Search results for: multi-directionally reinforced composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1943

Search results for: multi-directionally reinforced composites

1733 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: woven composite, aerospace applications, finite element method, mechanical properties

Procedia PDF Downloads 433
1732 Mechanical and Tribological Properties of Al7075 Reinforced with Graphene-Beryl Hybrid Metal Matrix Composites

Authors: Mohamed Haneef, Shanawaz Patil, Syed Zameer, Mohammed Mohsin Ali

Abstract:

The emerging technologies and trends of present generation requires downsizing the unwieldy structures to light weight structures on one hand and integration of varied properties on other hand to meet the application demands. In the present investigation an attempt is made to familiarize and best possibilities of reinforcing agent in aluminum 7075 matrix with naturally occurring beryl (Be) and graphene (Gr) to develop a new hybrid composite material. A stir casting process was used to fabricate with fixed volume fraction of 6wt% weight beryl and various volume fractions of 0.5wt%, 1wt%, 1.5wt% and 2wt% of graphene. The properties such as tensile strength, hardness and dry sliding wear behavior of hybrid composites were examined. The crystallite size and morphology of the graphene and beryl particles were analyzed with X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. It was observed that ultimate tensile strength and hardness of the hybrid composite increased with increasing reinforcement volume fraction as compared to specimen without reinforcement additions. The dry sliding wear behavior of the hybrid composites decreases as compared to Al7075 alloy without reinforcement.

Keywords: Al7075, beryl, graphene, TEM, wear

Procedia PDF Downloads 129
1731 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 263
1730 The Behavior of Polypropylene Fiber Reinforced Sand Loaded by Squair Footing

Authors: Dhiaadin Bahaadin Noory

Abstract:

This research involves the effect of both sizes of reinforced zone and the amount of polypropylene fiber reinforcement on the structural behavior of model-reinforced sand loaded by square footing. The ratio of the side of the square reinforced zone to the footing width (W/B) and the ratio of the square reinforced zone depth to footing width (H/B) has been varied from one to six and from one to three, respectively. The tests were carried out on a small-scale laboratory model in which uniform-graded sand was used as a fill material. It was placed in a highly dense state by hitting a thin wooden board placed on the sand surface with a hammer. The sand was reinforced with randomly oriented discrete fibrillated polypropylene fibers. The test results indicated a significant increase in the bearing capacity and stiffness of the subgrade and a modification of load–the settlement behavior of sand with the size of the reinforced zone and amount of fiber reinforcement. On the basis of the present test results, the optimal side width and depth of the reinforced zone were 4B and 2B, respectively, while the optimal percentage of fibers was 0.4%.

Keywords: square footing, polypropylene fibers, bearing capacity, stiffness, load settlement behavior, relative density

Procedia PDF Downloads 18
1729 Burnishing of Aluminum-Magnesium-Graphite Composites

Authors: Mohammed T. Hayajneh, Adel Mahmood Hassan, Moath AL-Qudah

Abstract:

Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness.

Keywords: burnishing process, Al-Mg-Graphite composites, surface hardness, surface roughness

Procedia PDF Downloads 450
1728 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates

Authors: Babak Safaei, A. M. Fattahi

Abstract:

Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method

Procedia PDF Downloads 302
1727 Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis

Authors: Faruk Ortes, Baris Sayin, Tarik Serhat Bozkurt, Cemil Akcay

Abstract:

The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams.

Keywords: numerical model, FEA, RC beam, NSM technique, CFRP rod, filling material

Procedia PDF Downloads 555
1726 Compressive Response of Unidirectional Basalt Fiber/Epoxy/MWCNTs Composites

Authors: Reza Eslami-Farsani, Hamed Khosravi

Abstract:

The aim of this work is to study the influence of multi-walled carbon nanotubes (MWCNTs) addition at various contents with respect to the matrix (0-0.5 wt.% at a step of 0.1 wt.%) on the compressive response of unidirectional basalt fiber (UD-BF)/epoxy composites. Toward this end, MWCNTs were firstly functionalized with 3-glycidoxypropyltrimethoxysilane (3-GPTMS) to improve their dispersion state and interfacial compatibility with the epoxy. Subsequently, UD-BF/epoxy and multiscale 3-GPTMS-MWCNTs/UD-BF/epoxy composites were prepared. The mechanical properties of the composites were determined by quasi-static compression test. The compressive strength of the composites was obtained through performing the compression test on the off-axis specimens and extracting their longitudinal compressive strength. Results demonstrated that the highest value in compressive strength was attained at 0.4 wt.% MWCNTs with 41% increase, compared to the BF/epoxy composite. Potential mechanisms behind these were implied.

