Search results for: microbial inactivation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1004

Search results for: microbial inactivation

644 Preliminary Studies on the Potentials of Bambara nut (Voandzeia substerranea) and Pigeon pea (Cajanus cajan) as Imitation Milk

Authors: Onuoha Gideon

Abstract:

The preliminary studies on the potentials of Bambara nut and pigeon pea as imitation milk were investigated. Bambara nut and Pigeon pea milk were produced from two separate unit operations; Bambara nut seed was cooked, dehulled, milled and strained to milk (BCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (BTM). Pigeon pea seed was cooked, dehulled, milled and strained to milk (PCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (PTM). The result of the proximate analysis on the milk samples on wet basis showed that the protein content ranged from 28.56 – 26.77, the crude fibre ranged from 6.28 – 1.85, the ash content ranged from 5.22 – 1.17, the fat content ranged from 2.71 – 1.12, the moisture content ranged from 95.93 – 93.83, the carbohydrate content ranged from 67.62 – 58.83. The functional analysis on the milk samples showed that emulsification capacity ranged from 43.21 – 38.66, emulsion stability ranged from 34.10 – 25.00, the specific gravity ranged from 997.50 – 945.00, the foaming capacity ranged from 3,500 to 2,250, the measurement of viscosity ranged from 0.017 – 0.007, the pH range from 5.55 – 5.25, the measurement of dispersibility range from 11.00 – 7.00, the total soluble solid ranged from 4.00 to 1.75, the total titratable acidity ranged from 0.314 – 0.328. The sensory evaluation report showed that in terms of flavor, sample BCM and PCM value were significantly different from sample BTM and PTM. In terms of colour, sample BCM showed a significant difference from samples BTM, PCM and PTM. In term of texture, sample BCM was significantly different from samples BTM, PCM and PTM. The general acceptability shows that sample BCM was significantly different from other the samples and was the most accepted. The microbial analysis indicated that the microbial load increases with time. Bacterial count ranged from 1.3 x 105 – 1.20 x 106 to 1.6 x 105 – 1.06 x 106, fungal count ranged from 4.0 x 105 – 8.0 x 105 to 4.0 x 105 – 7.0 x 105. The studies showed that BCM was the most preferred.

Keywords: imitation milk, Bambara nut, Pigeon pea, proximate composition

Procedia PDF Downloads 318
643 Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying

Authors: James Banda, Jupiter Simbeye, Essau Chisale, Geoffrey Kanyerere, Kings Kamtambe

Abstract:

Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content.

Keywords: diplotaxodon, Malawi, open sun drying, solar tent drying

Procedia PDF Downloads 304
642 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi

Abstract:

The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.

Keywords: blood cultures, septicemia, antibiogram, Nigeria

Procedia PDF Downloads 202
641 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats

Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker

Abstract:

The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.

Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics

Procedia PDF Downloads 123
640 Evaluation of the Potential of Olive Pomace Compost for Using as a Soil Amendment

Authors: M. Černe, I. Palčić, D. Anđelini, D. Cvitan, N. Major, M. Lukić, S. Goreta Ban, D. Ban, T. Rijavec, A. Lapanje

Abstract:

Context: In the Mediterranean basin, large quantities of lignocellulosic by-products, such as olive pomace (OP), are generated during olive processing on an annual basis. Due to the phytotoxic nature of OP, composting is recommended for its stabilisation to produce the end-product safe for agricultural use. Research Aim: This study aims to evaluate the applicability of olive pomace compost (OPC) for use as a soil amendment by considering its physical and chemical characteristics and microbiological parameters. Methodology: The OPC samples were collected from the surface and depth layers of the compost pile after 8 months. The samples were analyzed for their C/N, pH, EC, total phenolic content, residual oils, and elemental content, as well as colloidal properties and microbial community structure. The specific analytical approaches used are detailed in the poster. Findings: The results showed that the pH of OPC ranged from 7.8 to 8.6, while the electrical conductivity was from 770 to 1608 mS/cm. The levels of nitrogen (N), phosphorus (P), and potassium (K) varied within the ranges of 1.5 to 27.2 g/kg d.w., 1.6 to 1.8 g/kg d.w., and 6.5 to 7.5 g/kg d.w., respectively. The contents of potentially toxic metals such as chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were below the EU limits for soil improvers. The microbial structure follows the changes of the gradient from the outer to the innermost layer with relatively low amounts of DNA. The gradient nature shows that it is needed to develop better strategies for composting surpassing the conventional approach. However, the low amounts of total phenols and oil residues indicated efficient biodegradation during composting. The carbon-to-nitrogen ratio (C/N) within the range of 13 to 16 suggested that OPC can be used as a soil amendment. Overall, the study suggests that composting can be a promising strategy for environmentally-friendly OP recycling. Theoretical Importance: This study contributes to the understanding of the use of OPC as a soil amendment and its potential benefits in resource recycling and reducing environmental burdens. It also highlights the need for improved composting strategies to optimize its process. Data Collection and Analysis Procedures: The OPC samples were taken from the compost pile and charasterised for selected chemical, physical and microbial parameters. The specific analytical procedures utilized are described in detail in the poster. Question Addressed: This study addresses the question of whether composting can be optimized to improve the biodegradation of OP. Conclusion: The study concludes that OPC has the potential to be used as a soil amendment due to its favorable physical and chemical characteristics, low levels of potentially toxic metals, and efficient biodegradation during composting. However, the results also suggest the need for improved composting strategies to improve the quality of OPC.

