Search results for: mixed ligand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2901

Search results for: mixed ligand

2841 Design Exploration on Mixed-Use Development of Island House: Take the Southeast Coastal Area of Chinese as an Example

Authors: Fu Jiayan, Wang Zhu, Sun Jiaojiao

Abstract:

Mixed-use development is one of the most important trends in new island house transformation along southeast coastal area in China. Unique island geographical environment and profound fishing village culture coexist for a long time in this. With artistic creation for the purpose of the "live-work" houses are in a large number of emergence, however, still lack of systematic strategy. Based on space effect from marine resources to regional human settlements, this article teases out the evolution regularity of island settlement context and architectural form, then, puts forward the formation mechanism and construction model of art island houses. Thereby, to further explore space design method and site creation strategy of mixed-use development.

Keywords: mixed-use, island house, art creation, Southeast Coastal Area of Chinese

Procedia PDF Downloads 417
2840 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 386
2839 Chiral Diphosphine Ligands and Their Transition Metal Diphosphine Complexes in Asymmetric Catalysis

Authors: Shannen Lorraine, Paul Maragh, Tara Dasgupta, Kamaluddin Abdur-Rashid

Abstract:

(R)-(4,4',6,6'-tetramethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (R-Ph-Garphos), and (S)-(4,4',6,6'-tetramethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (S-Ph-Garphos) are novel, nucleophilic, chiral atropisomeric ligands. The research explored the synthesis of chiral transition metal complexes containing these ligands and their applications in various asymmetric catalytic transformations. Herein, the transition metal complexes having ruthenium(II), rhodium(I) and iridium(I) metal centres will be discussed. These are air stable complexes and were characterized by CHN analysis, 1H, 13C, and 31P NMR spectroscopy, and polarimetry. Currently, there is an emphasis on 'greener' catalysts and the need for 'green' solvents in asymmetric catalysis. As such, the Ph-Garphos ligands were demethylated thereby introducing hydroxyl moieties unto the ligand scaffold. The facile tunability of the biaryl diphosphines led to the preparation of the (R)-(4,4',6,6'-tetrahydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (R-Ph-Garphos-OH), and (S)-(4,4',6,6'-tetrahydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (S-Ph-Garphos-OH) ligands. These were successfully characterized by CHN analysis, 1H, 13C, and 31P NMR spectroscopy, and polarimetry. The use of the Ph-Garphos and Ph-Garphos-OH ligands and their transition metal complexes in asymmetric hydrogenations will be reported. Additionally, the scope of the research will highlight the applicability of the Ph-Garphos-OH ligand and its transitional metal complexes as 'green' catalysts.

Keywords: catalysis, asymmetric hydrogenation, diphosphine transition metal complexes, Ph-Garphos ligands

Procedia PDF Downloads 280
2838 An Interactive Platform Displaying Mixed Reality Media

Authors: Alfred Chen, Cheng Chieh Hsu, Yu-Pin Ma, Meng-Jie Lin, Fu Pai Chiu, Yi-Yan Sie

Abstract:

This study is attempted to construct a human-computer interactive platform system that has mainly consisted of an augmented hardware system, a software system, a display table, and mixed media. This system has provided with human-computer interaction services through an interactive platform for the tourism industry. A well designed interactive platform, integrating of augmented reality and mixed media, has potential to enhance museum display quality and diversity. Besides, it will create a comprehensive and creative display mode for most museums and historical heritages. Therefore, it is essential to let public understand what the platform is, how it functions, and most importantly how one builds an interactive augmented platform. Hence the authors try to elaborate the construction process of the platform in detail. Thus, there are three issues to be considered, i.e.1) the theory and application of augmented reality, 2) the hardware and software applied, and 3) the mixed media presented. In order to describe how the platform works, Courtesy Door of Tainan Confucius Temple has been selected as case study in this study. As a result, a developed interactive platform has been presented by showing the physical entity object, along with virtual mixing media such as text, images, animation, and video. This platform will result in providing diversified and effective information that will be delivered to the users.

