Search results for: nano-second pulsed laser
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 961

Search results for: nano-second pulsed laser

181 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 23
180 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar

Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen

Abstract:

The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.

Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source

Procedia PDF Downloads 109
179 Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell

Authors: Yu-Hsi Huang, Ying-Der Tsai

Abstract:

Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell.

Keywords: piezoelectric semi-spherical shell, mode shape, resonant frequency, electronic speckle pattern interferometry, radial vibration, azimuthal vibration

Procedia PDF Downloads 202
178 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 102
177 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 71
176 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation

Authors: Deepanjali Gurav, Kun Qian

Abstract:

In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.

Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics

Procedia PDF Downloads 113
175 Visual Outcome After 360-Degree Retinectomy in Total Rhegmatogenous Retinal Detachment with Advanced Proliferative Vitreoretinopathy: A Case Series

Authors: Andriati Nadhilah Widyarini, Ezra Margareth

Abstract:

Introduction: Rhegmatogenous retinal detachment is a condition where there’s a break in the retina, which allows the vitreous to directly enter the subretinal space. Proliferative vitreoretinopathy (PVR) may develop due to this condition and can result in a new break, which could cause traction on the previously detached retina. Various methods of therapy can be done to treat this complication. Case: This case series involved 2 eyes of 2 patients who had total retinal detachment with advanced PVR. Pars plana vitrectomy was performed, and a 360-degree retinectomy procedure with perfluorocarbon liquid usage was done. This was followed by endo laser retinopexy to surround the border of retinectomy. 5000 cs silicone oil was used in 1 eye, whereas 12% of perfluoropropane gas was used in the other eye as a tamponade. These procedures were performed with meticulous attention to prevent any fluid from entering the subretinal space. Postoperative examination showed attachment of the retina and improvement of the patient’s visual acuity. Both eyes’ intraocular pressure was in the normal range. One eye developed retinal displacement, but no other complications occurred. Discussion: Rhegmatogenous retinal detachment with advanced PVR is a complex situation for vitreoretinal surgeons. PVR is characterized by the growth and migration of preretinal or subretinal membranes. PVR is the most common cause of retinal reattachment failure. A 360-degree retinectomy is an alternative surgical method to overcome this condition. Objectives of this procedure are releasing retinal traction caused by PVR, reducing the recurrence rate of PVR, and reattaching the retina to the pigment epithelial surface. Conclusion: 360-degree retinectomy provides satisfactory retinal reattachment and visual outcome improvement in rhegmatogenous retinal detachment with advanced PVR.

Keywords: RRD, retinectomy, pars plana, advanced PVR

Procedia PDF Downloads 27
174 Innovative Design Considerations for Adaptive Spacecraft

Authors: K. Parandhama Gowd

Abstract:

Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.

Keywords: satellites, low earth orbit (LEO), medium earth orbit (MEO), geostationary earth orbit (GEO), self-organizing control system, anti-satellite weapons (ASAT), orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems (AOCS), command and data handling (CDH)

Procedia PDF Downloads 273
173 Digitizing Masterpieces in Italian Museums: Techniques, Challenges and Consequences from Giotto to Caravaggio

Authors: Ginevra Addis

Abstract:

The possibility of reproducing physical artifacts in a digital format is one of the opportunities offered by the technological advancements in information and communication most frequently promoted by museums. Indeed, the study and conservation of our cultural heritage have seen significant advancement due to the three-dimensional acquisition and modeling technology. A variety of laser scanning systems has been developed, based either on optical triangulation or on time-of-flight measurement, capable of producing digital 3D images of complex structures with high resolution and accuracy. It is necessary, however, to explore the challenges and opportunities that this practice brings within museums. The purpose of this paper is to understand what change is introduced by digital techniques in those museums that are hosting digital masterpieces. The methodology used will investigate three distinguished Italian exhibitions, related to the territory of Milan, trying to analyze the following issues about museum practices: 1) how digitizing art masterpieces increases the number of visitors; 2) what the need that calls for the digitization of artworks; 3) which techniques are most used; 4) what the setting is; 5) the consequences of a non-publication of hard copies of catalogues; 6) envision of these practices in the future. Findings will show how interconnection plays an important role in rebuilding a collection spread all over the world. Secondly how digital artwork duplication and extension of reality entail new forms of accessibility. Thirdly, that collection and preservation through digitization of images have both a social and educational mission. Fourthly, that convergence of the properties of different media (such as web, radio) is key to encourage people to get actively involved in digital exhibitions. The present analysis will suggest further research that should create museum models and interaction spaces that act as catalysts for innovation.