Keywords: olive pomace compost, waste valorisation, agricultural use, soil amendment

Procedia PDF Downloads 34
639 Separate Production of Hydrogen and Methane from Ethanol Wastewater Using Two-Stage UASB: Micronutrient Transportation

Authors: S. Jaikeaw, S. Chavadej

Abstract:

The objective of this study was to determine the effects of COD loading rate on hydrogen and methane production and micronutrient transportation using a two-stage upflow anaerobic sludge blanket (UASB) system under mesophilic temperature (37°C) with a constant recycle ratio of 1:1 (final effluent flow rate: feed flow rate). The first (hydrogen) UASB unit having 4 L liquid holding volume was controlled at pH 5.5 but the second (methane) UASB unit having 24 L liquid holding volume had no pH control. The two-stage UASB system operated at different COD loading rates from 8 to 20 kg/m³d based on total UASB working volume. The results showed that, at the optimum COD loading rate of 13 kg/m³d, the produced gas from the hydrogen UASB unit contained 1.5% H₂, 16.5% CH₄, and 82% CO₂ with H₂S of 252 ppm and also provided a hydrogen yield of 1.66 mL/g COD removed (or 0.56 mL/g COD applied) and a specific hydrogen production rate of 156.85 ml H₂/LRd (or 5.12 ml H₂/g MLVSS d). Under the optimum COD loading rate, the produced gas from the methane UASB unit mainly contained methane and carbon dioxide without hydrogen of 74 and 26%, respectively with hydrogen sulfide of 287 ppm and the system also provided a maximum methane yield of 407.00 mL/g COD removed (or 263.23 mL/g COD applied) and a specific methane production rate of 2081.44 ml CH₄/LRd (or 99.75 ml CH₄/g MLVSS d). Under the optimum COD loading rate, all micronutrients markedly dropped by the sulfide precipitation reactions. The reduction of micronutrients mostly appeared in the methane UASB unit. Under the studied conditions, both Co and Ni were found to be greatly precipitated out, causing the deficiency to microbial activity. It is hypothesized that an addition of both Co and Ni can improve the methanogenic activity.

Keywords: hydrogen and methane production, ethanol wastewater, a two-stage upflow anaerobic blanket (UASB) system, mesophillic temperature, microbial concentration (MLVSS), micronutrients

Procedia PDF Downloads 265
638 Evaluation of Microbial Community, Biochemical and Physiological Properties of Korean Black Raspberry (Rubus coreanus Miquel) Vinegar Manufacturing Process

Authors: Nho-Eul Song, Sang-Ho Baik

Abstract:

Fermentation characteristics of black raspberry vinegar by using static cultures without any additives were has been investigated to establish of vinegar manufacturing conditions and improve the quality of vinegar by optimization the vinegar manufacturing process. The two vinegar manufacturing conditions were prepared; one-step fermentation condition only using mother vinegar that prepared naturally occurring black raspberry vinegar without starter yeast for alcohol fermentation (traditional method) and two-step fermentation condition using commercial wine yeast and mother vinegar for acetic acid fermentation. Approximately 12% ethanol was produced after 35 days fermentation with log 7.6 CFU/mL of yeast population in one-step fermentation, resulting sugar reduction from 14 to 6oBrix whereas in two-step fermentation, ethanol concentration was reached up to 8% after 27 days with continuous increasing yeast until log 7.0 CFU/mL. In addition, yeast and ethanol were decreased after day 60 accompanied with proliferation of acetic acid bacteria (log 5.8 CFU/mL) and titratable acidity; 4.4% in traditional method and 6% in two-step fermentation method. DGGE analysis showed that S. cerevisiae was detected until 77 days of traditional fermentation and gradually changed to AAB, Acetobacter pasteurianus, as dominant species and Komagataeibacter xylinus at the end of the fermentation. However, S. cerevisiae and A. pasteurianus was dominant in two-step fermentation process. The prepared two-step fermentation showed enhanced total polyphenol and flavonoid content significantly resulting in higher radical scavenging activity. Our studies firstly revealed the microbial community change with chemical change and demonstrated a suitable fermentation system for black raspberry vinegar by the static surface method.

