Search results for: mobile device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3328

Search results for: mobile device

718 Investigating Malaysian Prereader’s Cognitive Processes when Reading English Picture Storybooks: A Comparative Eye-Tracking Experiment

Authors: Siew Ming Thang, Wong Hoo Keat, Chee Hao Sue, Fung Lan Loo, Ahju Rosalind

Abstract:

There are numerous studies that explored young learners’ literacy skills in Malaysia but none that uses the eye-tracking device to track their cognitive processes when reading picture storybooks. This study used this method to investigate two groups of prereaders’ cognitive processes in four conditions. (1) A congruent picture was presented, and a matching narration was read aloud by a recorder; (2) Children heard a narration telling about the same characters in the picture but involves a different scene; (3) Only a picture with matching text was present; (4) Students only heard the reading aloud of the text on the screen. The two main objectives of this project are to test which content of pictures helps the prereaders (i.e., young children who have not received any formal reading instruction) understand the narration and whether children try to create a coherent mental representation from the oral narration and the pictures. The study compares two groups of children from two different kindergartens. Group1: 15 Chinese children; Group2: 17 Malay children. The medium of instruction was English. An eye-tracker were used to identify Areas of Interest (AOI) of each picture and the five target elements and calculate number of fixations and total time spent on fixation of pictures and written texts. Two mixed factorial ANOVAs with the storytelling performance (good, average, or weak) and vocabulary level (low, medium, high) as between-subject variables, and the Areas of Interests (AOIs) and display conditions as the within-subject variables were performedon the variables.

Keywords: eye-tracking, cognitive processes, literacy skills, prereaders, visual attention

Procedia PDF Downloads 65
717 Interactions between Residential Mobility, Car Ownership and Commute Mode: The Case for Melbourne

Authors: Solmaz Jahed Shiran, John Hearne, Tayebeh Saghapour

Abstract:

Daily travel behavior is strongly influenced by the location of the places of residence, education, and employment. Hence a change in those locations due to a move or changes in an occupation leads to a change in travel behavior. Given the interventions of housing mobility and travel behaviors, the hypothesis is that a mobile housing market allows households to move as a result of any change in their life course, allowing them to be closer to central services, public transport facilities and workplace and hence reducing the time spent by individuals on daily travel. Conversely, household’s immobility may lead to longer commutes of residents, for example, after a change of a job or a need for new services such as schools for children who have reached their school age. This paper aims to investigate the association between residential mobility and travel behavior. The Victorian Integrated Survey of Travel and Activity (VISTA) data is used for the empirical analysis. Car ownership and journey to work time and distance of employed people are used as indicators of travel behavior. Change of usual residence within the last five years used to identify movers and non-movers. Statistical analysis, including regression models, is used to compare the travel behavior of movers and non-movers. The results show travel time, and the distance does not differ for movers and non-movers. However, this is not the case when taking into account the residence tenure-type. In addition, car ownership rate and number found to be significantly higher for non-movers. It is hoped that the results from this study will contribute to a better understanding of factors other than common socioeconomic and built environment features influencing travel behavior.

Keywords: journey to work, regression models, residential mobility, commute mode, car ownership

Procedia PDF Downloads 95
716 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger

Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe

Abstract:

Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fraction

Keywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat

Procedia PDF Downloads 124
715 Eight Weeks of Suspension Systems Training on Fat Mass, Jump and Physical Fitness Index in Female

Authors: Che Hsiu Chen, Su Yun Chen, Hon Wen Cheng

Abstract:

Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Core stability exercises on instability device (such as the TRX suspension systems) were found to be able to induce higher core muscle activity than performing on a stable surface. However, high intensity interval TRX suspension exercises training on sport performances remain unclear. The purpose of this study was to examine whether high intensity TRX suspension training could improve sport performance. Twenty-four healthy university female students (age 19.0 years, height 157.9 cm, body mass 51.3 kg, fat mass 25.2 %) were voluntarily participated in this study. After a familiarization session, each participant underwent five suspension exercises (e.g., hip abduction in plank alternative, hamstring curl, 45-degree row, lunge and oblique crunch). Each type of exercise was performed for 30 seconds, followed by 30 seconds break, two times per week for eight weeks while each exercise session was increased by 10 seconds every week. The results showed that the fat mass (about 12.92%) decreased significantly, sit and reach test (9%), 1 minute sit-up test (17.5%), standing broad jump (4.8%), physical fitness index (10.3%) increased significantly after 8-week high intensity TRX suspension training. Hence, eight weeks of high intensity interval TRX suspension exercises training can improve hamstring flexibility, trunk endurance, jump ability, aerobic fitness and fat mass percentage decreased substantially.