Keywords: human-computer interaction, mixed reality, mixed media, tourism

Procedia PDF Downloads 454
2837 Phytochemicals from Enantia Chlorantha Stem Bark Inhibits the Activity ?-Amylase and ?-Glucosidase: Molecular Docking Studies

Authors: Hammed Tanimowo Aiyelabegan, Oluchukwu Franklin Aladi, Mutiu Adewumi Alabi, Raliat Abimbola Aladodo, Emmanuel Oladipupo Ajani, Abdulganiyu Giwa, Esther Owolabi

Abstract:

The study aimed to evaluate the inhibitory activities of ligands from Enantia chlorantha stem bark on α-amylase and α-glucosidase. In silico pharmacokinetic properties and docking scores were employed to analyse the inhibition using SwissADME and Autodock4.2, respectively. Results revealed that drug-likeness, pharmacokinetics and bioavailability radar of all the ligands except jatrorrhizine and acarbose falls within the radar according to the Lipinski rule of 5. The binding energies of the protein-ligand interactions also show that the ligand fits into the active site. The results obtained from this study show that the chemical constituents from Enantia chlorantha stem bark may bring about positive physiological changes in a patient suffering from diabetes mellitus. Further in vitro studies on diabetes cell lines and in vivo studies on the animal may validate these compounds for diabetes treatment. These phytoconstituents could help in the development of novel anti-diabetic molecules.

Keywords: diabetes mellitus, ?-amylase, ?-glucosidase, in silico, Enantia chlorantha stem bark

Procedia PDF Downloads 132
2836 Exploring Subjective Simultaneous Mixed Emotion Experiences in Middle Childhood

Authors: Esther Burkitt

Abstract:

Background: Evidence is mounting that mixed emotions can be experienced simultaneously in different ways across the lifespan. Four types of patterns of simultaneously mixed emotions (sequential, prevalent, highly parallel, and inverse types) have been identified in middle childhood and adolescence. Moreover, the recognition of these experiences tends to develop firstly when children consider peers rather than the self. This evidence from children and adolescents is based on examining the presence of experiences specified in adulthood. The present study, therefore, applied an exhaustive coding scheme to investigate whether children experience types of previously unidentified simultaneous mixed emotional experiences. Methodology: One hundred and twenty children (60 girls) aged 7 years 1 month - 9 years 2 months (X=8 years 1 month; SD = 10 months) were recruited from mainstream schools across the UK. Two age groups were formed (youngest, n = 61, 7 years 1 month- 8 years 1 months: oldest, n = 59, 8 years 2 months – 9 years 2 months) and allocated to one of two conditions hearing vignettes describing happy and sad mixed emotion events in age and gender-matched protagonist or themselves. Results: Loglinear analyses identified new types of flexuous, vertical, and other experiences along with established sequential, prevalent, highly parallel, and inverse types of experience. Older children recognised more complex experiences other than the self-condition. Conclusion: Several additional types of simultaneously mixed emotions are recognised in middle childhood. The theoretical relevance of simultaneous mixed emotion processing in childhood is considered, and the potential utility of the findings in emotion assessments is discussed.

Keywords: emotion, childhood, self, other

Procedia PDF Downloads 48
2835 Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride

Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel

Abstract:

The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (∆Gex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.

Keywords: adiphenine hydrochloride, critical micelle concentration, interaction parameter, activity coefficient

Procedia PDF Downloads 243
2834 When Bad News Are Good News: Ambivalent Feelings Towards Firms Adversity

Authors: Jacob Hornik, Matti Rachamim, Ori Grossman

Abstract:

Schadenfreude, a bittersweet phenomenon, is considered atypical and complicated state that might reflect ambivalent types of sentiments -a mixed of both positive and negative reactions towards others misfortunes. This brief note reports a study that examined the association between trait ambivalence, using the Trait Mixed Emotions Scale (TMES), and four different consumer schadenfreude affairs. Results propose that trait ambivalence offers a novel explanation for schadenfreude responses. Showing that trait ambivalence enhances schadenfreude, when consumers encounter misfortune type of information about a disliked or rival marketplace entity.

