Search results for: micro injection moulding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2720

Search results for: micro injection moulding

2570 Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System

Authors: Ali Ramezani

Abstract:

Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities.

Keywords: balancing feeding system, family molding, multi-cavity, Moldflow, plastic injection

Procedia PDF Downloads 102
2569 Developing a Modified Version of KIVA-3V, Enabling Gaseous Injections

Authors: Hossein Keshtkar, Ali Nasiri Toosi

Abstract:

With the growing concerns about gasoline environmental pollution and also the need for a more widely available fuel source, natural gas is finding its way to the automotive engines. But before this could happen industrially, simulations of natural gas direct injection need to take place to maximize and optimize power output. KIVA is one of the most powerful tools when it comes to engine simulation. Widely accepted by both researchers and the industry, KIVA an open-source code, offers great in-depth simulation and analyzation. KIVA can compute complex phenomena’s which can occur inside the chamber before, whilst and after ignition. One downside to KIVA, is its in-capability of simulating gaseous injections, making it useful for only liquidized fuel. In this study, we developed a numerical code, to enable the simulation of gaseous injection within the KIVA code. By introducing our code as a subroutine, we modified the original KIVA program. To ensure the correct application of gaseous fuel injection using our modified KIVA code, we simulated two different cases and compared them with their experimental data. We concluded our modified version of KIVA’s simulation results came in very close to those measured experimentally.

Keywords: gaseous injections, KIVA, natural gas direct injection, numerical code, simulation

Procedia PDF Downloads 249
2568 The Analysis of TRACE/PARCS in the Simulation of Ultimate Response Guideline for Lungmen ABWR

Authors: J. R. Wang, W. Y. Li, H. T. Lin, B. H. Lee, C. Shih, S. W. Chen

Abstract:

In this research, the TRACE/PARCS model of Lungmen ABWR has been developed for verification of ultimate response guideline (URG) efficiency. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. The simulation initial condition is 100% rated power/100% rated core flow. This research focuses on the estimation of the time when the fuel might be damaged with no water injection by using TRACE/PARCS first. Then, the effect of the reactor core isolation system (RCIC), control depressurization and ac-independent water addition system (ACIWA), which can provide the injection with 950 gpm are also estimated for the station blackout (SBO) transient.

Keywords: ABWR, TRACE, safety analysis, PARCS

Procedia PDF Downloads 434
2567 Efficacy of Ivermectin Agaist Sarcoptes Scabiei Var. Cameli in Libya

Authors: Ahmed Rashed

Abstract:

Sarcoptic mange is generally recognized as one of the most serious diseases in camels in Libya. It is an extremely pruritic and contagious skin condition caused by Sarcoptes scabiei var cameli. Thirteen camels (camelis dromedaries), showing progressive infection with S.scabiei mites in skin scrapings, were chosen randomly from different affected herds at AL-Assa camel project. Ten camels were treated with ivermectin (22,23-dihydroavermectin B1, Ivomec, Merck) at a dose rate of 0.2 mg./kg.body weight. Scratching and rubbing had completely disappeared in the treated camels one week after the second injection. Two weeks after the second injection motile mites were found on only one camel, and three weeks after the second injection, no motile mites were detected. Motile mites were observed in the three untreated camels up to the end of the trial.

Keywords: ivermecti, Sarcoptes scabiei, camels, scrapings

Procedia PDF Downloads 482
2566 Process for Production of Added-Value Water–Extract from Liquid Biomass

Authors: Lozano Paul

Abstract:

Coupled Membrane Separation Technology (CMST), including Cross Flow Microfiltration (CFM) and Reverse Osmosis (RO), are used to concentrate microalgae biomass or/and to extract and concentrate water-soluble metabolites produced during micro-algae production cycle, as well as water recycling. Micro-algae biomass was produced using different feeding mixtures of ingredients: pure chemical origin compounds and natural/ecological water-extracted components from available local plants. Micro-algae was grown either in conventional plastic bags (100L/unit) or in small-scale innovative bioreactors (75L). Biomass was concentrated as CFM retentate using a P19-60 ceramic membrane (0.2μm pore size), and water-soluble micro-algae metabolites left in the CFM filtrate were concentrated by RO. Large volumes of water (micro-algae culture media) of were recycled by the CMTS for another biomass production cycle.