Keywords: core endurance, jump, flexibility, cardiovascular fitness

Procedia PDF Downloads 377
714 Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors

Authors: Carlos H. Cuadra, Nobuhiro Shimoi

Abstract:

Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system.

Keywords: piezoelectric sensor, static cyclic test, steel structure, seismic damages

Procedia PDF Downloads 99
713 The Effect of Loud Working Environment on Incidence of Back Pain

Authors: Marcel Duh, Jadranka Stricevic, David Halozan, Dusan Celan

Abstract:

Back pain is not only the result of structural or biomechanical abnormalities of the spine but is also associated with cognitive and behavioral aspects of pain and thus represents biopsychosocial problem. Stressors are not only interpersonal conflicts, negative life events, and dangerous situations but also noise. Effects of noise on human beings are psychological (excitement, stress), sensory, and physiological. The harmful effects of noise can be seen in the 40-65 dB range and are manifested as fatigue, irritability, poor sleep and psychological discomfort of the worker. Within 65-90 dB range, body metabolism increases, oxygen consumption is higher, tachycardia and hypertension appear, and the tone of skeletal muscles increases. The purpose of the study was to determine whether the stress caused by noise at the work place increases the incidence of back pain. Measurements of noise levels were carried out in three different wards of social care institution. The measurement on each ward was repeated 3 times (total of 9 measurements) for 8 hours during the morning shift. The device was set up in the room where clients spent most of the day. The staff on the ward replied to the questionnaire consisting of closed type questions about basic demographic information and information about back pain. We find that noise levels as measured in our study had no statistically significant effect on the incidence of back pain (p = 0.90). We also find that health care workers who perceive their work as stressful, have more back pain than those who perceive their job as unstressful, but correlation is statistically insignificant (p = 0.682). With our study, we have proven findings of other authors, that noise level below 65 dB does not have a significant influence on the incidence of back pain.

Keywords: health care workers, musculoskeletal disorder, noise, sick leave

Procedia PDF Downloads 95
712 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 136
711 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 118
710 Ultra-Reliable Low Latency V2X Communication for Express Way Using Multiuser Scheduling Algorithm

Authors: Vaishali D. Khairnar

Abstract:

The main aim is to provide lower-latency and highly reliable communication facilities for vehicles in the automobile industry; vehicle-to-everything (V2X) communication basically intends to increase expressway road security and its effectiveness. The Ultra-Reliable Low-Latency Communications (URLLC) algorithm and cellular networks are applied in combination with Mobile Broadband (MBB). This is particularly used in express way safety-based driving applications. Expressway vehicle drivers (humans) will communicate in V2X systems using the sixth-generation (6G) communication systems which have very high-speed mobility features. As a result, we need to determine how to ensure reliable and consistent wireless communication links and improve the quality to increase channel gain, which is becoming a challenge that needs to be addressed. To overcome this challenge, we proposed a unique multi-user scheduling algorithm for ultra-massive multiple-input multiple-output (MIMO) systems using 6G. In wideband wireless network access in case of high traffic and also in medium traffic conditions, moreover offering quality-of-service (QoS) to distinct service groups with synchronized contemporaneous traffic on the highway like the Mumbai-Pune expressway becomes a critical problem. Opportunist MAC (OMAC) is a way of proposing communication across a wireless communication link that can change in space and time and might overcome the above-mentioned challenge. Therefore, a multi-user scheduling algorithm is proposed for MIMO systems using a cross-layered MAC protocol to achieve URLLC and high reliability in V2X communication.

Keywords: ultra-reliable low latency communications, vehicle-to-everything communication, multiple-input multiple-output systems, multi-user scheduling algorithm

Procedia PDF Downloads 48
709 Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking

Authors: Ameni Mahmoudi, Manel Troudi, Paolo Bondavalli, Nabil Sghaier

Abstract:

In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking.

