O and O− respectively.

Keywords: DFT, oxygen, diamond, hyperfine

Procedia PDF Downloads 336
2141 Development of Soft-Core System for Heart Rate and Oxygen Saturation

Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik

Abstract:

This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.

Keywords: heart rate, NIOS II, oxygen saturation, photoplethysmography, soft-core, SOPC

Procedia PDF Downloads 168
2140 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles

Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin

Abstract:

Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.

Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles

Procedia PDF Downloads 98
2139 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman

Abstract:

In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy

Procedia PDF Downloads 239
2138 Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor

Authors: Y. Muto, S. Araki, H. Yamamoto

Abstract:

The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen.

Keywords: membrane separation, oxygen permeation, K2NiF4-type structure, mixed conductor

Procedia PDF Downloads 493
2137 In-situ Oxygen Enrichment for UCG

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane.

Keywords: membranes, oxygen-enrichment, gasification, coal

Procedia PDF Downloads 298
2136 Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions

Authors: Tran Le Luu, Jeyong Yoon

Abstract:

RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances.

Keywords: RuO2, electro-catalyst, sol-gel, microwave, chlorine, oxygen evolution

Procedia PDF Downloads 218
2135 In-situ Oxygen Enrichment for Underground Coal Gasification

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane.

Keywords: membranes, oxygen-enrichment, gasification, coal

Procedia PDF Downloads 423
2134 Immunomodulatory Effects of Multipotent Mesenchymal Stromal Cells on T-Cell Populations at Tissue-Related Oxygen Level

Authors: A. N. Gornostaeva, P. I. Bobyleva, E. R. Andreeva, L. B. Buravkova

Abstract:

Multipotent mesenchymal stromal cells (MSCs) possess immunomodulatory properties. The effect of MSCs on the crucial cellular immunity compartment – T-cells is of a special interest. It is known that MSC tissue niche and expected milieu of their interaction with T- cells are characterized by low oxygen concentration, whereas the in vitro experiments usually are carried out at a much higher ambient oxygen (20%). We firstly evaluated immunomodulatory effects of MSCs on T-cells at tissue-related oxygen (5%) after interaction implied cell-to-cell contacts and paracrine factors only. It turned out that MSCs under reduced oxygen can effectively suppress the activation and proliferation of PHA-stimulated T-cells and can provoke decrease in the production of proinflammatory and increase in anti-inflammatory cytokines. In hypoxia some effects were amplified (inhibition of proliferation, anti-inflammatory cytokine profile shift). This impact was more evident after direct cell-to-cell interaction; lack of intercellular contacts could revoke the potentiating effect of hypoxia.

Keywords: MSCs, T-cells, activation, low oxygen, cell-to-cell interaction, immunosuppression

Procedia PDF Downloads 354
2133 Defect Profile Simulation of Oxygen Implantation into Si and GaAs

Authors: N. Dahbi, R. B. Taleb

Abstract:

This study concerns the ion implantation of oxygen in two semiconductors Si and GaAs realized by a simulation using the SRIM tool. The goal of this study is to compare the effect of implantation energy on the distribution of implant ions in the two targets and to examine the different processes resulting from the interaction between the ions of oxygen and the target atoms (Si, GaAs). SRIM simulation results indicate that the implanted ions have a profile as a function of Gaussian-type; oxygen produced more vacancies and implanted deeper in Si compared to GaAs. Also, most of the energy loss is due to ionization and phonon production, where vacancy production amounts to few percent of the total energy.

Keywords: defect profile, GaAs, ion implantation, SRIM, phonon production, vacancies

Procedia PDF Downloads 139
2132 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung

Authors: Yu-Chen Hsu, Kuang C. Lin

Abstract:

The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.

Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows

Procedia PDF Downloads 282
2131 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study

Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.

Keywords: DFT study, copper oxide cluster, MOFs, methane conversion

Procedia PDF Downloads 41
2130 Cluster Analysis of Customer Churn in Telecom Industry

Authors: Abbas Al-Refaie

Abstract:

The research examines the factors that affect customer churn (CC) in the Jordanian telecom industry. A total of 700 surveys were distributed. Cluster analysis revealed three main clusters. Results showed that CC and customer satisfaction (CS) were the key determinants in forming the three clusters. In two clusters, the center values of CC were high, indicating that the customers were loyal and SC was expensive and time- and energy-consuming. Still, the mobile service provider (MSP) should enhance its communication (COM), and value added services (VASs), as well as customer complaint management systems (CCMS). Finally, for the third cluster the center of the CC indicates a poor level of loyalty, which facilitates customers churn to another MSP. The results of this study provide valuable feedback for MSP decision makers regarding approaches to improving their performance and reducing CC.

Keywords: cluster analysis, telecom industry, switching cost, customer churn

Procedia PDF Downloads 302
2129 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot

Authors: Magdy Al Shourbagi

Abstract:

Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.

Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers

Procedia PDF Downloads 265
2128 Prevalence of Overweight and Obesity in Iron-Deficient Iranian Teenagers Girls

Authors: Eftekhari M. H., Mozaffari-Khosravi H., Shidfar F.