Keywords: bacteria, black raspberry, vinegar fermentation, yeast

Procedia PDF Downloads 417
637 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil

Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu

Abstract:

The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.

Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode

Procedia PDF Downloads 126
636 Assessment of Microorganisms in Irrigation Water Collected from Various Vegetable Growing Areas of SWAT Valley, Khyber Pakhtunkhwa

Authors: Islam Zeb

Abstract:

Water of poor quality has a potential of probable contamination and a way to spread pollutant in the field and surrounding environment. A number of comprehensive reviews articles have been published which highlight irrigation water as a source of pathogenic microorganisms and heavy metals toxicity that leads to chronic diseases in human. Here a study was plan to determine the microbial status of irrigation water collected from various location of district Swat in various months. The analyses were carried out at Environmental Horticulture Laboratory, Department of Horticulture, The University of Agriculture Peshawar, during the year 2018 – 19. The experiment was laid out in Randomized Complete Block Design (RCBD) with two factors and three replicates. Factor A consist of different locations, and factor B represent various months. The results of microbial status for various locations in irrigation water showed the highest value for Total Bacterial Count, Enterobacteriacea, E. coli, Salmonella, and Listeria (9.05, 8.54, 6.01, 5.84, and 5.03 log cfu L-1 respectively) for samples collected from mingora location, whereas the lowest values for Total Bacterial Count, Enterobacteriacea, E. coli, Salmonella and Listeria (6.70, 6.38, 4.47, 4.42 and 3.77 log cfu L-1 respectively) were observed for matta location. Data for various months showed maximum Total Bacterial Count, Enterobacteriacea, E. coli, Salmonella, and Listeria (12.01, 11.70, 8.46, 8.41, and 6.88 log cfu L-1, respectively) were noted for the irrigation water samples collected in May/June whereas the lowest range for Total Bacterial Count, Enterobacteriacea, E. coli, Salmonella and Listeria (4.41, 4.08, 2.61, 2.55 and 3.39 log cfu L-1 respectively) were observed in Jan/Feb. A significant interaction was found for all the studied parameters it was concluded that maximum bacterial groups were recorded in the months of May/June from Mingora location, it might be due to favorable weather condition.

Keywords: contamination, irrigation water, microbes, SWAT, various months

Procedia PDF Downloads 42
635 Assessment on Rumen Microbial Diversity of Bali Cattle Using 16S rRNA Sequencing

Authors: Asmuddin Natsir, A. Mujnisa, Syahriani Syahrir, Marhamah Nadir, Nurul Purnomo

Abstract:

Bacteria, protozoa, Archaea, and fungi are the dominant microorganisms found in the rumen ecosystem that has an important role in converting feed ingredients into components that can be digested and utilized by the livestock host. This study was conducted to assess the diversity of rumen bacteria of bali cattle raised under traditional farming condition. Three adult bali cattle were used in this experiment. The rumen fluid samples from the three experimental animals were obtained by the Stomach Tube method before the morning feeding. The results of study indicated that the Illumina sequencing was successful in identifying 301,589 sequences, averaging 100,533 sequences, from three rumen fluid samples of three cattle. Furthermore, based on the SILVA taxonomic database, there were 19 kinds of phyla that had been successfully identified. Of the 19 phyla, there were only two dominant groups across the three samples, namely Bacteroidetes and Firmicutes, with an average percentage of 83.68% and 13.43%, respectively. Other groups such as Synergistetes, Spirochaetae, Planctomycetes can also be identified but in relatively small percentage. At the genus level, there were 157 sequences obtained from all three samples. Of this number, the most dominant group was Prevotella 1 with a percentage of 71.82% followed by 6.94% of Christencenellaceae R-7 group. Other groups such as Prevotellaceae UCG-001, Ruminococcaceae NK4A214 group, Sphaerochaeta, Ruminococcus 2, Rikenellaceae RC9 gut group, Quinella were also identified but with very low percentages. The sequencing results were able to detect the presence of 3.06% and 3.92% respectively for uncultured rumen bacterium and uncultured bacterium. In conclusion, the results of this experiment can provide an opportunity for a better understanding of the rumen bacterial diversity of the bali cattle raised under traditional farming condition and insight regarding the uncultured rumen bacterium and uncultured bacterium that need to be further explored.