Keywords: digital masterpieces, education, interconnection, Italian museums, preservation

Procedia PDF Downloads 150
172 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)

Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah

Abstract:

The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.

Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan

Procedia PDF Downloads 49
171 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 338
170 Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study

Authors: Henrique Fernandes, Sofia Catalucci, Richard Leach, Kapil Sugand

Abstract:

Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories.

Keywords: holography, 3D scans, hologram box, metrology, point cloud

Procedia PDF Downloads 60
169 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles

Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma

Abstract:

Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.

Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity

Procedia PDF Downloads 101
168 High Resolution Sandstone Connectivity Modelling: Implications for Outcrop Geological and Its Analog Studies

Authors: Numair Ahmed Siddiqui, Abdul Hadi bin Abd Rahman, Chow Weng Sum, Wan Ismail Wan Yousif, Asif Zameer, Joel Ben-Awal

Abstract:

Advances in data capturing from outcrop studies have made possible the acquisition of high-resolution digital data, offering improved and economical reservoir modelling methods. Terrestrial laser scanning utilizing LiDAR (Light detection and ranging) provides a new method to build outcrop based reservoir models, which provide a crucial piece of information to understand heterogeneities in sandstone facies with high-resolution images and data set. This study presents the detailed application of outcrop based sandstone facies connectivity model by acquiring information gathered from traditional fieldwork and processing detailed digital point-cloud data from LiDAR to develop an intermediate small-scale reservoir sandstone facies model of the Miocene Sandakan Formation, Sabah, East Malaysia. The software RiScan pro (v1.8.0) was used in digital data collection and post-processing with an accuracy of 0.01 m and point acquisition rate of up to 10,000 points per second. We provide an accurate and descriptive workflow to triangulate point-clouds of different sets of sandstone facies with well-marked top and bottom boundaries in conjunction with field sedimentology. This will provide highly accurate qualitative sandstone facies connectivity model which is a challenge to obtain from subsurface datasets (i.e., seismic and well data). Finally, by applying this workflow, we can build an outcrop based static connectivity model, which can be an analogue to subsurface reservoir studies.

Keywords: LiDAR, outcrop, high resolution, sandstone faceis, connectivity model

Procedia PDF Downloads 185
167 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 234
166 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 191
165 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 381
164 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 256
163 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 130
162 New Stratigraphy Profile of Classic Nihewan Basin Beds, Hebei, Northern China

Authors: Arya Farjand

Abstract:

The Nihewan Basin is a critical region in order to understand the Plio-Pleistocene paleoenvironment and its fauna in Northern China. The rich fossiliferous, fluvial-lacustrine sediments around the Nihewan Village hosted the specimens known as the Classic Nihewan Fauna. The primary excavations in the early 1920-30s produced more than 2000 specimens housed in Tianjin and Paris Museum. Nevertheless, the exact locality of excavations, fossil beds, and the reliable ages remained ambiguous until recent paleomagnetic studies and extensive work in conjunction sites. In this study, for the first time, we successfully relocated some of the original excavation sites. We reexamined more than 1500 specimens held in Tianjin Museum and cited their locality numbers and properties. During the field-season of 2017-2019, we visited the Xiashagou Valley. By reading the descriptions of the original site, utilization of satellite pictures, and comparing them with the current geomorphology of the area, we ensured the exact location of 26 of these sites and 17 fossil layers. Furthermore, by applying the latest technologies, such as GPS, Compass, digital barometers, laser measurer, and Abney level, we ensured the accuracy of the measurement. We surveyed 133-meter thickness of the deposits. Ultimately by applying the available Paleomagnetic data for this section, we estimated the ages of different horizons. The combination of our new data and previously published researches present a unique age control for the Classic Nihewan Fauna. These findings prove the hypothesis in which the Classic Nihewan Fauna belongs to different horizons, ranging from before Reunion up to after Olduvai earth geomagnetic field excursion (2.2-1.7 Mya).

Keywords: classic Nihewan basin fauna, Olduvai excursion, Pleistocene, stratigraphy

Procedia PDF Downloads 108
161 Using Biopolymer Materials to Enhance Sandy Soil Behavior

Authors: Mohamed Ayeldeen, Abdelazim Negm

Abstract:

Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration.

