Search results for: nickel nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1788

Search results for: nickel nanoparticles

1698 Preparation of Gold Nanoparticles Stabilized in Acid-Activated Montmorillonite for Nitrophenol Reduction

Authors: Fatima Ammari, Meriem Chenouf

Abstract:

Synthesis of gold nanoparticles (AuNPs) has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used montmorillonite pre-acidified under gentle conditions for AuNPs stabilization; using different loading percentage 1, 2 and 5%. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in acid-activated montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature The UV-Vis results confirm directly the gold nanaoparticles formation. The XRD N2 adsorption and MET results showed the formation of gold nanoparticles in the pores of preacidified montmorillonite with an average size of 5.7nm. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au°-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 4.5min.

Keywords: gold, acid-activated montmorillonite, nanoparticles, 4-nitrophenol

Procedia PDF Downloads 358
1697 Wire Arc Additive Manufacturing of Aluminium–Magnesium Alloy AlMg4.5Mn With TiC Nanoparticles

Authors: Javad Karimi

Abstract:

The grain morphology and size of the additively manufactured (AM) aluminium alloys play a vital role in the performance and mechanical properties. AM-fabricated aluminium parts exhibit a relatively coarse microstructure with a columnar morphology. Ceramic nanoparticles, such as Titanium carbide (TiC), have shown great potential to reduce grain size and consequently influence the mechanical properties. In this study, the microstructural and mechanical properties of aluminium parts with TiC nanoparticles will be investigated. AM aluminium components will be fabricated using wire arc additive manufacturing (WAAM). The effect of the addition of TiC nanoparticles with different wt% on the melt pool geometry will be examined, and the obtained results will be compared to those obtained from pure ER5183. The impact of TiC nanoparticles addition in the AM parts will be analyzed comprehensively, and the results will be discussed in detail.

Keywords: additive manufacturing, wire arc additive manufacturing, nanoparticles, grain refinement

Procedia PDF Downloads 53
1696 Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios

Authors: May Thant Zin, Josephine Borja, Hirofumi Hinode, Winarto Kurniawan

Abstract:

Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nano-particles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000 Ao (or 100 nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm.

Keywords:

Procedia PDF Downloads 408
1695 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 35
1694 Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment

Authors: Naima Benachour, Sabiha Chouchane, J. Paul Chopart

Abstract:

The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction.

Keywords: Zn-Ni alloys, electroplating, magnetic field, chronopotentiometry

Procedia PDF Downloads 415
1693 Mixture of Polymers and Coating Fullerene Soft Nanoparticles

Authors: L. Bouzina, A. Bensafi, M. Duval, C. Mathis, M. Rawiso

Abstract:

We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles.

Keywords: fulleren nanoparticles, polymer, small angle neutron scattering, solubility

Procedia PDF Downloads 346
1692 Rapid Green Synthesis and Characterization of Silver Nanoparticles Using Eclipta prostrata Leaf Extract

Authors: Siva Prasad Peddi

Abstract:

Silver nanoparticles were successfully synthesized from silver nitrate through a rapid green synthesis method using Eclipta prostrata leaf extract as a reducing cum stabilizing agent. The experimental procedure was readily conducted at room temperature and pressure, and could be easily scaled up. The silver nanoparticles thus obtained were characterized using UV-Visible Spectroscopy (UV-VIS) which yielded an absorption peak at 416 nm. The biomolecules responsible for capping of the bio-reduced silver nanoparticles synthesized using plant extract were successfully identified through FTIR analysis. It was evinced through Scanning Electron Microscope (SEM), and X-ray diffraction (XRD) analysis that the silver nanoparticles were crystalline in nature and spherical in shape. The average size of the particles obtained using Scherrer’s formula was 27.4 nm. The adopted technique for silver nanoparticle synthesis is suitable for large-scale production.

Keywords: silver nanoparticles, green synthesis, characterization, Eclipta prostrata

Procedia PDF Downloads 444
1691 Synergistic Effect between Titanium Oxide and Silver Nanoparticles in Polymeric Binary Systems

Authors: Raquel C. A. G. Mota, Livia R. Menezes, Emerson O. da Silva

Abstract:

Both silver nanoparticles and titanium dioxide have been extensively used in tissue engineering since they’ve been approved by the Food and Drug Administration (FDA), and present a bactericide effect when added to a polymeric matrix. In this work, the focus is on fabricating binary systems with both nanoparticles so that the synergistic effect can be investigated. The systems were tested by Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis (TGA), Fourier-Transformed Infrared (FTIR), and Differential Scanning Calorimetry (DSC), and X-ray Diffraction (XRD), and had both their bioactivity and bactericide effect tested. The binary systems presented different properties than the individual systems, enhancing both the thermal and biological properties as was to be expected. The crystallinity was also affected, as indicated by the finding of the DSC and XDR techniques, and the NMR showed a good dispersion of both nanoparticles in the polymer matrix. These findings indicate the potential of combining TiO₂ and silver nanoparticles in biomedicine.

