Search results for: methanol concentration and support structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18270

Search results for: methanol concentration and support structure

18150 Isolation and Synthesis of 1’-S-1’-Acetoxycavicol Acetate as Potent Antidandruff Agent

Authors: M. Vijaya Bhaskar Reddy

Abstract:

The air-dried and powdered methanol solvent extraction of the rhizomes of Alpinia galangal is subjected to bio-assay guided fractionation and isolation yielded a known compound namely, 1'-S-1'-Acetoxychavicol acetate (1). The isolated known compound has been identified based on the physical, spectral data (IR, ¹H, ¹³C, NMR and mass spectroscopy) and comparison with an authentic sample. Finally isolated 1'-S-1'-Acetoxychavicol acetate (1) was confirmed by synthesis. The crude methanol extract and identified known compound (1) were tested for antidandruff property against Malassezia furfur showed with MIC 1000 µg/mL and 7.81 µg/mL, respectively.

Keywords: Alpinia galanga, isolation, 1'-S-1'-Acetoxychavicol acetate, antidandruff activity, Malassezia furfur

Procedia PDF Downloads 131
18149 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics

Authors: Geraldine Giraldo

Abstract:

In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.

Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic

Procedia PDF Downloads 42
18148 Morphological and Molecular Identification of Endophytic Colletotrichum Species from Medicinal Plants and Their Antimicrobial Potential

Authors: Gauravi Agarkar, Mahendra Rai

Abstract:

Endophytic fungi from medicinal plants are important source of numerous pharmacologically important compounds. In the present investigation, the endophytic fungi were isolated from three medicinal plants; Andrographis paniculata, Rauwolfia serpentina and Tridax procumbens. Endophytic Colletotrichum sp. were identified on the basis of cultural and morphological characteristics as well as internal transcribed spacer (ITS) sequence analysis. Antibacterial and antifungal activity of the ethyl acetate and methanol extract of endophytic Colletotrichum sp. was evaluated against seven different human pathogenic bacteria and six Candida sp. The extracts were effective and showed significant activity against all the test pathogens. In case of yeast Candida, the combined effect of extracts and standard antibiotic was enhanced greatly showing synergistic activity. Further, the extracts were assayed for Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC) where, MIC values were in the range of 100-250 μg/ml. These results suggest that the endophytic Colletotrichum sp. isolated from the medicinal plants are capable of producing promising antimicrobial metabolites.

Keywords: antimicrobial, colletotrichum, endophytic fungi, medicinal plants

Procedia PDF Downloads 533
18147 The Evaluation of Antioxidant Activity of Aloe Vera (Aloe barbadensis miller)

Authors: R. A. Akande, M. L. Mnisi

Abstract:

Introduction: Aloe vera (Aloe barbadensis miller) flowers are carried in a large candelabra-like flower-head. Aloe barbadensis miller has been known as a traditional herbal medicine for the treatment of many diseases and sicknesses mainly for skin conditions such as sunburns, cold sores and frostbite. It is also used as a fresh food preservative. The main objective of this study is to determine the antioxidant activity of Aloe barbadensis miller. Methodology: The plant material (3g) was separately extracted with 30 mL of solvent with varying polarities (methanol and ethyl acetate)(technical grade, Merck) in 50ml polyester centrifuge tubes. The tubes was be shaken for 30 minutes on a linear shaker and left over night. The supernatant was filtered using a Whitman No. 1 filter paper before being transferred into pre-weighed glass containers. The solvent was allowed to evaporate under a fan in a room to quantify extraction efficacy. The, tin layer chromatography(TLC) plates were prepared and Pasteur pipette was used for spotting each extractant (methanol and ethyl acetate) on the TLC plates and the plate was developed in saturated TLC tank .and dipped in vanillin sulphuric acid mixture and heated at 110 to detect separate compound .and dipped in DDPH in methanol to detect antioxidant. Expected contribution to knowledge: It was observed that different compounds which interact differently with different solvent such as methanol, ethyl acetate having difference polarities were observed. The yellow spots also observed from the plate dipped in DDPH indicate that Aloe barbadensis miller has antioxidant.

Keywords: antioxidant activity, Aloe barbadensis miller, tin layer chromatography, DDPH

Procedia PDF Downloads 423
18146 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.

Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software

Procedia PDF Downloads 381
18145 Numerical Study of Heat Transfer in Silica Aerogel

Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa

Abstract:

Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.

Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity

Procedia PDF Downloads 258
18144 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell

Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja

Abstract:

A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.

Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite

Procedia PDF Downloads 243
18143 Qualitative Phytochemical Screening and Antibacterial Evaluation of Sohphlang: Flemingia Vestita

Authors: J. K. D. M. P. Madara, R. B. L. Dharmawickreme, Linu John, Ivee Boiss

Abstract:

Flemingia vestita, commonly known as ‘Sohphlang’ is an important medicinal plant found in the North-Eastern region of India, which is traditionally recognized for its anthelmintic properties. This study was aimed to evaluate the phytochemical constituents and antibacterial activity of the tuber skin extracts of the plant species. Methanol, acetone, and water were used to obtain the solvent extractions of the skin peel extracts. Concentrated extracts of skin peel were tested using previously established qualitative phytochemical assays. The antibacterial efficacy of methanol tuber skin extract was tested against Gram-negative and positive microorganisms, namely, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Mycobacterium tuberculosis strains. Agar well diffusion method was employed to determine the zone of inhibition of the plant extracts. Obtained data were statistically analyzed. Methanol extracts of Flemingia vestita were found to be effective against Bacillus subtilis and Mycobacterium tuberculosis at concentrations of 0.5 mg/ml. The reported zone of inhibition for the two strains was 13.3mm ± 0.57 and 16.3mm ± 4.9, respectively. However Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were resistant to the plant extracts with no zone of inhibition. Alkaloids, glycosides, and phenols were found to be present in aqueous, methanol, and acetone extracts of the plant in qualitative phytochemical analysis.

Keywords: flemingia vestita, antibacterial activity, phytochemical screening, well diffusion method

Procedia PDF Downloads 81
18142 Phenolic Compounds, Antiradical Activity, and Antioxidant Efficacy of Satureja hortensisl - Extracts in Vegetable Oil Protection

Authors: Abolfazl Kamkar

Abstract:

Vegetable oils and fats are recognized as important components of our diet. They provide essential fatty acids, which are precursors of important hormones and control many physiological factors such as blood pressure, cholesterol level, and the reproductive system.Vegetable oils with higher contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFAs) are more susceptible to oxidation.Protective effects of Sature jahortensis(SE) extracts in stabilizing soybean oil at different concentrations (200 and 400 ppm) were tested. Results showed that plant extracts could significantly (P< 0.05) lower the peroxide value and thiobarbituric acid value of oil during storage at 60 oC. The IC50 values for methanol and ethanol extracts were 31.5 ± 0.7 and 37.00 ± 0 µg/ml, respectively. In the β- carotene/linoleic acid system, methanol and ethanol extracts exhibited 87.5 ± 1.41% and 74.0 ±2.25 % inhibition against linoleic acid oxidation. The total phenolic and flavonoid contents of methanol and ethanol extracts were (101.58 ± 0. 26m g/ g) and (96.00 ± 0.027 mg/ g), (44.91 ± 0.14 m g/ g) and (14.30 ± 0.12 mg/ g) expressed in Gallic acid and Quercetin equivalents, respectively.These findings suggest that Satureja extracts may have potential application as natural antioxidants in the edible oil and food industry.

Keywords: satureja hortensis, antioxidant activity, oxidative stability, vegetable oil, extract

Procedia PDF Downloads 340
18141 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 86
18140 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 552
18139 The Porsche Pavilion in Wolfsburg, Germany

Authors: H. Pasternak, T. Krausche

Abstract:

The Porsche Pavilion is an innovative stainless steel construction using the principle, often used in ship and car design, as an advantage for building a light but stiff structure. The Pavilion is a one of a kind and outstanding construction that you can find. It fits right in the existing parts of the Autostadt within the lagoon landscape and was built in only eight months. With its curving lines and exiting bends the structure is an extraordinary work which was designed by Henn architects, Munich. The monocoque has a good balance between material and support structure. The stiffness is achieved by the upper and lower side sheathing plates and the intermediate formers. Also the roof shell has no joints and a smooth surface. The assembling of the structure requires a large time and effort cost due to many welds which are necessary to connect all section to one large shell.