Keywords: schadenfreude, consumer behavior, mixed emotions, sentiments, ambivalence

Procedia PDF Downloads 99
2833 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 360
2832 Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as High Efficiency Co-Sensitizers in Dye-Sensitized Solar Cells

Authors: Tomilola J. Ajayi, Moses Ollengo, Lukas le Roux, Michael N. Pillay, Richard J. Staples, Shannon M. Biros Werner E. van Zyl

Abstract:

The formation, characterization, and dye-sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S₂PFc(OH)]¯ (L1) was synthesized from the reaction between ferrocenyl Lawesson’s reagent, [FcP(=S)μ-S]₂ (FcLR), (Fc = ferrocenyl) and water. Ligand L1 could potentially coordinate to metal centers through the S, S’ and O donor atoms. The reaction between metal salt precursors and L1 produced a Ni(II) complex of the type [Ni{S₂P(Fc)(OH)}₂] (1) (molar ratio 1:2), a tetranickel (II) complex of the type [Ni₂{S₂OP(Fc)}₂]₂ (2) (molar ratio (1:1), as well as a Zn(II) complex [Zn{S₂P(Fc)(OH)}₂]₂ (3), and a Cd(II) complex [Cd{S₂P(Fc)(OH)}₂]₂ (4). Complexes 1-4 were characterized by 1H and 31P NMR and FT-IR, and complexes 1 and 2 were additionally analysed by X-Ray crystallography. After co-sensitization, the DSSCs were characterized using UV-Vis, cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltaic measurements (I-V curves). Overall finding shows that co-sensitization of our compounds with ruthenium dye N719 resulted in a better overall solar conversion efficiency than only pure N719 dye under the same experimental conditions. In conclusion, we report the first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes.

Keywords: dithiophosphonate, dye sensitized solar cell, co-sensitization, solar efficiency

Procedia PDF Downloads 122
2831 Chiral Ruthenium Aminophosphine and Phosphine Iminopyridine Complexes: Synthesis and Application to Asymmetric Hydrogenation and Transfer Hydrogenation

Authors: Littlelet N. Scarlet, Kamaluddin Abdur-Rashid, Paul T. Maragh, Tara Dasgupta

Abstract:

Aminophosphines are a privileged class of ancillary ligands with emerging importance in homogeneous catalysis. The unique combination of soft phosphorus (P) and hard nitrogen (N) centres affords a variety of transition metal complexes as potential pre-catalysts for synthetically useful reactions. Herein three ligand systems will be reported; two bidentate ligands - (S)-8-(diphenyl-phosphino)-1,2,3,4-tetrahydronaphthalen-1-amine, (S)THNANH2, and (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylethylamine, (RcSp)PPFNH2 - and a tridentate (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylimino-pyridine, (RcSp)PPFNNH2 ligand; the latter prepared from the condensation of selected ferrocene aminophosphines with pyridine-2-carboxaldehyde. Suitable combinations of these aminophosphine ligands with ruthenium precursors have afforded highly efficient systems for the asymmetric hydrogenation and transfer hydrogenation of selected ketones in 2-propanol. The Ru-(S)THNANH2 precatalyst was the most efficient in the asymmetric hydrogenation of selected ketones with 100% conversions within 4 hours at a catalyst loading of 0.1 mol%. The Ru-(RcSp)PPFNNH2 precatalyst was the most efficient in the asymmetric transfer hydrogenation of the ketones with conversions as high as 98% with 0.1 mol% catalyst. However, the enantioselectivities were generally low.

Keywords: aminophosphine, asymmetric hydrogenation, homogeneous catalysis, ruthenium (II), transfer hydrogenation

Procedia PDF Downloads 232
2830 Research Methodology and Mixed Methods (Qualitative and Quantitative) for Ph.D. Construction Management – Post-Disaster Reconstruction

Authors: Samuel Quashie

Abstract:

Ph.D. Construction Management methodology and mixed methods are organized to guide the researcher to assemble and assess data in the research activities. Construction management research is close to business management and social science research. It also contributes to researching the phenomenon and answering the research question, generating an integrated management system for post-disaster reconstruction in construction and related industries. Research methodology and methods drive the research to achieve the goal or goals, contribute to knowledge, or increase knowledge. This statement means the research methodology, mixed methods, aim, objectives, and processes address the research question, facilitate its achievement and foundation to conduct the study. Mixed methods use project-based case studies, interviews, observations, literature and archival document reviews, research questionnaires, and surveys, and evaluation of integrated systems used in the construction industry and related industries to address the research work. The research mixed methods (qualitative, quantitative) define the research topic and establish a more in-depth study. The research methodology is action research, which involves the collaboration of participants and service users to collect and evaluate data, studying the phenomenon, research question(s) to improve the situation in post-disaster reconstruction phase management.