Keywords: 16S rRNA sequencing, bali cattle, rumen microbial diversity, uncultured rumen bacterium

Procedia PDF Downloads 295
634 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 124
633 The microbial evaluation of cow raw milk used in private dairy factories in of Zawia city, Libya

Authors: Obied A. Alwan, Elgerbi, M. Ali

Abstract:

This study was conducted on the cow milk which is used in the local milk factories of Zawia. This was completely random sampling the unscheduled samples. The microbiologic result have approved that the count of bacteria and the count of E.Coli are very high and all the manufacturing places which were included in the study have lacked the health conditions.

Keywords: raw milk, dairy factories, Libya, microbiologic

Procedia PDF Downloads 411
632 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico

Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva

Abstract:

Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.

Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients

Procedia PDF Downloads 153
631 A Combined Activated Sludge-Sonication Process for Abattoir Wastewater Treatment

Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Devendra Saroj, Judy Lee

Abstract:

Wastewater treatment is becoming a worldwide concern due to new and tighter environmental regulations, and the increasing need for fresh water for the exponentially growing population. The meat industry has one of the highest consumption of water producing up to 10 times more polluted (BOD) wastewaters in comparison to domestic sewage. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-sonication system was used to treat pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process and using ultrasound as tertiary treatment. Different ultrasonic frequencies, powers and sonication times were applied to the samples and results were analysed for chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids, pH, total coliforms and total viable counts. Additionally, both mechanical and chemical effects of ultrasound were quantified for organic matter removal (COD and BOD) and disinfection (microorganism inactivation) using different techniques such as aluminum foil pitting, flow cytometry, and KI dosimetry.

Keywords: abattoir wastewater, ultrasound, wastewater treatment, water disinfection

Procedia PDF Downloads 261
630 Examining Microbial Decomposition, Carbon Cycling and Storage in Cefni Coastal Salt Marsh, Anglesey Island, Wales, United Kingdom

Authors: Dasat G. S., Christopher F. Tim, J. Dun C.

Abstract:

Salt marshes are known to sequester carbon dioxide from the atmosphere into the soil, but natural and anthropogenic activities could trigger the release of large quantities of centuries of buried carbon dioxide, methane and nitrous oxide (CO2, CH4 and N2O) which are the major greenhouse gases (GHGs) implicated with climate change. Therefore, this study investigated the biogeochemical activities by collecting soil samples from low, mid and high zones of the Cefni salt marsh, within the Maltreat estuary, on the island of Anglesey, north Wales, United Kingdom for a consortium of laboratory based experiments using standard operating protocols (POS) to quantify the soil organic matter contents and the rate of microbial decomposition and carbon storage at the Carbon Capture Laboratory of Bangor University Wales. Results of investigations reveals that the mid zone had 56.23% and 9.98% of soil water and soil organic matter (SOM) contents respectively higher than the low and high zones. Phenol oxidase activity (1193.53µmol dicq g-1 h-1) was highest at the low zone in comparison to the high and mid zones (867.60 and 608.74 µmol dicq g-1 h-1) respectively. Soil phenolic concentration was found to be highest in the mid zone (53.25 µg-1 g-1) when compared with those from the high (15.66 µg-1 g-1) and low (4.18 µg-1 g-1) zones respectively. Activities of hydrolase enzymes showed similar trend for the high and low zones and much lower activities in the mid zone. CO2 flux from the mid zone (6.79 ug g-1 h-1) was significantly greater than those from high (-2.29 ug g-1 h-1) and low (1.30 µg g-1 h-1) zones. Since salt marshes provide essential ecosystem services, their degradation or alteration in whatever form could compromise such ecosystem services and could convert them from net sinks into net sources with consequential effects to the global environment.

Keywords: saltmarsh, decomposition, carbon cycling, enzymes

Procedia PDF Downloads 46
629 Neutralizing Antibody Response against Inactivated FMDV Type O/IRN/2010 Vaccine by Electron Beam in BALB/C Mice

Authors: F. Motamedi Sedeh, Sh. Chahardoli, H. Mahravani, N. Harzandi, M. Sotoodeh, S. K. Shafaei

Abstract:

Foot-and-mouth disease virus (FMDV) is the most economically important disease of livestock. The aim of the study is inactivation of FMD virus type O/IRN/2010 by electron beam without antigenic changes as electron radio vaccine. The BALB/C mice were divided into three groups, each group containing five mice. Three groups of mice were inoculated with conventional vaccine and electron beam irradiated vaccine FMDV type O/IRN/2010 subcutaneously three weeks interval, the final group as negative control. The sera were separated from the blood samples of mice 14 days after last vaccination and tested for the presence of antibodies against FMDV type O/IRN/2010 by serum neutralization test. The Serum Neutralization Test (SNT) was carried out and antibody titration was calculated according to the Kraber protocol. The results of the SNT in three groups of mice showed the titration of neutralizing antibody in the vaccinated mice groups; electron radio vaccine and conventional vaccine were significantly higher than negative control group (P<0.05). Therefore, the radio vaccine is a good candidate to immunize animals against FMDV type O/IRN/2010.