Keywords: charge storage, thin-film SWCNT based transistors, C-V hysteresis, memory effect, trapping and detrapping charges, stored charge density, the carrier retention time

Procedia PDF Downloads 51
708 Compact Dual-band 4-MIMO Antenna Elements for 5G Mobile Applications

Authors: Fayad Ghawbar

Abstract:

The significance of the Multiple Input Multiple Output (MIMO) system in the 5G wireless communication system is essential to enhance channel capacity and provide a high data rate resulting in a need for dual-polarization in vertical and horizontal. Furthermore, size reduction is critical in a MIMO system to deploy more antenna elements requiring a compact, low-profile design. A compact dual-band 4-MIMO antenna system has been presented in this paper with pattern and polarization diversity. The proposed single antenna structure has been designed using two antenna layers with a C shape in the front layer and a partial slot with a U-shaped cut in the ground to enhance isolation. The single antenna is printed on an FR4 dielectric substrate with an overall size of 18 mm×18 mm×1.6 mm. The 4-MIMO antenna elements were printed orthogonally on an FR4 substrate with a size dimension of 36 × 36 × 1.6 mm3 with zero edge-to-edge separation distance. The proposed compact 4-MIMO antenna elements resonate at 3.4-3.6 GHz and 4.8-5 GHz. The s-parameters measurement and simulation results agree, especially in the lower band with a slight frequency shift of the measurement results at the upper band due to fabrication imperfection. The proposed design shows isolation above -15 dB and -22 dB across the 4-MIMO elements. The MIMO diversity performance has been evaluated in terms of efficiency, ECC, DG, TARC, and CCL. The total and radiation efficiency were above 50 % across all parameters in both frequency bands. The ECC values were lower than 0.10, and the DG results were about 9.95 dB in all antenna elements. TARC results exhibited values lower than 0 dB with values lower than -25 dB in all MIMO elements at the dual-bands. Moreover, the channel capacity losses in the MIMO system were depicted using CCL with values lower than 0.4 Bits/s/Hz.

Keywords: compact antennas, MIMO antenna system, 5G communication, dual band, ECC, DG, TARC

Procedia PDF Downloads 115
707 Integration of Technology through Instructional Systems Design

Authors: C. Salis, D. Zedda, M. F. Wilson

Abstract:

The IDEA project was conceived for teachers who are interested in enhancing their capacity to effectively implement the use of specific technologies in their teaching practice. Participating teachers are coached and supported as they explore technologies applied to the educational context. They access tools such as the technological platform developed by our team. Among the platform functionalities, teachers access an instructional systems design (ISD) tool (learning designer) that was adapted to the needs of our project. The tool is accessible from computers or mobile devices and used in association with other technologies to create new, meaningful learning environments. The objective of an instructional systems design is to guarantee the quality and effectiveness of education and to enhance learning. This goal involves both teachers who want to become more efficient in transferring knowledge or skills and students as the final recipient of their teaching. The use of Blooms’s taxonomy enables teachers to classify the learning objectives into levels of complexity and specificity, thus making it possible to highlight the kind of knowledge teachers would like their students to reach. The fact that the instructional design features can be visualized through the IDEA platform is a guarantee for those who are looking for specific educational materials to be used in their lessons. Despite the benefits offered, a number of teachers are reluctant to use ISD because the preparatory work of having to thoroughly analyze the teaching/learning objectives, the planning of learning material, assessment activities, etc., is long and felt to be time-consuming. This drawback is minimized using a learning designer, as the tool facilitates to reuse of the didactic contents having a clear view of the processes of analysis, planning, and production of educational or testing materials uploaded on our platform. In this paper, we shall present the feedback of the teachers who used our tool in their didactic.