Keywords: extraction, membrane process, microalgae, natural compound

Procedia PDF Downloads 250
2565 Numerical Modeling the Cavitating Flow in Injection Nozzle Holes

Authors: Ridha Zgolli, Hatem Kanfoudi

Abstract:

Cavitating flows inside a diesel injection nozzle hole were simulated using a mixture model. A 2D numerical model is proposed in this paper to simulate steady cavitating flows. The Reynolds-averaged Navier-Stokes equations are solved for the liquid and vapor mixture, which is considered as a single fluid with variable density which is expressed as function of the vapor volume fraction. The closure of this variable is provided by the transport equation with a source term TEM. The processes of evaporation and condensation are governed by changes in pressure within the flow. The source term is implanted in the CFD code ANSYS CFX. The influence of numerical and physical parameters is presented in details. The numerical simulations are in good agreement with the experimental data for steady flow.

Keywords: cavitation, injection nozzle, numerical simulation, k–ω

Procedia PDF Downloads 367
2564 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine

Authors: Mohan H., C. Elajchet Senni

Abstract:

In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.

Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester

Procedia PDF Downloads 261
2563 Thrust Vectoring Control of Supersonic Flow through an Orifice Injector

Authors: I. Mnafeg, A. Abichou, L. Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: flow separation, fluidic thrust vectoring, nozzle, secondary jet, shock wave

Procedia PDF Downloads 273
2562 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design

Procedia PDF Downloads 138
2561 Automatic Slider Design in Injection Moldings

Authors: Alan C. Lin, Tran Anh Son

Abstract:

This study proposes an approach to determine the undercut regions and their releasing directions for slider design of complex parts represented by the file format of STL (STereoLithography). In order to delineate the border of undercut regions, orthogonal cutting planes are firstly employed to automatically find the inner loops of a part model. To discover the facets belonging to undercut regions, attributes are then assigned to the facets of the part model based on the topological relationship of adjacent facets of each inner loop. After that, the undercut regions are separated from other facets in the model. Through the recognized facets of the undercut regions, the concept of 'visibility map (V-map)' is further applied to determine feasible releasing directions for each of the undercut regions. The undercut regions having the same releasing direction are finally grouped to form a slider in the injection mold.

Keywords: solid model, STL data, injection mold design, visibility map

Procedia PDF Downloads 369
2560 Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete

Authors: Shofiq Ahmed, Rakibul Hassan, Raquib Ahsan

Abstract:

Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product.

Keywords: indigenous, micro-concrete, retrofitting, vulnerable

Procedia PDF Downloads 301
2559 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 487
2558 Observation of Laminar to Turbulent Transition in Micro-Propellers

Authors: Dake Wang, Ellis Edinkrah, Brian Wang

Abstract:

Micro-propellers can operate in regimes of small Reynolds numbers where the effect of viscous friction becomes important. In this work, the transition from laminar to turbulent regime in micro-propellers driven by electric motors was observed. The analysis revealed that the lift force was linearly proportional to propeller output power when systems operate in the laminar/viscous regime, while a sublinear relation between the force and the output power was observed in the turbulent/inertial regime. These behaviors appeared to be independent of motor-propeller specifications. The Reynolds number that marks the regime transition was found to be at around 10000.

Keywords: UAV, micro-propeller, laminar-turbulent, Reynolds number

Procedia PDF Downloads 65
2557 The Influence of Residual Stress on Hardness and Microstructure in Railway Rails

Authors: Muhammet Emre Turan, Sait Özçelik, Yavuz Sun

Abstract:

In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress.

Keywords: residual stress, hardness, micro structure, rail, strain gauge

Procedia PDF Downloads 568
2556 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 161
2555 Microgreenspace Regeneration in an Inclusive Perspective

Authors: Li Shiyue

Abstract:

In an urban built environment, urban green space is scarce, especially around old residential areas. Due to the innate design deficiency and the non-core location of these areas, they lack green space, and the recreational opportunities of the surrounding residents are not guaranteed. Micro greenspace becomes a "patch" to compensate for the urban function. To realize the renewal and transformation of micro greenspace, and make it meet the use needs of most groups, this paper introduces the concept of inclusive design. Based on relevant research at home and abroad, this paper discusses the connotation and current situation of micro greenspace. Combining with the realistic conditions of China, this paper thinks about the planning path of inclusive renewal from the aspects of selecting micro greenspace transformation potential points and exploring the key points of site renewal. Among them, the key points of site renewal are explored from five angles: land guarantee, systematic coordination, refined design, and shared space creation, to provide useful references for related research and practice.