Keywords: methodology, Ph.D. research, post-disaster reconstruction, mixed-methods qualitative and quantitative

Procedia PDF Downloads 197
2829 Analysis of Cannabinol and Cannabidiol affinity with GBRA1

Authors: Hamid Hossein Khezri, Afsaneh Javdani-Mallak

Abstract:

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Cannabidiol (CBD) is one of the members of cannabinoid compounds found in cannabis. CBD and Cannabinol (CBN), as the other extract of plant Cannabis were able to reduce myofascial pain in rats with immunosuppressive and anti-inflammatory activities. In this study, we accomplished protein-protein BLAST, and the sequence was found to be for Gamma-aminobutyric acid receptor subunit alpha-1 (GBRA1) chain A and its 3D structure was subsequently downloaded from Protein Data Bank. The structures of the ligands, cannabinol, and cannabidiol, were obtained from PubChem. After the necessary process of the obtained files, AutoDock Vina was used to perform molecular docking. Docking between the ligands and GBRA1 chain A revealed that cannabinol has a higher affinity to GBRA1 (binding energy = -7.5 kcal/mol) compared to cannabidiol (binding energy = -6.5 kcal/mol). Furthermore, cannabinol seems to be able to interact with 10 residues of the protein, out of which 3 are in the neurotransmitter-gated ion-channel transmembrane domain of GBRA1, whereas cannabidiol interacts with two other residues. Although the results of this project do not indicate the activating /or inhibitory capability of the studied compounds, it suggests that cannabinol can act as a relatively strong ligand for GBRA1.

Keywords: protein-ligand docking, cannabinol, cannabidiol, GBRA1

Procedia PDF Downloads 72
2828 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation

Procedia PDF Downloads 228
2827 Design and Development of Bioactive a-Hydroxy Carboxylate Group Modified MnFe₂O₄ Nanoparticle: Comparative Fluorescence Study, Magnetism and DNA Nuclease Activity

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Three new α-hydroxy carboxylate group functionalized MnFe₂O₄ nanoparticles (NPs) have been developed to explore the microscopic origin of ligand modified fluorescence and magnetic properties of nearly monodispersed MnFe₂O₄ NPs. The surface functionalization has been carried out with three small organic ligands (tartrate, malate, and citrate) having different number of α-hydroxy carboxylate functional group along with steric effect. Detailed study unveils that α-hydroxy carboxylate moiety of the ligands plays key role to generate intrinsic fluorescence in functionalized MnFe₂O₄ NPs through the activation of ligand to metal charge transfer transitions, associated with ligand-Mn²⁺/Fe³⁺ interactions along with d-d transition corresponding to d-orbital energy level splitting of Fe³⁺ ions on NP surface. Further, MnFe₂O₄ NPs show a maximum 140.88% increase in coercivity and 97.95% decrease in magnetization compared to its bare one upon functionalization. The ligands that induce smallest crystal field splitting of d-orbital energy level of transition metal ions are found to result in strongest ferromagnetic activation of the NPs. Finally, our developed tartrate functionalized MnFe₂O₄ (T-MnFe₂O₄) NPs have been utilized for studying DNA binding interaction and nuclease activity for stimulating their beneficial activities toward diverse biomedical applications. The spectroscopic measurements indicate that T-MnFe₂O₄ NPs bind calf thymus DNA by intercalative mode. The ability of T-MnFe₂O₄ NPs to induce DNA cleavage was studied by gel electrophoresis technique where the complex is found to promote the cleavage of pBR322 plasmid DNA from the super coiled form I to linear coiled form II and nicked coiled form III with good efficiency. This may be taken into account for designing new biomolecular detection agents and anti-cancer drug which can open up a new door toward diverse non-invasive biomedical applications.

Keywords: MnFe₂O₄ nanoparticle, α-hydroxy carboxylic acid, comparative fluorescence, magnetism study, DNA interaction, nuclease activity

Procedia PDF Downloads 112
2826 Inhibitory Effects of PPARγ Ligand, KR-62980, on Collagen-Stimulated Platelet Activation

Authors: Su Bin Wang, Jin Hee Ahn, Tong-Shin Chang

Abstract:

The peroxisome proliferator-activated receptors (PPARs) are member of nuclear receptor superfamily that act as a ligand-activated transcription factors. Although platelets lack a nucleus, previous studies have shown that PPARγ agonists, rosiglitazone, inhibited platelet activation induced by collagen. In this study, we investigated the inhibitory effects of KR-62980, a newly synthesized PPARγ agonist, on collagen receptor-stimulated platelet activation. The specific tyrosine phosphorylations of key components (Syk, Vav1, Btk and PLCγ2) for collagen receptor signaling pathways were suppressed by KR-62980. KR-62980 also attenuated downstream responses including cytosolic calcium elevation, P-selectin surface exposure, and integrin αIIbβ3 activation. PPARγ was found to associate with multiple proteins within the LAT signaling complex in collagen-stimulated platelets. This association was prevented by KR-62980, indicating a potential mechanism for PPARγ function in collagen-stimulated platelet activation. Furthermore, KR-62980 inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. Collectively, these data suggest that KR-62980 inhibits collagen-stimulated platelet activation and thrombus formation through modulating the collagen receptor signaling pathways.

Keywords: KR-62980, PPARγ, antiplatelet, thrombosis

Procedia PDF Downloads 304
2825 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 58
2824 Analysis of Cannabinoid and Cannabidiol Affinity with GABRA1

Authors: Hamid Hossein Khezri, Afsaneh Javdani-Mallak

Abstract:

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Cannabidiol (CBD) is one of the members of cannabinoid compounds found in cannabis. CBD and Cannabinol (CBN), as the other extract of plant Cannabis, were able to reduce myofascial pain in rats with immunosuppressive and anti-inflammatory activities. In this study, we accomplished protein-protein BLAST and the sequence was found to be for Gamma-aminobutyric acid receptor subunit alpha-1 (GBRA1) chain A and its 3D structure was subsequently downloaded from Protein Data Bank. The structures of the ligands cannabinol and cannabidiol were obtained from PubChem. After a necessary process of the obtained files, AutoDock Vina was used to performing molecular docking. Docking between the ligands and GBRA1 chain A revealed that cannabinol has a higher affinity to GBRA1 (binding energy = -7.5 kcal/mol) compared to cannabidiol (binding energy = -6.5 kcal/mol). Furthermore, cannabinol seems to be able to interact with 10 residues of the protein, out of which 3 are in the neurotransmitter-gated ion-channel transmembrane domain of GBRA1, whereas cannabidiol interacts with two other residues. Although the results of this project do not indicate the activating /or inhibitory capability of the studied compounds, it suggests that cannabinol can act as a relatively strong ligand for GBRA1.

Keywords: protein-ligand docking, cannabinol, cannabidiol, GBRA1

Procedia PDF Downloads 91
2823 The Effect of Lande G-Factors on the Quantum and Thermal Entanglement in the Mixed Spin-(1/2,S) Heisenberg Dimer

Authors: H. Vargova, J. Strecka, N. Tomasovicova

Abstract:

A rigorous analytical treatment, with the help of a concept of negativity, is used to study the quantum and thermal entanglement in an isotropic mixed spin-(1/2,S) Heisenberg dimer. The effect of the spin-S magnitude, as well as the effect of diversity between Landé g-factors of magnetic constituents on system entanglement, is exhaustively analyzed upon the variation of the external magnetic and electric field, respectively. It was identified that the increasing magnitude of the spin-S species in a mixed spin-(1/2,S) Heisenberg dimer with comparative Landé g-factors have always a reduction effect on a degree of the quantum entanglement, but it strikingly shifts the thermal entanglement to the higher temperatures. Surprisingly, out of the limit of identical Landé g-factors, the increasing magnitude of spin-S entities can enhance the system entanglement in both low and high magnetic fields. Besides this, we identify that the analyzed dimer with a high-enough magnitude of the spin-S entities at a sufficiently high magnetic field can exhibit unconventional thermally driven re-entrance between the entangled and unentangled mixed state. The importance of the electric-field stimuli is also discussed in detail.

Keywords: quantum and thermal entantanglement, mixed spin Heisenberg model, negativity, reentrant phase transition

Procedia PDF Downloads 70
2822 Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)

Authors: A. Gilewska, J. Masternak, K. Kazimierczuk, L. Turlej, J. Wietrzyk, B. Barszcz

Abstract:

Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA).