Keywords: FMDV type O/IRN/2010, neutralizing antibody response, electron beam, radio vaccine

Procedia PDF Downloads 280
628 Equipping Organic Farming in Medicinal and Aromatic Plants: Central Institute of Medicinal and Aromatic Plants' Scientific Interventions

Authors: Alok Kalra

Abstract:

Consumers and practitioners (medical herbalists, pharmacists, and aromatherapists) with strong and increased awareness about health and environment demand organically grown medicinal and aromatic plants (MAPs) to offer a valued product. As the system does not permit the use of synthetic fertilizers the use of nutrient rich organic manures is extremely important. CSIR-CIMAP has developed a complete recycling package for managing distillation and agro-waste of medicinal and aromatic plants for production of superior quality vermicompost involving microbes capable of producing high amounts of humic acid. The major benefits being faster composting period and nutrient rich vermicompost; a nutrient advantage of about 100-150% over the most commonly used organic manure (FYM). At CSIR-CIMAP, strains of microbial inoculants with multiple activities especially strains useful both as biofertilizers and biofungicide and consortia of microbes possessing diverse functional activities have been developed. CSIR-CIMAP has also initiated a program where a large number of accessions are being screened for identifying organic proficient genotypes in mints, ashwagandha, geranium and safed musli. Some of the natural plant growth promoters like calliterpenones from the plant Callicarpa macrophylla has been tested successfully for induction of rooting in stem cuttings and improving growth and yield of various crops. Some of the microbes especially the endophytes have even been identified improving the active constituents of medicinal and aromatic plants. The above said scientific interventions making organic farming a charming proposition would be discussed in details.

Keywords: organic agriculture, microbial inoculants, organic fertilizers, natural plant growth promoters

Procedia PDF Downloads 209
627 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 112
626 Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria

Authors: Timea I. Hajnal-Jafari, Simonida S. Đurić, Dragana R. Stamenov

Abstract:

Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors.

Keywords: bacteria, inoculation, soybean, microbial activity

Procedia PDF Downloads 122
625 The Gut Microbiome in Cirrhosis and Hepatocellular Carcinoma: Characterization of Disease-Related Microbial Signature and the Possible Impact of Life Style and Nutrition

Authors: Lena Lapidot, Amir Amnon, Rita Nosenko, Veitsman Ella, Cohen-Ezra Oranit, Davidov Yana, Segev Shlomo, Koren Omry, Safran Michal, Ben-Ari Ziv

Abstract:

Introduction: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related mortality worldwide. Liver Cirrhosis is the main predisposing risk factor for the development of HCC. The factor(s) influencing disease progression from Cirrhosis to HCC remain unknown. Gut microbiota has recently emerged as a major player in different liver diseases, however its association with HCC is still a mystery. Moreover, there might be an important association between the gut microbiota, nutrition, life style and the progression of Cirrhosis and HCC. The aim of our study was to characterize the gut microbial signature in association with life style and nutrition of patients with Cirrhosis, HCC-Cirrhosis and healthy controls. Design: Stool samples were collected from 95 individuals (30 patients with HCC, 38 patients with Cirrhosis and 27 age, gender and BMI-matched healthy volunteers). All participants answered lifestyle and Food Frequency Questionnaires. 16S rRNA sequencing of fecal DNA was performed (MiSeq Illumina). Results: There was a significant decrease in alpha diversity in patients with Cirrhosis (qvalue=0.033) and in patients with HCC-Cirrhosis (qvalue=0.032) compared to healthy controls. The microbiota of patients with HCC-cirrhosis compared to patients with Cirrhosis, was characterized by a significant overrepresentation of Clostridium (pvalue=0.024) and CF231 (pvalue=0.010) and lower expression of Alphaproteobacteria (pvalue=0.039) and Verrucomicrobia (pvalue=0.036) in several taxonomic levels: Verrucomicrobiae, Verrucomicrobiales, Verrucomicrobiaceae and the genus Akkermansia (pvalue=0.039). Furthermore, we performed an analysis of predicted metabolic pathways (Kegg level 2) that resulted in a significant decrease in the diversity of metabolic pathways in patients with HCC-Cirrhosis (qvalue=0.015) compared to controls, one of which was amino acid metabolism. Furthermore, investigating the life style and nutrition habits of patients with HCC-Cirrhosis, we found significant correlations between intake of artificial sweeteners and Verrucomicrobia (qvalue=0.12), High sugar intake and Synergistetes (qvalue=0.021) and High BMI and the pathogen Campylobacter (qvalue=0.066). Furthermore, overweight in patients with HCC-Cirrhosis modified bacterial diversity (qvalue=0.023) and composition (qvalue=0.033). Conclusions: To the best of the our knowledge, we present the first report of the gut microbial composition in patients with HCC-Cirrhosis, compared with Cirrhotic patients and healthy controls. We have demonstrated in our study that there are significant differences in the gut microbiome of patients with HCC-cirrhosis compared to Cirrhotic patients and healthy controls. Our findings are even more pronounced because the significantly increased bacteria Clostridium and CF231 in HCC-Cirrhosis weren't influenced by diet and lifestyle, implying this change is due to the development of HCC. Further studies are needed to confirm these findings and assess causality.