Keywords: educational benefits, educational quality, educational technology, ISD tool

Procedia PDF Downloads 159
706 Analysis of Knowledge Circulation in Digital Learning Environments: A Case Study of the MOOC 'Communication des Organisations'

Authors: Hasna Mekkaoui Alaoui, Mariem Mekkaoui Alaoui

Abstract:

In a context marked by a growing and pressing demand for online training within Moroccan universities, massive open online courses (Moocs) are undergoing constant evolution, amplified by the widespread use of digital technology and accentuated by the Coronavirus pandemic. However, despite their growing popularity and expansion, these courses are still lacking in terms of tools, enabling teachers and researchers to carry out a fine-grained analysis of the learning processes taking place within them. What's more, the circulation and sharing of knowledge within these environments is becoming increasingly important. The crucial aspect of traceability emerges here, as MOOCs record and generate traces from the most minute to the most visible. This leads us to consider traceability as a valuable approach in the field of educational research, where the trace is envisaged as a research tool in its own right. In this exploratory research project, we are looking at aspects of community knowledge sharing based on traces observed in the "Communication des organisations" Mooc. Focusing in particular on the mediating trace and its impact in identifying knowledge circulation processes in this learning space, we have mobilized the traces of video capsules as an index of knowledge circulation in the Mooc device. Our study uses a methodological approach based on thematic analysis, and although the results show that learners reproduce knowledge from different video vignettes in almost identical ways, they do not limit themselves to the knowledge provided to them. This research offers concrete perspectives for improving the dynamics of online devices, with a potentially positive impact on the quality of online university teaching.

Keywords: circulation, index, digital environments, mediation., trace

Procedia PDF Downloads 33
705 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application

Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka

Abstract:

Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.

Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET

Procedia PDF Downloads 273
704 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators

Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho

Abstract:

Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.

Keywords: direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines

Procedia PDF Downloads 144
703 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate

Authors: Jenan Abu Qadourah

Abstract:

With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.

Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan

Procedia PDF Downloads 50
702 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises

Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus

Abstract:

In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.

Keywords: editorialization, open educational resources, pedagogical alignment, produsage, repeatable self-correcting exercises, team roles

Procedia PDF Downloads 96
701 A Study of the Effects of Zimbabwean Youth Migration on Musina Area, South Africa

Authors: R. Chinyakata, N. R. Raselekoane

Abstract:

Migration has always been part of human history. Migration is spurred by globalisation which connects nations by encouraging the flow of goods, services, ideas and people across borders. Migration does not only involve movement of adults from one country to another. It also affects and involves the youth as they are the most mobile group. Musina area, like many other border areas, experiences a variety of challenges as a result of the influx of people from the neighbouring Zimbabwe and other African countries. Of great concern about this migration is the fact that the host country or area may become unsafe and unstable as a result of huge influx of migrants. There may also be tensions between local people and migrants over the resources. The study sought to investigate the effects of the Zimbabwean youth migration on Musina area. The study was undertaken in Musina area which is situated 18km from the Beit-Bridge border post. A qualitative research approach was used. Semi-structured interviews were used to collect data. Non-probability quota sampling technique was used to select the respondents. The study sample consisted of sixteen female and male respondents. Thematic coding was used to analyse the data. Ethical considerations such as informed consent, confidentiality, anonymity and voluntary participation were taken into account to protect the participants. The study found that the effects of the Zimbabwean youth migration on the Musina area include, among others, tensions between locals and the Zimbabwean youth migrants over resources, job and business opportunities, overcrowding and crime. Multi-pronged strategies which involve different stakeholders should be applied to address tensions over job and business opportunities, overcrowding and crime in the Musina area.

Keywords: host country, effects, migrant, migration, Musina, youth, Zimbabwe

Procedia PDF Downloads 217
700 Treatment and Conservation of an Antique Stone Stela by Nano Calcium Hydroxide with Nano Silica in Egyptian Museum of Cairo

Authors: Elhussein Ahmed Elsayed

Abstract:

An ancient limestone stela dating back to the epoch of the middle kingdom and displayed in the exhibition hall of the middle kingdom, it was discovered in Lisht in Giza, registered with No. 3045 and as a result of its display in an inappropriate display as a result of the use of natural lighting in the display, Represented in sunlight through windows opened day and night. The alternation of these daily changes between the temperature degrees of night and day, both daily and seasonally, causes the expansion and contraction of the rocks and then weakens their cohesion, causing fragmentation. This is indeed the current situation of this stela displayed in the hall, in addition to the damage and fading of colors, as well as the use of a high-viscosity restoration material in the consolidation that led to the attraction of dust and dirt and its adhesion to the surface. The color faded as a result of the lack of lighting control inside the exhibition hall, the remnants of the existing colors were blurred as a result of applying a consolidation material with a high viscosity, which led to the attraction of dust and dirt, and then blurring the colors on the inscription. Examinations and analyzes were carried out on the block, and the results of the examination with a polarized microscope showed that it is of primitive limestone, which contains fossils and microorganisms, which helps to damage. The analysis using the Raman device also showed that the high-viscosity material used in restoration in the past is Paralloid B72. The stone stela was consolidated by using two materials; Nano calcium hydroxide with Nano silica in the form of (Core-shell) at a concentration of 10% and it was applied using the brush.