Keywords: inclusive design, micro greenspace, old city area, space renewal

Procedia PDF Downloads 33
2554 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility

Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir

Abstract:

The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.

Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources

Procedia PDF Downloads 368
2553 Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection

Authors: Sumei Cai, Hong Li

Abstract:

Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness.

Keywords: remote displacement, inverse problem, boundary element method, BEM, reservoir process

Procedia PDF Downloads 92
2552 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: micro-bubble, oxygenator, nozzle, piezoelectric

Procedia PDF Downloads 290
2551 Characterization Microstructural Dual Phase Steel for Application In Civil Engineering

Authors: S. Habibi, T. E. Guarcia, A. Megueni, A. Ziadi, L. Aminallah, A. S. Bouchikhi

Abstract:

The characterization of the microstructure of Dual Phase steel in various low-carbon, with a yield stress between 400 and 900 MPa were conducted .In order to assess the mechanical properties of steel, we examined the influence of their chemical compositions interictal and heat treatments (austenite + ferrite area) on their micro structures. In this work, we have taken a number of commercial DP steels, micro structurally characterized and used the conventional tensile testing of these steels for mechanical characterization.

Keywords: characterization, construction in civil engineering, micro structure, tensile DP steel

Procedia PDF Downloads 433
2550 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code

Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev

Abstract:

This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations.

Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code

Procedia PDF Downloads 391
2549 Gas Injection Transport Mechanism for Shale Oil Recovery

Authors: Chinedu Ejike

Abstract:

The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. As a result, optimizing recuperation offers a significant benefit. Huff and puff gas flooding and cyclic gas injection have all been demonstrated to be more successful than tapping the remaining oil in place. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research assesses the parameters that influence the gas injection transport mechanism. Understanding the process causing these factors could accelerate recovery by two to three times, according to peer-reviewed studies and effective field testing.

Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reserve

Procedia PDF Downloads 147
2548 In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology

Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar

Abstract:

Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented.

Keywords: metal foams, micro-CT, cell topology, quasistatic compression

Procedia PDF Downloads 427
2547 CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics

Authors: Hui Zhu, Yuan Wang, Shibo Kuang, Aibing Yu

Abstract:

The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types.

Keywords: CFD-DEM, inertial effect, microchannel, separation

Procedia PDF Downloads 264
2546 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling

Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy

Procedia PDF Downloads 475
2545 Gas Lift Optimization Using Smart Gas Lift Valve

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie

Abstract:

Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.

Keywords: Effect of gas lift valve port size, effect water cut, vertical flow performance

Procedia PDF Downloads 261
2544 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 98
2543 Static and Dynamic Analysis of Microcantilever Beam

Authors: S. B. Kerur, B. S. Murgayya

Abstract:

The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.

Keywords: micro, FEM, dynamic, cantilever beam

Procedia PDF Downloads 361
2542 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12

Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto

Abstract:

Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.

Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin

Procedia PDF Downloads 443
2541 A Slip Transmission through Alpha/Beta Boundaries in a Titanium Alloy (Ti-6Al-4V)

Authors: Rayan B. M. Ameen, Ian P. Jones, Yu Lung Chiu

Abstract:

Single alpha-beta colony micro-pillars have been manufactured from a polycrystalline commercial Ti-6Al-4V sample using Focused Ion Beam (FIB). Each pillar contained two alpha lamellae separated by a thin fillet of beta phase. A nano-indenter was then used to conduct uniaxial micro-compression tests on Ti alloy single crystals, using a diamond flat tip as a compression platen. By controlling the crystal orientation along the micro-pillar using Electron back scattering diffraction (EBSD) different slip systems have been selectively activated. The advantage of the micro-compression method over conventional mechanical testing techniques is the ability to localize a single crystal volume which is characterizable after deformation. By matching the stress-strain relations resulting from micro-compression experiments to TEM (Transmission Electron Microscopy) studies of slip transmission mechanisms through the α-β interfaces, some proper constitutive material parameters such as the role of these interfaces in determining yield, strain-hardening behaviour, initial dislocation density and the critical resolved shear stress are suggested.

Keywords: α/β-Ti alloy, focused ion beam, micro-mechanical test, nano-indentation, transmission electron diffraction, plastic flow

Procedia PDF Downloads 357