Keywords: multiscale polymeric composites, unidirectional basalt fibers, multi-walled carbon nanotubes, surface modification, compressive properties

Procedia PDF Downloads 271
1725 Magnetorheological Elastomer Composites Obtained by Extrusion

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.

Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties

Procedia PDF Downloads 297
1724 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand

Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar

Abstract:

Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.

Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus

Procedia PDF Downloads 249
1723 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 23
1722 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 264
1721 Low-Temperature Fabrication of Reaction Bonded Composites, Based on Sic and (Sic+B4C) Mixture, Infiltrated with Si-Al Alloy

Authors: Helen Dilman, Eyal Oz, Shmuel Hayun, Nahum Frage

Abstract:

The conventional approach for manufacturing silicon carbide and boron carbide reaction bonded composites is based on infiltrating a ceramic porous preform with molten silicon. The relatively high melting temperature of the silicon infiltrating medium is a drawback of the process. The present contribution is concerned with an approach that allows obtaining reaction bonded composites by pressure-less infiltration at a significantly lower (850-1000oC) temperature range. This approach was applied for the fabrication of fully dense SiC/(Si-Al) and (SiC+B4C)/(Si-Al) composites. The key feature of the approach is based on using Si alloys with low melting temperature and the Mg-vapor atmosphere, under which an adequate wetting between ceramics and liquid alloys for the infiltration process is achieved. In the first set of the experiments ceramic performs compacted from multimodal SiC powders (with the green density of about 27 vol. %) without free carbon addition were infiltrated by Si-20%Al alloy at 950oC. In the second set, 19 vol. % of a fine boron carbide powder was added to SiC powders as a source of carbon. The green density of the SiC-B4C preforms was about 23-25 vol. %. In both cases, successful infiltration was achieved and the composites were fully dense. The density of the composites was about 3g/cm3. For the SiC based composites the hardness value was 750±150HV, Young modulus-280GPa and bending strength-240±30MPa. These values for (SiC-B4C)/(Si-Al) composites (1460±200HV, 317GPa and 360±20MPa) were significantly higher due to the formation of novel ceramics phases. Microstructural characteristics of the composites and their phase composition will be discussed.

Keywords: boron carbide, composites, infiltration, low temperatures, silicon carbide

Procedia PDF Downloads 528
1720 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites

Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda

Abstract:

The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.

Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime

Procedia PDF Downloads 417
1719 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 180
1718 The Effect of Masonry Infills on the Seismic Response of Reinforced Concrete Structures

Authors: Mohammad Reza Ameri, Ali Massumi, Behnam Mahboubi

Abstract:

The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.

Keywords: reinforced masonry infill panels, nonlinear static analysis, incremental dynamic analysis, low-rise reinforced concrete frames, mid-rise reinforced concrete frames

Procedia PDF Downloads 288
1717 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact

Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze

Abstract:

Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.

Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric

Procedia PDF Downloads 139
1716 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 505
1715 Encapsulated Bacteria In Polymer Composites For Bioremediation Applications

Authors: Mahsa Mafi

Abstract:

Encapsulation of Micrococcus Luteus (M. Luteus) in polymeric composites has been employed for the bioremediation, sequestration of metals and for the biodegradation of chemical pollutants and toxic components in waste water. Polymer composites in the form of nonwovens of nanofibers, or core/shell particles can provide a bacterial friendly environment for transfer of nutrients and metabolisms, with the least leakage of bacteria. M. Luteus is encapsulated in a hydrophilic core of poly (vinyl alcohol), following by synthesis or coating of a proper shell as a support to maintain the chemical and mechanical strength. The biological activity of bacteria is confirmed by Live/Dead analysis and agar plate tests. SEM and TEM analysis were utilized for morphological studies of polymer composites. As a result of the successful encapsulation of the alive bacteria in polymers, longer storage time in their functional state were achieved.