Keywords: ruthenium(II) complex, rhodium(III) complex, iridium(III) complex, biological activity

Procedia PDF Downloads 107
2821 Rational Design of Potent Compounds for Inhibiting Ca2+ -Dependent Calmodulin Kinase IIa, a Target of Alzheimer’s Disease

Authors: Son Nguyen, Thanh Van, Ly Le

Abstract:

Ca2+ - dependent calmodulin kinase IIa (CaMKIIa) has recently been found to associate with protein tau missorting and polymerization in Alzheimer’s Disease (AD). However, there has yet inhibitors targeting CaMKIIa to investigate the correlation between CaMKIIa activity and protein tau polymer formation. Combining virtual screening and our statistics in binding contribution scoring function (BCSF), we rationally identified potential compounds that bind to specific CaMKIIa active site and specificity-affinity distribution of the ligand within the active site. Using molecular dynamics simulation, we identified structural stability of CaMKIIa and potent inhibitors, and site-directed bonding, separating non-specific and specific molecular interaction features. Despite of variation in confirmation of simulation time, interactions of the potent inhibitors were found to be strongly associated with the unique chemical features extracted from molecular binding poses. In addition, competitive inhibitors within CaMKIIa showed an important molecular recognition pattern toward specific ligand features. Our approach combining virtual screening with BCSF may provide an universally applicable method for precise identification in the discovery of compounds.

Keywords: Alzheimer’s disease, Ca 2+ -dependent calmodulin kinase IIa, protein tau, molecular docking

Procedia PDF Downloads 248
2820 MHD Mixed Convection in a Vertical Porous Channel

Authors: Brahim Fersadou, Henda Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: heat sources, magnetic field, mixed convection, porous channel

Procedia PDF Downloads 348
2819 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange

Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas

Abstract:

Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.

Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis

Procedia PDF Downloads 23
2818 Saudi Women Facing Challenges in a Mixed-Gender Work Environment

Authors: A. Aldawsari

Abstract:

The complex issue of women working in a mixed-gender work environment has its roots in social and cultural factors. This research was done to identify and explore the social and cultural challenges Saudi women face in a mixed-gender work environment in Saudi Arabia. Over the years, Saudi women in mixed-gender work environments in Saudi Arabia have been of interest in various research areas, especially within the context of a hospital work environment. This research, which involves a female researcher interacting one-on-one with Saudi women, will address this issue as well as the effect of the 2030 Vision in Saudi Arabia, and it will aim to include several new fields of work environments for women in Saudi Arabia. The aim of this research is to examine the perceptions of Saudi women who work in a mixed gender environment regarding the general empowerment of women in these settings. The objective of this research is to explore the cultural and social challenges that influence Saudi women's rights to work in a mixed-gender environment in Saudi Arabia. The significance of this research lies in the fact that there is an urgency to resolve issue of female employment in Saudi Arabia, where Saudi women still suffer from inequality in employment opportunity. Although the Saudi government is seeking to empower women by integrating them into a mixed-gender work environment, which is a key goal and prominent social change advocated for in the 2030 Vision, this same goal is one of the main challenges in the face of achieving female empowerment. The methodology section focuses on appropriate methods that can be used to study the effect of social and cultural challenges on the employment of women. It then determines the conditions and limitations of the research by applying a qualitative research approach to the investigation and analysing the data collected from the interviews. A statistical analysis tool, such as NVivo, will be used for the qualitative analysis of the interviews. The study found that the factor most responsible for creating social and cultural challenges is family—whether close family or distant family—more so than tribe or community.

Keywords: women, work, mixed-gender, environment

Procedia PDF Downloads 108
2817 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 75
2816 Entropy Production in Mixed Convection in a Horizontal Porous Channel Using Darcy-Brinkman Formulation

Authors: Amel Tayari, Atef Eljerry, Mourad Magherbi

Abstract:

The paper reports a numerical investigation of the entropy generation analysis due to mixed convection in laminar flow through a channel filled with porous media. The second law of thermodynamics is applied to investigate the entropy generation rate. The Darcy-Brinkman Model is employed. The entropy generation due to heat transfer and friction dissipations has been determined in mixed convection by solving numerically the continuity, momentum and energy equations, using a control volume finite element method. The effects of Darcy number, modified Brinkman number and the Rayleigh number on averaged entropy generation and averaged Nusselt number are investigated. The Rayleigh number varied between 103 ≤ Ra ≤ 105 and the modified Brinkman number ranges between 10-5 ≤ Br≤ 10-1 with fixed values of porosity and Reynolds number at 0.5 and 10 respectively. The Darcy number varied between 10-6 ≤ Da ≤10.