Keywords: biopolymer, direct shear, permeability, sand, shear strength, Xanthan gum

Procedia PDF Downloads 240
160 Raman Spectroscopic of Cardioprotective Mechanism During the Metabolic Inhibition of Heart Cells

Authors: A. Almohammedi, A. J. Hudson, N. M. Storey

Abstract:

Following ischaemia/reperfusion injury, as in a myocardial infraction, cardiac myocytes undergo oxidative stress which leads to several potential outcomes including; necrotic or apoptotic cell death or dysregulated calcium homeostasis or disruption of the electron transport chain. Several studies have shown that nitric oxide donors protect cardiomyocytes against ischemia and reperfusion. However until present, the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes is not fully understood and has not been investigated before using Raman spectroscopy. For these reasons, the aim of this study was to develop a novel technique, pre-resonance Raman spectroscopy, to investigate the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes exposed to metabolic inhibition and re-energisation. The results demonstrated the first time that Raman microspectroscopy technique has the capability to monitor the metabolic inhibition of cardiomyocytes and to monitor the effectiveness of cardioprotection by nitric oxide donor prior to metabolic inhibition of cardiomyocytes. Metabolic inhibition and reenergisation were used in this study to mimic the low and high oxygen levels experienced by cells during ischaemic and reperfusion treatments. A laser wavelength of 488 nm used in this study has been found to provide the most sensitive means of observe the cellular mechanisms of myoglobin during nitric oxide donor preconditioning, metabolic inhibition and re-energisation and did not cause any damage to the cells. The data also highlight the considerably different cellular responses to metabolic inhibition to ischaemia. Moreover, the data has been shown the relationship between the release of myoglobin and chemical ischemia where that the release of myoglobin from the cell only occurred if a cell did not recover contractility.

Keywords: ex vivo biospectroscopy, Raman spectroscopy, biophotonics, cardiomyocytes, ischaemia / reperfusion injury, cardioprotection, nitric oxide donor

Procedia PDF Downloads 329
159 Peptidoglycan Vaccine-On-Chip against a Lipopolysaccharide-Induced Experimental Sepsis Model

Authors: Katerina Bakela, Ioanna Zerva, Irene Athanassakis

Abstract:

Lipopolysaccharide (LPS) is commonly used in murine sepsis models, which are largely associated with immunosuppression (incretion of MDSCs cells and Tregs, imbalance of inflammatory/anti-inflammatory cytokines) and collapse of the immune system. After adapting the LPS treatment to the needs of locally bred BALB/c mice, the present study explored the protective role of Micrococcus luteus peptidoglycan (PG) pre-activated vaccine-on chip in endotoxemia. The established protocol consisted of five daily intraperitoneal injections of 0.2mg/g LPS. Such protocol allowed longer survival, necessary in the prospect of the therapeutic treatment application. The so-called vaccine-on-chip consists of a 3-dimensional laser micro-texture Si-scaffold loaded with BALB/c mouse macrophages and activated in vitro with 1μg/ml PG, which exert its action upon subcutaneous implantation. The LPS treatment significantly decreased CD4+, CD8+, CD3z+, and CD19+ cells, while increasing myeloid-derived suppressor cells (MDSCs), CD25+, and Foxp3+ cells. These results were accompanied by increased arginase-1 activity in spleen cell lysates and production of IL-6, TNF-a, and IL-18 while acquiring severe sepsis phenotype as defined by the murine sepsis scoring. The in vivo application of PG pre-activated vaccine-on chip significantly decreased the percent of CD11b+, Gr1+, CD25+, Foxp3+ cells, and arginase-1 activity in the spleen of LPS-treated animals, while decreasing IL-6 and TNF-a in the serum, allowing survival to all animals tested and rescuing the severity of sepsis phenotype. In conclusion, these results reveal a promising mode of action of PG pre-activated vaccine-on chip in LPS endotoxemia, strengthening; thus, the use of treatment is septic patients.

Keywords: myeloid-derived suppressor cells, peptidoglycan, sepsis, Si-scaffolds

Procedia PDF Downloads 112
158 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA

Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu

Abstract:

The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.

Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding

Procedia PDF Downloads 309
157 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices

Authors: K. Swapna

Abstract:

A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.

Keywords: glasses, J-O parameters, photoluminescence, I-H model

Procedia PDF Downloads 129
156 Study on Shifting Properties of CVT Rubber V-belt

Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato

Abstract:

The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.

Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission

Procedia PDF Downloads 121
155 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 166
154 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps

Authors: Arkadiusz Zurek

Abstract:

The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.

Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0

Procedia PDF Downloads 46
153 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 170
152 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 228