Keywords: Polymer composites, Bacteria encapsulation, Bioremediation, Waste water treatment

Procedia PDF Downloads 103
1714 Influence of Micro Fillers Content on the Mechanical Properties of Epoxy Composites

Authors: H. Unal, A. Mimaroglu, I. Ozsoy

Abstract:

In this study, the mechanical properties of micro filled epoxy composites were investigated. The matrix material is epoxy. Micro fillers are Al2O3 and TiO2 added in 10-30 wt% by weight ratio. Test samples were prepared using an open mould type die. Tensile, three point bending and hardness tests were carried out. The tensile strength, elastic modulus, elongation at break, flexural strength, flexural modulus and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the level of the mechanical properties of the epoxy composites is highly influenced by micro filler content.

Keywords: composites, epoxy, fillers, mechanical properties

Procedia PDF Downloads 454
1713 Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide

Authors: Humaira Khan, Mohsin Javed, Sammia Shahid

Abstract:

The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity.

Keywords: degradation, graphene oxide, photocatalysis, ZnO nanoparticles and copper-doped ZnO nanoparticles

Procedia PDF Downloads 182
1712 Flexural Test of Diversing Foam Core Sandwich Composites

Authors: Santhana Krishnan R, Preetha C

Abstract:

Sandwich construction with strong and stiffness facing and light weight cores is increasingly cores being used in structures where the predominant loads are flexural. The objective of this study is to improve the flexural performances of foam core sandwich composite via structural core modifications considering the ease of application. The performances of single core perforated and divided core perforated sandwich composites are compared with each other. The future demands of sandwich composites in recent years on aeronautics and marine industries are being increasing in their research needs and these materials has their superior properties for upgrading engineering products.

Keywords: sandwich composites, perforated cores, flexural test, single and divided core perforated

Procedia PDF Downloads 129
1711 Effect of Permeability on Glass Fiber Reinforced Plastic Laminate Produced by Vacuum Assisted Resin Transfer Molding Process

Authors: Nagri Sateesh, Kundavarapu Vengalrao, Kopparthi Phaneendra Kumar

Abstract:

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However, the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Plastic (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. Moreover, as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.

Keywords: permeability, vacuum assisted resin transfer molding (VARTM), ASTM D standards, SEM

Procedia PDF Downloads 126
1710 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column

Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane

Abstract:

The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.

Keywords: strengthening, jacketing, rienforced concrete column, Abaqus, simulation

Procedia PDF Downloads 113
1709 Experimental Investigation and Analysis of Wear Parameters on Al/Sic/Gr: Metal Matrix Hybrid Composite by Taguchi Method

Authors: Rachit Marwaha, Rahul Dev Gupta, Vivek Jain, Krishan Kant Sharma

Abstract:

Metal matrix hybrid composites (MMHCs) are now gaining their usage in aerospace, automotive and other industries because of their inherent properties like high strength to weight ratio, hardness and wear resistance, good creep behaviour, light weight, design flexibility and low wear rate etc. Al alloy base matrix reinforced with silicon carbide (10%) and graphite (5%) particles was fabricated by stir casting process. The wear and frictional properties of metal matrix hybrid composites were studied by performing dry sliding wear test using pin on disc wear test apparatus. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L9 Orthogonal array was selected for analysis of data. Investigation to find the influence of applied load, sliding speed and track diameter on wear rate as well as coefficient of friction during wearing process was carried out using ANOVA. Objective of the model was chosen as smaller the better characteristics to analyse the dry sliding wear resistance. Results show that track diameter has highest influence followed by load and sliding speed.

Keywords: Taguchi method, orthogonal array, ANOVA, metal matrix hybrid composites

Procedia PDF Downloads 296
1708 Corrosion Characterization of ZA-27 Metal Matrix Composites

Authors: H. V. Jayaprakash, P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy by open circuit potential test. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are casted. Matrix was also casted in the same way for comparison. Specimen are fabricated according to ASTM standards. The corrodents used for the tests were 0.025, 0.05 and 0.1 molar sodium hydroxide solutions. They are subjected to Open Circuit Potential studies and weight loss corrosion tests. Corrosion rate was found to be decreased with increase in exposure time in both experiments. Effect of exposure time and presence of increased percentage of reinforcement red mud is discussed in detail.