Keywords: Egyptian museum, stone stela, treatment, nano materials, nano silica

Procedia PDF Downloads 52
699 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 115
698 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 43
697 Effectiveness of Shock Wave Therapy Versus Intermittent Mechanical Traction on Mechanical Low Back Pain and Disabilities

Authors: Ahmed Assem Abd El Rahim

Abstract:

Background: Mechanical low back pain is serious physical and social health problem. Purpose: To examine impact of shock wave therapy versus intermittent mechanical traction on mechanical LBP, and disabilities. Subjects: 60 mechanical LBP male studied cases years old 20-35 years were assigned randomly into 3 groups, Picked up from Sohag university orthopedic hospital outpatient clinic. Methods: (Study Group) A: 20 studied cases underwent shock wave therapy plus conventional physical therapy. (Study Group) B: twenty studied cases underwent intermittent mechanical traction plus conventional physical therapy. (Control Group) C: 20 patients underwent conventional physical therapy alone. Three sessions were applied weekly for four weeks. Pain was quantified using McGill Pain Questionnaire, Roland Morris Disability Questionnaire was used for measuring disability, and the ROM was evaluated by (BROM) device pre- & post-therapy. Results: Groups (A, B & C) found a reduction in pain & disability & rise in their in flexion and extension ROM after end of 4 weeks of program. Mean values of pain scale after therapy were 15.3, 9.47, and 23.07 in groups A, B, & C. mean values of Disability scale after therapy were 8.44, 4.87, 11.8in groups A, B & C. mean values of ROM of flexion were 25.53, 29.06, & 23.9 in groups A, B & C. mean values of ROM of extension were 11.73, 15.53 & 9.85 in groups A, B & C. studied cases who received intermittent mechanical traction & conventional physical therapy (group B), found reduction in pain & disability & improvement in ROM of flexion & extension value (P<0.001) after therapy program. Conclusion: Shock wave therapy and intermittent mechanical traction, as well as conventional physical treatment, can be beneficial in studied cases with mechanical LBP.

Keywords: mechanical low back pain, shock wave, mechanical, low back pain

Procedia PDF Downloads 26
696 Predictive Factors of Healthcare-Associated Infections and Antibiotic Use Patterns: A Cross-Sectional Survey at the Charles Nicolle Hospital of Tunis

Authors: Nouira Mariem, Ennigrou Samir

Abstract:

Background and aims: Healthcare-associated infections (HAI) represent a major public health problem worldwide. They represent one of the most serious adverse events in health care. The objectives of our study were to estimate the prevalence of HAI at the Charles Nicolle Hospital (CNH) and to identify the main associated factors as well as to estimate the frequency of antibiotic use. Methods: It was a cross-sectional study at the CNH with a unique passage per department (October-December 2018). All patients present at the wards for more than 48 hours were included. All patients from outpatient consultations, emergency, and dialysis departments were not included. The site definitions of infections proposed by the Centers for Disease Control and Prevention (CDC) were used. Only clinically and/or microbiologically confirmed active HAIs were included. Results: A total of 318 patients were included, with a mean age of 52 years and a sex ratio (female/male) of 1.05. A total of 41 patients had one or more active HAIs, corresponding to a prevalence of 13.1% (95% CI: 9.3%-16.9%). The most frequent site infections were urinary tract infections and pneumonia. Multivariate analysis among adult patients (>=18 years) (n=261) revealed that infection on admission (p=0.01), alcoholism (p=0.01), high blood pressure (p=0.008), having at least one invasive device inserted (p=0.004), and history of recent surgery (p=0.03), increased the risk of HAIs significantly. More than 1 of 3 patients (35.4%) were under antibiotics on the day of the survey, of which more than half (57.4%) were under two or more types of antibiotics. Conclusion: The prevalence of HAIs and antibiotic prescriptions at the CNH were considerably high. An infection prevention and control committee, as well as the development of an antibiotic stewardship program with continuous monitoring using repeated prevalence surveys, must be implemented to limit the frequency of these infections effectively.