Keywords: metallic nanoparticles, nanotechnology, polymer nanocomposites, polymer science

Procedia PDF Downloads 111
1690 Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

Authors: Prachi Singh

Abstract:

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Keywords: antibacterial effect, CFU, Escherichia coli Hb101, growth curve, TEM, TiO2 nanoparticle, Toxicity, UV-Vis

Procedia PDF Downloads 265
1689 Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles

Authors: Sudhakar Saroj, Satya Vir Singh

Abstract:

Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst.

Keywords: direct blue 199, nanoparticles, TiO₂, photodegradation

Procedia PDF Downloads 208
1688 Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract

Authors: Yameen Ahmed, Jamshid Hussain, Farman Ullah, Sohaib Asif

Abstract:

The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles.

Keywords: cobalt oxide, copper oxide, green synthesis, nanoparticles

Procedia PDF Downloads 178
1687 Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization

Authors: Mehrji Khosravan, Mostafa Fathali-Sianib, Davood Soudbar, Sasan Talebnezhad, Mohammad-Reza Ebrahimi

Abstract:

The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst.

Keywords: α-diimine nickel (II) complex, graphene as supported catalyst, late transition metal, ethylene polymerization

Procedia PDF Downloads 351
1686 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions

Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari

Abstract:

Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.

Keywords: current density, duty cycle, microstructure, nickel, pulse frequency

Procedia PDF Downloads 345
1685 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam

Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani

Abstract:

Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.

Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology

Procedia PDF Downloads 57
1684 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava

Abstract:

In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular.

Keywords: cryosurgery, hybrid EFGM/FEM, nanoparticles, simulation

Procedia PDF Downloads 216
1683 Structural, Magnetic and Electrical Properties of Gd3+ Doped CoFe2O4 Nanoparticles Synthesized by Sonochemical Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka

Abstract:

In this report, we studied the impact of Gd3+ substitution on structural, magnetic and electrical properties of CoFe2O4 nanoparticles synthesized by sonochemical method. X-ray diffraction pattern confirmed the formation of cubic spinel structure at low concentration of Gd3+ ions, however, GdFeO3 additional phase was observed at higher concentration of Gd3+ ions. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of Gd3+ substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed that Gd3+ substituted CoFe2O4 nanoparticles were in the range of 5-20 nm. The magnetic properties of Gd3+ substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with Gd3+ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied at room temperature.

Keywords: spinel ferrites, nanoparticles, sonochemical method, magnetic properties

Procedia PDF Downloads 273
1682 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures

Authors: S. Mohajeri

Abstract:

Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.

Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating

Procedia PDF Downloads 230
1681 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy

Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu

Abstract:

In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.

Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics

Procedia PDF Downloads 284
1680 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources

Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani

Abstract:

Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.

Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel

Procedia PDF Downloads 328
1679 Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)

Authors: Piyaporn Buaklang, Narisa Kengtrong Bordeerat

Abstract:

The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner.

Keywords: nanoparticles, genotoxicity, human lymphoblast cells (TK6), micronucleus

Procedia PDF Downloads 282
1678 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden

Authors: Suchhanda Ghosh, A. K. Paul

Abstract:

Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.

Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden

Procedia PDF Downloads 171
1677 Functionalized Nanoparticles for Drug Delivery Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary platform for drug delivery, offering significant advantages over traditional methods. By strategically modifying their surface properties, these nanoparticles can be designed to target specific tissues and cells, significantly reducing off-target effects and enhancing therapeutic efficacy. This targeted approach allows for lower drug doses, minimizing systemic exposure and potential side effects. Additionally, functionalization enables controlled release of the encapsulated drug, improving drug stability and reducing the frequency of administration, leading to improved patient compliance. This work explores the immense potential of functionalized nanoparticles in revolutionizing drug delivery, addressing limitations associated with conventional therapies and paving the way for personalized medicine with precise and targeted treatment strategies.