Abstract:

Background: Many Iranian adolescent girls are iron deficient, but it is unclear whether the iron deficiency is associated with other nutritional risk indicators. Objective: we aimed to investigate the association between iron deficiency and weight status (measured as BMI) among a reprehensive sample of teenage girls. Methods: A cross-sectional study was performed in a region of southern I.R.Iran. One hundred eighty-seven iron-deficient participants (aged between 11 to 14) were selected by systematic random sampling among all students in grades 1 to 3 from high schools for girls. We assayed hemoglobin, hematocrit, serum ferritin, iron and total iron binding capacity and measured weight and height. Body mass index was calculated according to age and gender-specific BMI growth charts for children 2 to 20 years of age. Results: 13% were at risk for being overweight and 8.3% were overweight. The severity of iron deficiency increased as BMI increased from normal to at risk for overweight and overweight. Iron deficiency anemia was most prevalent among overweight adolescents than at risk for overweight and normal weight adolescents (28%, 18%, and 13%, respectively). Conclusions: The results of this study showed an inverse association of BMI with serum ferritin. Overweight adolescents demonstrated an increased prevalence of anemia. Because of the potentially harmful effects of iron deficiency, obese adolescents should be routinely screened and treated as necessary.

Keywords: adolescent, over weight, iron deficiency, Iran

Procedia PDF Downloads 107
2127 The Use of Ward Linkage in Cluster Integration with a Path Analysis Approach

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

Path analysis is an analytical technique to study the causal relationship between independent and dependent variables. In this study, the integration of Clusters in the Ward Linkage method was used in a variety of clusters with path analysis. The variables used are character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₄) to on time pay (y₂) through the variable willingness to pay (y₁). The purpose of this study was to compare the Ward Linkage method cluster integration in various clusters with path analysis to classify willingness to pay (y₁). The data used are primary data from questionnaires filled out by customers of Bank X, using purposive sampling. The measurement method used is the average score method. The results showed that the Ward linkage method cluster integration with path analysis on 2 clusters is the best method, by comparing the coefficient of determination. Variable character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₅) to on time pay (y₂) through willingness to pay (y₁) can be explained by 58.3%, while the remaining 41.7% is explained by variables outside the model.

Keywords: cluster integration, linkage, path analysis, compliant paying behavior

Procedia PDF Downloads 147
2126 An Exploratory Study of Nasik Small and Medium Enterprises Cluster

Authors: Pragya Bhawsar, Utpal Chattopadhyay

Abstract:

Small and Medium Enterprises play crucial role in contributing to economic objectives of an emerging nation. To support SMEs, the idea of creation of clusters has been prevalent since past two decades. In this paper, an attempt has been done to explore the impact of being in the cluster on the competitiveness of SMEs. To meet the objective, Nasik Cluster (India) has been selected. The information was collected by means of two focus group discussions and survey of thirty SMEs. The finding generates interest revealing the fact that under the concept ‘Cluster’ a lot of ambiguity flourish. Besides the problems and opportunities of the firms in the cluster the results bring to notice that the benefits of clusterization can only reach to SMEs when the whole location can be considered/understood as a cluster, rather than many subsets (various forms of clusters) prevailing under it. Fostering such an understanding calls for harmony among the various stakeholders of the clusters. The dynamics of interaction among government, local industry associations, relevant institutions, large firms and finally SMEs which makes the most of the location based cluster, are significant in shaping the host cluster’s competitiveness and vice versa.

Keywords: SMEs, industry clusters, common facility centres, co-creation, policy

Procedia PDF Downloads 266
2125 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars

Authors: Zeki Kara, Kevser Yazar

Abstract:

Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.

Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.

Procedia PDF Downloads 143
2124 Aeration of Fish Pond Aquaculture Using Wind Power

Authors: Fatima Hassan Mohamed Ahmed

Abstract:

This study discusses the possibility techniques of using wind energy to operate the aeration devices which are used in the intensive fish farm for Nile Tilapia. The main objective is to show at what expense this renewable energy source can increase the production. The study was done for the oxygen consumption by 1 kg fishes of tilapia put in 1 m3. The theoretical study shows that the fishes consume around 0.5 gO2/hour when using paddle wheels with average oxygen transfer rate 2.6 kgO2/kW.h comparing this with dissolved oxygen consumed by fishes it was found that 1 kW will aerate 5200 m3 and the same power will aerate 1800 m3 when using air diffuser system with average oxygen transfer rate 0.9 kgO2/kW.h, this power can be supplied by the wind turbine with dimension with a tower 6 m high and diameter 2.7 m.