Keywords: Cirrhosis, Hepatocellular carcinoma, life style, liver disease, microbiome, nutrition

Procedia PDF Downloads 94
624 Evaluation of the Contamination of Consumed Wheat and Its Derivatives by Ochratoxinogenic Fungi

Authors: Zebiri Saliha

Abstract:

Ochratoxin A (OTA) is a mycotoxin produced by certain species of the genera Aspergillus and Penicillium, primarily found in cereals, coffee, and grapevine products. Its accumulation in the body can lead to nephrotoxic, teratogenic, immunosuppressive, and carcinogenic effects. The objective of this study is to investigate the contamination of consumed wheat and its derivatives by toxic fungi in Algeria. For this purpose, an analysis of 200 samples was conducted, including 90 samples of durum wheat and common wheat and 110 samples of wheat derivatives collected from mills (semolina and flour manufacturers). The results revealed an average fungal contamination rate ranging from 60% to 100%. The identified fungal isolates primarily belonged to the genera Aspergillus (70%), Penicillium (27.5%), Alternaria (40%), and Mucor (19.4%). The density of the fungal flora was higher in products intended for animal consumption, such as durum wheat flour (2525 CFU/g), wheat scraps (3175 CFU/g), and wheat bran (2950 CFU/g). Conversely, low fungal density was observed in fine semolina (900 CFU/g) and flour (800 CFU/g) intended for human consumption. The genus Penicillium was isolated in 46% of the analyzed samples of durum wheat derivatives and in 62.7% of the analyzed samples of common wheat derivatives. The Aspergillus genus dominated the majority of the analyzed samples. Molecular identification of Aspergillus and Penicillium isolates by sequencing ITS1-5.8S-ITS2 regions of DNAr and a part of the calmodulin (CaM) gene indicated that the species involved in the production of OTA in wheat and its derivatives were mainly Aspergillus ochraceus, A. westerdijkia, A. alliaceus, A. carbonarius, and Penicillium islandicus. The amounts of OTA produced by these species were determined by HPLC-FLD and ranged between 0,8.9 and 3033μg/g. Given that food safety and quality are major concerns today, understanding the microbial biodiversity of wheat is crucial because it is a staple food in Algeria.

Keywords: wheat derivatives, Aspergillus, microbial biodiversity, OTA

Procedia PDF Downloads 13
623 Process Development for the Conversion of Organic Waste into Valuable Products

Authors: Ife O. Bolaji

Abstract:

Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.

Keywords: cellulose, hydrolysis, mixed culture, organic waste

Procedia PDF Downloads 339
622 Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories

Authors: Patricia Jayshree Jacob, Mas Jaffri Masarudinb, Mohd Zobir Hussein, Raha Abdul Rahim

Abstract:

Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures.

Keywords: iron oxide nanoparticles, silver nanoparticles, biosynthesis, aquatic bacteria

Procedia PDF Downloads 249
621 Development of an Integrated Framework for Life-Cycle Economic, Environmental and Human Health Impact Assessment for Reclaimed Water Use in Water Systems of Various Scales

Authors: Yu-Yao Wang, Xiao-Meng Hu, Joanne Yeung, Xiao-Yan Li

Abstract:

The high private cost and unquantified external cost limit the development of reclaimed water. In this study, an integrated framework comprising life cycle assessment (LCA), quantitative microbial risk assessment (QMRA), and life cycle costing (LCC) was developed to evaluate both costs of reclaimed water supply in water systems of various scales. LCA assesses the environmental impacts, and QMRA estimates the associated pathogenic impacts. These impacts are monetized as external costs and analyzed with the private cost by LCC to count the total life cycle cost. The framework evaluated the Hong Kong urban water system in the baseline scenario (BS) and five wastewater reuse scenarios (RS). They are RSI: substituting freshwater for toilet flushing only, RSII: substituting both freshwater and seawater for toilet flushing, RSIII: using reclaimed water for all non-potable uses, RSIV: using reclaimed water for all non-potable uses and indirect potable uses, and RSV: non-potable use and indirect potable use by conveying 100% reclaimed water to recharge the reservoirs. The results show that substituting freshwater and seawater for toilet flushing has the least total life cycle cost, exhibiting that it is the most cost-effective option for Hong Kong. Meanwhile, the evaluation results show that the external cost of each scenario is comparable to the corresponding private cost, indicating the importance of the inclusion of comprehensive external cost evaluation in private cost assessment of water systems with reclaimed water supply.