Keywords: nanoparticles, drug, nanomaterials, applications

Procedia PDF Downloads 36
1676 Preparation and Characterization of Chitosan / Polyacrylic Acid / Ag-nanoparticles Composite Membranes

Authors: Abdel-Mohdy, A. Abou-Okeil, S. El-Sabagh, S. M. El-Sawy

Abstract:

Chitosan polyacrylic acid composite membranes were prepared by a bulk polymerization method in the presence of N, N'-methylene bisacrylamide (crosslinker) and ammonium persulphate as initiator. Membranes prepared from this copolymer in presence and absence of Ag nanoparticles were characterized by measuring mechanical and physical properties, water up-take and antibacterial properties. The results obtained indicated that the prepared membranes have antibacterial properties which increases with adding Ag nanoparticles.

Keywords: Ag nanoparticles , antimicrobial, Membrane, composites, mechanical properties, physical properties

Procedia PDF Downloads 449
1675 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive

Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman

Abstract:

Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.

Keywords: concentration, improvement, tribological, copper (II) oxide, nano lubricant

Procedia PDF Downloads 417
1674 Effect of Using a Mixture of Al2O3 Nanoparticles and 3-Aminopropyltriethoxysilane as the Sensing Membrane for Polysilicon Wire on pH Sensing

Authors: You-Lin Wu, Zong-Xian Wu, Jing-Jenn Lin, Shih-Hung Lin

Abstract:

In this work, a polysilicon wire (PSW) coated with a mixture of 3-aminopropyltriethoxysilane (r-APTES) and Al2O3 nanoparticles as the sensing membrane prepared with various Al2O3/r-APTES and dispersing agent/r-APTES ratios for pH sensing is studied. The r-APTES and dispersed Al2O3 nanoparticles mixture was directly transferred to PSW surface by solution phase deposition (SPD). It is found that using a mixture of Al2O3 nanoparticles and r-APTES as the sensing membrane help in improving the pH sensing of the PSW sensor and a 5 min SPD deposition time is the best. Dispersing agent is found to be necessary for better pH sensing when preparing the mixture of Al2O3 nanoparticles and r-APTES. The optimum condition for preparing the mixture is found to be Al2O3/r-APTES ratio of 2% and dispersing agent/r-APTES ratio of 0.3%.

Keywords: al2o3 nanoparticles, ph sensing, polysilicon wire sensor, r-aptes

Procedia PDF Downloads 390
1673 Spectroscopic Characterization Approach to Study Ablation Time on Zinc Oxide Nanoparticles Synthesis by Laser Ablation Technique

Authors: Suha I. Al-Nassar, K. M. Adel, F. Zainab

Abstract:

This work was devoted for producing ZnO nanoparticles by pulsed laser ablation (PLA) of Zn metal plate in the aqueous environment of cetyl trimethyl ammonium bromide (CTAB) using Q-Switched Nd:YAG pulsed laser with wavelength= 1064 nm, Rep. rate= 10 Hz, Pulse duration= 6 ns and laser energy 50 mJ. Solution of nanoparticles is found stable in the colloidal form for a long time. The effect of ablation time on the optical and structure of ZnO was studied is characterized by UV-visible absorption. UV-visible absorption spectrum has four peaks at 256, 259, 265, 322 nm for ablation time (5, 10, 15, and 20 sec) respectively, our results show that UV–vis spectra show a blue shift in the presence of CTAB with decrease the ablation time and blue shift indicated to get smaller size of nanoparticles. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. Also, FTIR transmittance spectra of ZnO2 nanoparticles prepared in these states show a characteristic ZnO absorption at 435–445cm^−1.

Keywords: zinc oxide nanoparticles, CTAB solution, pulsed laser ablation technique, spectroscopic characterization

Procedia PDF Downloads 353
1672 Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles

Authors: Hosam Abdelhady

Abstract:

Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells.

Keywords: AFM, dendrimers, nanoparticles, DNA, gene therapy, imaging

Procedia PDF Downloads 51
1671 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis

Procedia PDF Downloads 289
1670 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy

Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma

Abstract:

Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.

Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles

Procedia PDF Downloads 172
1669 Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide

Authors: Humaira Khan, Mohsin Javed, Sammia Shahid

Abstract:

The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity.

Keywords: degradation, graphene oxide, photocatalysis, ZnO nanoparticles and copper-doped ZnO nanoparticles

Procedia PDF Downloads 185