Keywords: prevalence, healthcare associated infection, antibiotic, Tunisia

Procedia PDF Downloads 48
695 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 291
694 Harnessing Earth's Electric Field and Transmission of Electricity

Authors: Vaishakh Medikeri

Abstract:

Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.

Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity

Procedia PDF Downloads 343
693 Development of an Aerosol Protection Capsule for Patients with COVID-19

Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.

Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation

Procedia PDF Downloads 53
692 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment

Procedia PDF Downloads 249
691 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano

Abstract:

Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.

Keywords: machine learning, recommender system, software platform, support vector machine

Procedia PDF Downloads 108
690 Revolutionary Microfluidic Immunosensor with Magnetofluidic and Capacitive Technologies for Real-Time Proinflammatory Pathology Monitoring

Authors: Nessrine Jebari, Elisabeth Dufour-Gergam, Mehdi Ammar

Abstract:

This research introduces an integrative microfluidic immunosensor, ingeniously conceived for the real-time surveillance of proinflammatory conditions. By harnessing the potential of COMSOL Multiphysics for intricate 3D modelling, this study signifies a notable leap in the domain of biomedical diagnostics. Our development, akin to a patch, fulfills the growing demand for non-intrusive monitoring apparatuses, and inaugurates innovative approaches for the identification and quantification of biomarkers in sweat. This is achieved through a synergistic approach of magnetofluidic manipulation and capacitive detection methodologies. Central to the device’s architecture is the employment of magnetic nanoparticles (MNPs) tagged with biomarkers. The apparatus is composed of two fundamental segments: the primary segment includes a series of microcoils for enhanced MNP entrapment and microfluidic blending, while the secondary segment comprises a stratified arrangement of a microcoil alongside copper electrodes, serving as a capacitor for capacitive measurement. Our findings reveal the immunosensor's formidable detection capabilities, exhibiting a sensitivity scope of 60% to 75% with 70% MNP saturation. These results underscore its potential to surpass the boundaries of traditional biosensors, offering improved consistency and precision. Moreover, the immunosensor is adept at identifying a wide array of pathogens, encompassing bacteria, and is compatible with other diagnostic methods for concurrent detection of multiple biomarkers. This versatility renders it an invaluable asset in both clinical and research environments.

Keywords: COMSOL Multiphysics 3d simulation, microfluidic immunosensor, magnetofluidic manipulation, magnetic nanoparticle (MNP)trapping, laboratory-on-patch technology

Procedia PDF Downloads 19
689 Contribution of NLRP3 Inflammasome to the Protective Effect of 5,14-HEDGE, A 20-HETE Mimetic, against LPS-Induced Septic Shock in Rats

Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat, Mahesh P. Paudyal, John R. Falck, Kafait U. Malik

Abstract:

We hypothesized that 20-hydroxyeicosatetraenoic acid (20-HETE) mimetics such as N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE) may be beneficial for preventing mortality due to inflammation induced by lipopolysaccharide (LPS). This study aims to assess the effect of 5,14-HEDGE on the LPS-induced changes in nucleotide binding domain and leucine-rich repeat protein 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)/pro-caspase-1 inflammasome. Rats were injected with saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. 5,14-HEDGE (30 mg/kg) was administered to rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and kidney, heart, thoracic aorta, and superior mesenteric artery were isolated for measurement of caspase-1/11 p20, NLRP3, ASC, and β-actin proteins as well as interleukin-1β (IL-1β) levels. Blood pressure decreased by 33 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. In the LPS-treated rats, tissue protein expression of caspase-1/11 p20, NLRP3, and ASC in addition to IL-1β levels were increased. 5,14-HEDGE prevented the LPS-induced changes. Our findings suggest that inhibition of renal, cardiac, and vascular formation/activity of NLRP3/ASC/pro-caspase-1 inflammasome involved in the protective effect of 5,14-HEDGE on LPS-induced septic shock in rats. This work was financially supported by the Mersin University (2015-AP3-1343) and USPHS NIH (PO1 HL034300).

Keywords: 5, 14-HEDGE, lipopolysaccharide, NLRP3, inflammasome, septic shock

Procedia PDF Downloads 268