Search results for: nonlinear porous media equation
6530 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media
Authors: Olayiwola Moruf Oyedunsi
Abstract:
This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation
Procedia PDF Downloads 3206529 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix
Authors: Shubham Jaiswal
Abstract:
During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method
Procedia PDF Downloads 4376528 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility
Procedia PDF Downloads 2176527 On the Well-Posedness of Darcy–Forchheimer Power Model Equation
Authors: Johnson Audu, Faisal Fairag
Abstract:
In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.Keywords: porous media, power law, strong inertia, nonlinear, monotone type
Procedia PDF Downloads 3146526 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media
Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb
Abstract:
Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions
Procedia PDF Downloads 5446525 Analytical Solution for Thermo-Hydro-Mechanical Analysis of Unsaturated Porous Media Using AG Method
Authors: Davood Yazdani Cherati, Hussein Hashemi Senejani
Abstract:
In this paper, a convenient analytical solution for a system of coupled differential equations, derived from thermo-hydro-mechanical analysis of three-phase porous media such as unsaturated soils is developed. This kind of analysis can be used in various fields such as geothermal energy systems and seepage of leachate from buried municipal and domestic waste in geomaterials. Initially, a system of coupled differential equations, including energy, mass, and momentum conservation equations is considered, and an analytical method called AGM is employed to solve the problem. The method is straightforward and comprehensible and can be used to solve various nonlinear partial differential equations (PDEs). Results indicate the accuracy of the applied method for solving nonlinear partial differential equations.Keywords: AGM, analytical solution, porous media, thermo-hydro-mechanical, unsaturated soils
Procedia PDF Downloads 2286524 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment
Authors: Thomas Paris, Vincent Bruyere, Patrick Namy
Abstract:
A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.Keywords: compressible flow, fluid mechanics, heat transfer, porous media
Procedia PDF Downloads 4046523 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)
Procedia PDF Downloads 3236522 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method
Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh
Abstract:
When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity
Procedia PDF Downloads 4956521 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects
Authors: H. Triki, Y. Hamaizi, A. El-Akrmi
Abstract:
We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution
Procedia PDF Downloads 6346520 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity
Authors: Muna Alghabshi, Edmana Krishnan
Abstract:
A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method
Procedia PDF Downloads 3136519 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation
Authors: Praveen Kumar, R. Uma, R. P. Sharma
Abstract:
This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation
Procedia PDF Downloads 716518 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 986517 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium
Authors: D. Srinivasacharya, Nidhi Humnekar
Abstract:
The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media
Procedia PDF Downloads 1096516 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation
Authors: A. Keshavarz, Z. Roosta
Abstract:
In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law
Procedia PDF Downloads 3416515 Numerical Analysis of a Strainer Using Porous Media Technique
Authors: Ji-Hoon Byeon, Kwon-Hee Lee
Abstract:
Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).Keywords: strainer, porous media, CFD, numerical analysis
Procedia PDF Downloads 3696514 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation
Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieha
Abstract:
In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.Keywords: polynomial constitutive equation, solitary, stress solitary waves, nonlinear constitutive law
Procedia PDF Downloads 4946513 Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations
Authors: A. Zerarka, W. Djoudi
Abstract:
We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions.Keywords: fractional transformations, nonlinear equation, travelling wave solutions, lattice equation
Procedia PDF Downloads 6576512 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 3066511 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System
Authors: Ayda Nikkar, Roghayye Ahmadiasl
Abstract:
In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave
Procedia PDF Downloads 3096510 Experimental Technique to Study Colloid Deposition in Porous Media
Authors: Abdelkader Djehiche, Mostefa Gafsi, Henri Bertin, Aziz Omari
Abstract:
The flows of colloidal suspensions in porous media find many applications in fields such as Petroleum, Hydraulic engineering, deep-bed filtration. For each application, the scientific problems can be summarized the flow in porous medium of a colloidal suspension whose particles having characteristic dimension is considerable in comparison with the pores dimension. In certain cases, one can observe a deposit of particles on the surface of the pores which results in a significant modification in the physical properties of the porous medium. The objective of our study is to use a non-destructive experimental method, the attenuation of g-rays, to study the influence of the number of Peclet on the deposit of latex particles in a consolidated porous medium. The first results obtained show a good agreement between local and global measurements of the deposit of the particles in porous medium. The deposit takes place in a progressive way along the porous medium and leads to a monolayer deposit of which the average thickness is of about the size diameter of the colloidal particles.Keywords: colloid, gamma ray, Peclet number, permeability, porous medium
Procedia PDF Downloads 1856509 A Dynamic Symplectic Manifold Analysis for Wave Propagation in Porous Media
Authors: K. I. M. Guerra, L. A. P. Silva, J. C. Leal
Abstract:
This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the traveling wave through the porous body. A solution for this equation is proposed after all boundary, and initial conditions are fixed, and it’s accepted that the solution lies in a manifold U of purely spatial dimensions and that is embedded in the Real n-dimensional manifold, with spatial and kinetic dimensions. It’s shown that the U manifold of lower dimensions than IRna, where it is embedded, inherits properties of the vector spaces existing inside the topology it lies on. Then, a second manifold (U*), embedded in another space called IRnb of stress dimensions, is proposed and there’s a non-degenerative function that maps it into the U manifold. This relation is proved as a transformation in between two corresponding admissible solutions of the differential equation in distinct dimensions and properties, leading to a more visual and intuitive understanding of the whole dynamic process of a stress wave through a porous medium and also highlighting the dimensional invariance of Terzaghi’s theory for any coordinate system.Keywords: poremechanics, soil dynamics, symplectic geometry, wave propagation
Procedia PDF Downloads 2946508 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1856507 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method
Authors: A. Zerarka, W. Djoudi
Abstract:
The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions
Procedia PDF Downloads 6626506 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells
Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar
Abstract:
This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane
Procedia PDF Downloads 3186505 Mapping Method to Solve a Nonlinear Schrodinger Type Equation
Authors: Edamana Vasudevan Krishnan
Abstract:
This paper studies solitons in optical materials with the help of Mapping Method. Two types of nonlinear media have been investigated, namely, the cubic nonlinearity and the quintic nonlinearity. The soliton solutions, shock wave solutions and singular solutions have been derives with certain constraint conditions.Keywords: solitons, integrability, metamaterials, mapping method
Procedia PDF Downloads 4926504 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation
Authors: Sarun Phibanchon, Yuttakarn Rattanachai
Abstract:
The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.Keywords: soliton, ion-acoustic waves, plasma, spectral method
Procedia PDF Downloads 4096503 Fully Coupled Porous Media Model
Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li
Abstract:
This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.Keywords: coupled, implicit, monolithic, porous media
Procedia PDF Downloads 1376502 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations
Authors: Chao-Qing Dai
Abstract:
In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation
Procedia PDF Downloads 6676501 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids
Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin
Abstract:
In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena
Procedia PDF Downloads 282