Keywords: entropy generation, porous media, heat transfer, mixed convection, numerical methods, darcy, brinkman

Procedia PDF Downloads 373
2815 Regulation of the Regeneration of Epidermal Langerhans Cells by Stress Hormone

Authors: Junichi Hosoi

Abstract:

Epidermal Langerhans cells reside in upper layer of epidermis and play a role in immune surveillance. The finding of the close association of nerve endings to Langerhans cells triggered the research on systemic regulation of Langerhans cells. They disappear from epidermis after exposure to environmental and internal stimuli and reappear about a week later. Myeloid progenitor cells are assumed to be one of the sources of Langerhans cells. We examined the effects of cortisol on the reappearance of Langerhans cells in vitro. Cord-blood derived CD34-positive cells were cultured in the medium supplemented with stem cell factor/Flt3 ligand/granulocyte macrophage-colony stimulating factor/tumor necrosis factor alpha/bone morphologic protein 7/transforming growth factor beta in the presence or absence of cortisol. Cells were analyzed by flow cytometry for CD1a (cluster differentiation 1a), a marker of Langerhans cells and dermal dendritic cells, and CD39 (cluster differentiation factor 39), extracellular adenosine triphosphatase. Both CD1a-positive cells and CD39-positive cells were decreased by treatment with cortisol (suppression by 35% and 22% compared to no stress hormone, respectively). Differentiated Langerhans cells are attracted to epidermis by chemokines that are secreted from keratinocytes. Epidermal keratinocytes were cultured in the presence or absence of cortisol and analyzed for the expression of CCL2 (C-C motif chemokine ligand 2) and CCL20 (C-C motif chemokine ligand 20), which are typical attractants of Langerhans cells, by quantitative reverse transcriptase polymerase chain reaction. The expression of both chemokines, CCL2 and CCL20, were suppressed by treatment with cortisol (suppression by 38% and 48% compared to no stress hormone, respectively). We examined the possible regulation of the suppression by cortisol with plant extracts. The extracts of Ganoderma lucidum and Iris protected the suppression of the differentiation to CD39-positive cells and also the suppression of the gene expression of LC-chemoattractants. These results suggest that cortisol, which is either systemic or locally produced, blocks the supply of epidermal Langerhans cells at 2 steps, differentiation from the precursor and attraction to epidermis. The suppression is possibly blocked by some plant extracts.

Keywords: Langerhans cell, stress, CD39, chemokine

Procedia PDF Downloads 157
2814 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space

Authors: A. S. Mousa, F. Shoman

Abstract:

We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.

Keywords: coherent strategy, split strategy, pure strategy, mixed strategy, Nash equilibrium, game theory

Procedia PDF Downloads 118
2813 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct

Authors: Nur Irmawati, H. A. Mohammed

Abstract:

In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.

Keywords: numerical simulation, mixed convection, horizontal rectangular duct, nanofluids

Procedia PDF Downloads 342
2812 Optical Characterization of Erbium-Mixed Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

The structural characterization of silicon nano crystals (SiNCs) have been carried out using transmission electron microscope (TEM) and atomic force microscopy (AFM). SiNCs are crystalline with an average diameter of 65 nm. Erbium trichloride was added to silicon nano crystals using a simple chemical procedure. Erbium is useful in this context because it has a narrow emission band at ⋍1536 nm which corresponds to a standard optical telecommunication wavelength. The optical properties of SiNCs and erbium-mixed SiNCs samples have been characterized using UV-vis spectroscopy, confocal Raman spectroscopy and photoluminescence spectroscopy (PL). SiNCs and erbium-mixed SiNCs samples exhibit an orange PL emission peak at around 595 nm that arise from radiative recombination of Si. Erbium-mixed SiNCs also shows a weak PL emission peak at ⋍1536 nm that attributed to the intra-4f transition in erbium ions. The intensity of the PL peak of Si in erbium-mixed SiNCs is increased in the intensity up to ×3 as compared to pure SiNCs. It was observed that intensity of 1536 nm peak decreased dramatically in the presence of silicon nano crystals and the PL emission peak of silicon nano crystals is increased. Therefore, the resulted data present that the energy transfer from erbium ions to SiNCs due to the chemical mixing method which used in this work.

Keywords: Silicon Nanocrystals (SiNCs), Erbium Ion, photoluminescence, energy transfer

Procedia PDF Downloads 350