Keywords: life cycle assessment, life cycle costing, quantitative microbial risk assessment, water reclamation, reclaimed water, alternative water resources

Procedia PDF Downloads 96
620 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment

Authors: Ibrahim Hakeem

Abstract:

Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.

Keywords: biosolids, pyrolysis, biochar, heavy metals

Procedia PDF Downloads 44
619 Unfolding Global Biodiversity Patterns of Marine Planktonic Diatom Communities across the World's Oceans

Authors: Shruti Malviya, Chris Bowler

Abstract:

Analysis of microbial eukaryotic diversity is fundamental to understanding ecosystems’ structure, biology, and ecology. Diatoms (Stramenopiles, Bacillariophyceae) are one of the most diverse and ecologically prominent groups of phytoplankton. This study was performed to enhance the understanding of global biodiversity patterns and structure of planktonic diatom communities across the world's oceans. We used the metabarcoding data set generated from the biological samples and associated environmental data collected during the Tara Oceans (2009-2013) global circumnavigation covering all major oceanic provinces. A total of ~18 million diatom V9-18S rDNA tags from 126 sampling stations, constituting 631 size-fractionated plankton communities were generated. Using ~250,000 unique diatom metabarcodes, the global diatom distribution and diversity across size classes, genus and ecological niches was assessed. Notably, our analysis revealed: (i) a new estimate of the total number of planktonic diatom species, (ii) a considerable unknown diversity and exceptionally high diversity in the open ocean, and (iii) complex diversity patterns across oceanic provinces. Also, co-occurrence of several ribotypes in locations separated by great geographic distances (equatorial stations) demonstrated a widespread but not ubiquitous distribution. This work provides a comprehensive perspective on diatom distribution and diversity in the world’s oceans and elaborates interconnections between associated theories and underlying drivers. It shows how meta-barcoding approaches can provide a framework to investigate environmental diversity at a global scale, which is deemed as an essential step in answering various ecological research questions. Consequently, this work also provides a reference point to explore how microbial communities will respond to environmental conditions.

Keywords: diatoms, Tara Oceans, biodiversity, metabarcoding

Procedia PDF Downloads 115
618 Potential of Enhancing Oil Recovery in Omani Oil Fields via Biopolymer Injection

Authors: Yahya Al-Wahaibi, Saif Al-Bahry, Abdulkadir Elshafie, Ali Al-Bemani, Sanket Joshi

Abstract:

Microbial enhanced oil recovery is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. There are a variety of metabolites produced by microorganisms that can be useful for oil recovery, like biopolymers-polysaccharides secreted by microbes, biodegradable thus environmentally friendly. Some fungi like Schizophyllum commune (a type of mushroom), and Aureobasidium pullulans are reported to produce biopolymers-schizophyllan and pullulan. Hence, we have procured a microbial strain (Schizophyllum commune) from American Type Culture Collection, which is reported for producing a biopolymer and also isolated several Omani strains of Aureobasidium pullulans from different samples. Studies were carried out for maintenance of the strains and primary screening of production media and environmental conditions for growth of S. commune and Omani A. pullulans isolates, for 30 days. The observed optimum growth and production temperature was ≤35 °C for S. commune and Omani A. pullulans isolates. Better growth was observed for both types of fungi under shaking conditions. The initial yield of lyophilized schizophyllan was ≥3.0 g/L, and the yield of pullulan was ≥0.5g/L. Both schizophyllan and pullulan were extracted in crude form and were partially identified by Fourier transform infrared spectroscopy (FTIR), which showed partial similarity in chemical structure with published biopolymers. The produced pullulan and schizophyllan increased the viscosity from 9-20 cp of the control media (without biopolymer) to 20 - 121.4 cp of the cell free broth at 0.1 s-1 shear rate at range of temperatures from 25–45 °C. Enhanced biopolymer production and its physicochemical and rheological properties under different environmental conditions (different temperatures, salt concentrations and wide range of pH), complete characterization and effects on oil recovery enhancement were also investigated in this study.