Keywords: aeration, fish pond, wind, power

Procedia PDF Downloads 603
2123 'Innovation Clusters' as 'Growth Poles' to Propel Industry 4.0 Capacity Building of small and medium enterprises (SMEs) and Startups

Authors: Vivek Anand, Rainer Naegele

Abstract:

Industry 4.0 envisages 'smart' manufacturing and services, taking the automation of the 3rd Industrial Revolution to the autonomy of the 4th Industrial Revolution. Powered by innovations in technology and business models, this disruptive transformation is revitalising industry by integrating silos across and beyond value chains. Motivated by the challenges faced by SMEs and Startups in understanding and adopting Industry 4.0, this paper aims to analyse the concept of Growth Poles and evaluate the possibility of its application to Innovation Clusters that strive to propel Industry 4.0 adoption and capacity building. The proposed paper applies qualitative research methodologies including focus groups and survey questionnaires to identify the various factors that affect formation and development of Innovation Clusters. Employing content analysis, the interaction between SMEs and other ecosystem players in such clusters is studied. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position these cluster-based growth poles at the forefront of industrial renaissance. Motivated by this argument, and based on the results of the qualitative research, a roadmap will be proposed to position Innovation Clusters as Growth Poles and effective ecosystems to support Industry 4.0 adoption in a region in the medium to long term. This paper will contribute to the current understanding of the role of Innovation Clusters in capacity building. Relevant management and policy implications stem from the analysis. Furthermore, the findings will be helpful for academicians and policymakers alike, who can leverage an ‘innovation cluster policy’ to enable Industry 4.0 Growth Poles in their regions.

Keywords: digital transformation, fourth industrial revolution, growth poles, industry 4.0, innovation clusters, innovation policy, SMEs and startups

Procedia PDF Downloads 198
2122 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN.  Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.

Keywords: magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR

Procedia PDF Downloads 343
2121 Chemical and Oxygen Isotope Analysis of Roman Glasses from Northern Greece

Authors: P. Karalis, E. Dotsika, A. Godelitsas, M. Tassi, D. Ignatiadou

Abstract:

Glass artefacts originated from Northern Greece, dated between 1st and 6th AC, were analyzed for their oxygen isotopic and chemical compositions in order to identify their raw materials provenance. The chemical composition of these glasses is rather heterogeneous although they are all obtained with natron as flux, having both K₂O and MgO contents lower than 1.5 wt%. The majority of these samples have a homogeneous oxygen isotopic composition (𝛿18O= 16‰,), which is equal to or very close to the mean value of “Roman” glass (from about 15‰ to 16.0‰). The rest of the samples present heavily enriched 𝛿18O values that indicate that their raw materials differ from those normally used in Roman and Medieval glass production, and this matches with the possibility of the different origins of these materials. So, all these fragments are soda-lime-silica natron-glass produced from natron, possibly coming from more than one source.

Keywords: ancient glass, provenance of raw materials of ancient glass, roman glass, oxygen isotope analysis in glass

Procedia PDF Downloads 100
2120 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment

Procedia PDF Downloads 286
2119 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method

Authors: Ali Rahnamoun, Adri van Duin

Abstract:

The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.

Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica

Procedia PDF Downloads 384
2118 Neural Changes Associated with Successful Antidepressant Treatment in Adolescents with Major Depressive Disorder

Authors: Dung V. H. Pham, Kathryn Cullen

Abstract:

Introduction: 40% of adolescents with major depression (MDD) are unresponsive to 1st line antidepressant treatment. The neural mechanism underlying treatment-responsive and treatment-resistant depression in adolescent are unclear. Amygdala is important for emotion processing and has been implicated in mood disorders. Past research has shown abnormal amygdala connectivity in adolescents with MDD. This research study changes in amygdala resting-state functional connectivity to find neural correlates of successful antidepressant treatment. Methods: Thirteen adolescents aged 12-19 underwent rfMRI before and after 8-week antidepressant treatment and completed BDI-II at each scan. A whole-brain approach, using anatomically defined amygdala ROIs (1) identified brain regions that are highly synchronous with the amygdala, (2) correlated neural changes with changes in overall depression and specific symptom clusters within depression. Results: Some neural correlates were common across domains: (1) decreased amygdala RSFC with the default mode network (posterior cingulate, precuneus) is associated with improvement in overall depression and many symptom clusters, (2) increased amygdala RSFC with fusiform gyrus is associated with symptom improvement across many symptom clusters. We also found unique neural changes associated with symptom improvement in each symptom cluster. Conclusion: This is the first preliminary study that looks at neural correlates of antidepressant treatment response to overall depression as well as different clusters of symptoms of depression. The finding suggests both overlapping and distinct neural mechanisms underlying improvement in each symptom clusters within depression. Some brain regions found are also implicated in MDD among adults in previous literature.

Keywords: depression, adolescents, fMRI, antidepressants

Procedia PDF Downloads 231
2117 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 181
2116 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs

Authors: Jamal Hussain Al-Smail

Abstract:

Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.

Keywords: fuel cells, material porosity design, mathematical modeling, porous media

Procedia PDF Downloads 124
2115 Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment

Authors: Fatemeh Rezaei, Babak Shokri

Abstract:

In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films.

Keywords: cellular response, hydrophilicity, MTT assay, PMMA, RF plasma

Procedia PDF Downloads 640
2114 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress

Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen

Abstract:

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.

Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq

Procedia PDF Downloads 361