Keywords: composites, vortex, particulates, red mud

Procedia PDF Downloads 405
1707 Modulation of the Interphase in a Glass Epoxy System: Influence of the Sizing Chemistry on Adhesion and Interfacial Properties

Authors: S. Assengone Otogo Be, A. Fahs, L. Belec, T. A. Nguyen Tien, G. Louarn, J-F. Chailan

Abstract:

Glass fiber-reinforced composite materials have gradually developed in all sectors ranging from consumer products to aerospace applications. However, the weak point is most often the fiber/matrix interface, which can reduce the durability of the composite material. To solve this problem, it is essential to control the interphase and improve our understanding of the adhesion mechanism at the fibre/matrix interface. The interphase properties depend on the nature of the sizing applied on the surface of the glass fibers during their manufacture in order to protect them, facilitate their handling, and ensure fibre/matrix adhesion. The sizing composition, and in particular the nature of the coupling agent and the film-former affects the mechanical properties and the durability of composites. The aim of our study is, therefore, to develop and study composite materials with simplified sizing systems in order to understand how the main constituents modify the mechanical properties and the durability of composites from the nanometric to the macroscopic scale. Two model systems were elaborated: an epoxy matrix reinforced with simplified-sized glass fibres and an epoxy coating applied on glass substrates treated with the same sizings as fibres. For the sizing composition, two configurations were chosen. The first configuration possesses a chemical reactivity to link the glass and the matrix, and the second sizing contains non-reactive agents. The chemistry of the sized glass substrates and fibers was analyzed by FT-IR and XPS spectroscopies. The surface morphology was characterized by SEM and AFM microscopies. The observation of the surface samples reveals the presence of sizings which morphology depends on their chemistry. The evaluation of adhesion of coated substrates and composite materials show good interfacial properties for the reactive configuration. However, the non-reactive configuration exhibits an adhesive rupture at the interface of glass/epoxy for both systems. The interfaces and interphases between the matrix and the substrates are characterized at different scales. Correlations are made between the initial properties of the sizings and the mechanical performances of the model composites.

Keywords: adhesion, interface, interphase, materials composite, simplified sizing systems, surface properties

Procedia PDF Downloads 120
1706 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan

Abstract:

A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 268
1705 Toughness Factor of Polypropylene Fiber Reinforced Concrete in Aggressive Environment

Authors: R. E. Vasconcelos, K. R. M. da Silva, J. M. B. Pinto

Abstract:

This study aims to determine and to present the results of an experimental study of Synthetic (polypropylene) Fibers Reinforced Concrete (SFRC), in levels of 0.33% - 3kg/m3, 0.50% - 4.5kg/m3, and 0.66% - 6kg/m3, using cement CP V – ARI, at ages 28 and 88 days after specimens molding. The specimens were exposed for 60 days in aggressive environment (in solution of water and 3% of sodium chloride), after 28 days. The bending toughness tests were performed in prismatic specimens of 150 x 150 x 500 mm. The toughness factor values of the specimens in aggressive environment were the same to those obtained in normal environment (in air).

Keywords: concrete reinforced with polypropylene fibers, toughness in bending, synthetic fibers, concrete reinforced

Procedia PDF Downloads 318
1704 Thermoplastic Polyurethane/Barium Titanate Composites

Authors: Seyfullah Madakbaş, Ferhat Şen, Memet Vezir Kahraman

Abstract:

The aim of this study was to improve thermal stability, mechanical and surface properties of thermoplastic polyurethane (TPU) with the addition of BaTiO3. The TPU/ BaTiO3 composites having various ratios of TPU and BaTiO3 were prepared. The chemical structure of the prepared composites was investigated by FT-IR. FT-IR spectra of TPU/ barium titanate composites show that they successfully were prepared. Thermal stability of the samples was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The prepared composites showed high thermal stability, and the char yield increased as barium titanate content increased. The glass transition temperatures of the composites rise with the addition of barium titanate. Mechanical properties of the samples were characterized with stress-strain test. The mechanical properties of the TPU were increased with the contribution of the contribution of the barium titanate it increased. Hydrophobicity of the samples was determined by the contact angle measurements. The contact angles have the tendency to increase the hydrophobic behavior on the surface, when barium titanate was added into TPU. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy (SEM). SEM-EDS mapping images showed that barium titanate particles were dispersed homogeneously. Finally, the obtained results prove that the prepared composites have good thermal, mechanical and surface properties and that they can be used in many applications such as the electronic devices, materials engineering and other emergent.

Keywords: barium titanate, composites, thermoplastic polyurethane, scanning electron microscopy

Procedia PDF Downloads 298