Keywords: Aureobasidium pullulans, biopolymer, oil recovery enhancement, Schizophyllum commune

Procedia PDF Downloads 360
617 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes

Procedia PDF Downloads 266
616 Microbial and Oocyst Count in Feacal Material of Broilers Birds Administered Phytochemicals (Naringin and Hesperidin)

Authors: Adeleye Oluwagbemmiga, Obuotor Tolulope, Dosumu Adebisi, Opowoye I., Olasoju M., Kolawole Amos, Egbeyale Lawrence

Abstract:

Gut Microbiota plays a vital role in animal health and welfare. This study investigated the effect of naringin and hesperidin administration on broiler birds. A total of 80 day – old broiler chicks were randomly divided into eight groups, with ten birds per group. Four groups were not inoculated but administered coccidiostat (1A), hesperidin alone (2A), naringin alone (3A) and a combination of naringin and hesperidin (4A) from day eight (8) to day fourteen (14) while four other groups (5A – 8A) were inoculated with 2 x 10⁴ oocysts per 0.5ml of Eimeria tenella on the 16th and 19th day of age after they were administered conventional antibiotics and coccidiostat, naringin (50mg/body weight), hesperidin (50mg/body weight) and a combination from day 8 - 14. McMaster counting technique was used to count the oocysts, while pour plate technique was used to determine the bacterial load. The results showed a significant increase in their performance with an average weight ranging from 1.55kg – 2.00kg, microbial load also improved with colony count values from 3.5 x 104 - 4.5 x 10⁴ CFU/ml. The study also found that the inclusion of naringin and hesperidin in the diets of broiler birds inoculated with coccidia oocysts significantly reduced the fecal oocyst counts, with the lowest count in combined treatment (8A) (10%) and indicating a lower degree of coccidiosis infection in the treated groups whereas control group (5A) had the highest oocyst count (35%). Mortality and Morbidity rate was 0% as none of the bird showed signs and symptoms. The reduction in oocyst counts could help to strengthen the immune system of broiler birds and limit the severity of coccidiosis infection, which could be an effective strategy for improving performance, immune function and mitigating the impact of coccidiosis infection in broiler birds.

Keywords: gut colonization, naringin, hesperidin, eimeria tenella, broilers

Procedia PDF Downloads 44
615 A Galectin from Rock Bream Oplegnathus fasciatus: Molecular Characterization and Immunological Properties

Authors: W. S. Thulasitha, N. Umasuthan, G. I. Godahewa, Jehee Lee

Abstract:

In fish, innate immune defense is the first immune response against microbial pathogens which consists of several antimicrobial components. Galectins are one of the carbohydrate binding lectins that have the ability to identify pathogen by recognition of pathogen associated molecular patterns. Galectins play a vital role in the regulation of innate and adaptive immune responses. Rock bream Oplegnathus fasciatus is one of the most important cultured species in Korea and Japan. Considering the losses due to microbial pathogens, present study was carried out to understand the molecular and functional characteristics of a galectin in normal and pathogenic conditions, which could help to establish an understanding about immunological components of rock bream. Complete cDNA of rock bream galectin like protein B (rbGal like B) was identified from the cDNA library, and the in silico analysis was carried out using bioinformatic tools. Genomic structure was derived from the BAC library by sequencing a specific clone and using Spidey. Full length of rbGal like B (contig14775) cDNA containing 517 nucleotides was identified from the cDNA library which comprised of 435 bp in the open reading frame encoding a deduced protein composed of 145 amino acids. The molecular mass of putative protein was predicted as 16.14 kDa with an isoelectric point of 8.55. A characteristic conserved galactose binding domain was located from 12 to 145 amino acids. Genomic structure of rbGal like B consisted of 4 exons and 3 introns. Moreover, pairwise alignment showed that rock bream rbGal like B shares highest similarity (95.9 %) and identity (91 %) with Takifugu rubripes galectin related protein B like and lowest similarity (55.5 %) and identity (32.4 %) with Homo sapiens. Multiple sequence alignment demonstrated that the galectin related protein B was conserved among vertebrates. A phylogenetic analysis revealed that rbGal like B protein clustered together with other fish homologs in fish clade. It showed closer evolutionary link with Takifugu rubripes. Tissue distribution and expression patterns of rbGal like B upon immune challenges were performed using qRT-PCR assays. Among all tested tissues, level of rbGal like B expression was significantly high in gill tissue followed by kidney, intestine, heart and spleen. Upon immune challenges, it showed an up-regulated pattern of expression with Edwardsiella tarda, rock bream irido virus and poly I:C up to 6 h post injection and up to 24 h with LPS. However, In the presence of Streptococcus iniae rbGal like B showed an up and down pattern of expression with the peak at 6 - 12 h. Results from the present study revealed the phylogenetic position and role of rbGal like B in response to microbial infection in rock bream.

Keywords: galectin like protein B, immune response, Oplegnathus fasciatus, molecular characterization

Procedia PDF Downloads 326