Keywords: construction welding, exhibition building, light steel construction, monocoque

Procedia PDF Downloads 501
18138 Perspectives on Educational Psychological Support Services in New Zealand and South African Schools

Authors: Johnnie Hay

Abstract:

New Zealand is well known for its natural beauty, diversity of people but also for its strong focus on mental health through the provision of a vast network of psycho-social support services. South African-trained psychologists often make New Zealand their new home when emigrating - as it is relatively simple to slot into the well-established mental health system. South Africa is bigger in size, population, GDP and probably people diversity than New Zealand but struggles to provide adequate educational and psychological support services to schools. This is mainly due to budgetary pressures brought about by the imperative to first ensure that the approximately 13 million learners all have a teacher in front of their classes and at an average ratio of not more than 40 learners per class. In this paper, perspectives on educational and psychological support in New Zealand and South African schools will be shared. Through basic qualitative research encompassing semi-structured interviews with two South African educational psychologists who returned from New Zealand, supplemented by document analysis, the New Zealand situation will be scrutinized. South African perspectives will be obtained through a number of semi-structured interviews and questionnaires administered by education support services specialists working in district-based support teams in three provinces of the country. This research is in process, but preliminary findings indicate large disparities between the two countries' emphasis, funding, post provisioning and structure regarding educational and psychological support services.

Keywords: educational psychological support services, support for learners experiencing special needs, education support services, diverse learner population

Procedia PDF Downloads 37
18137 Antibacterial Activity of Methanol Extract of Punica Granatum Linn. (Punnicaceae) Fruit Peel Against Selected Bacterial Species

Authors: Afzan Mahmad, Santibuana Abd Rahman, Gouri Kumar Dash, Mohd. Syafiq Bin Abdullah

Abstract:

Antibacterial activity of the methanol extract of fruit peel of Punica granatum Linn (Family: Punicaceae) was evaluated against two Gram positive and two Gram negative bacteria. The Gram positive bacteria included Staphylococcus aureus, Streptococcus pneumoniae and the Gram negative organisms included Escherichia coli and Pseudomonas aeruginosa respectively. The culture media used for antibacterial assay was Mueller Hinton agar for the growth of S. aureus, E. coli, and P. aeruginosa. The media used for the growth of S. pneumoniae was Mueller Hinton blood agar. The antibacterial assay was performed through Disc diffusion technique. The methanol extract was tested at three different concentrations (50, 100 and 200 mg/ml). Standard antibiotic discs containing vancomycin (30 μg) for S. pneumoniae, penicillin (10 units) for S. aureus, ceftriaxone (30 μg) for E. coli and ciprofloxacin (5 μg) for P. aeruginosa were used for the activity comparison. The results of the study revealed that the extract possesses antibacterial activity against S. aureus, S. pneumoniae and P. aeruginosa at all tested concentrations. The maximum zone of inhibition of 19 mm of the extract at 200 mg/ml was observed against S. pneumoniae. However, no zone of inhibition was observed against E. coli at the tested concentrations of the extract. Based on the results obtained in this study, it may be concluded that the fruit peel of P. granatum possess broad spectrum of antibacterial activity against a number bacteria.

Keywords: Punica granatum Linn., methanol extract, antibacterial, zone of inhibition

Procedia PDF Downloads 361
18136 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method

Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung

Abstract:

This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.

Keywords: seismic, numerical analysis, FEM, weir, boundary condition

Procedia PDF Downloads 422
18135 On CR-Structure and F-Structure Satisfying Polynomial Equation

Authors: Manisha Kankarej

Abstract:

The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.

Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor

Procedia PDF Downloads 496
18134 Sensitivity of Steindachneridion parahybae Mature Oocytes versus Embryos at Low Temperature

Authors: Tais Silva Lopes, Danilo Caneppele, Elizabeth Romagosa

Abstract:

Surubim-do-Paraíba, Steindachneridion parahybae is a species of South American fish in critical conditions of extinction. Researches have been developed with the objective of conserving the biological material of this species. We evaluated the cooling of mature oocytes in the cryoprotective solutions containing the following alcohols: methanol, Propylene glycol and DMSO, each at concentrations of 1M, 2M and 4M, totaling nine treatments. After being submitted to treatments, the oocytes were maintained for 120 minutes in cooling to -5.52±2.58⁰C. A sample of oocytes was submitted to negative control (NC), kept in 90% L-15 solution, and positive control (PC), fertilized and taken directly to the incubator. Fertilization and hatching rates were evaluated. In order to compare the sensitivity of oocytes to embryos of the same species, the embryos maintained as CP in the previous assay were used in the free-flow stage (about 22 hours post fertilization) and submitted to the same treatments (prepared in distilled water) and also cooled for 120 min. The evaluation was done by the hatch rate. There was no fertilization rate of the oocytes submitted to the cooling with propylene glycol; the other cryoprotectants presented values of at most 3.7% of fertilization (Methanol 1M), and no treatment completed development until hatching. The cooled embryos had a significant percentage of normal larvae in all treatments, but inversely proportional to the increase in the concentration of the alcohols. DMSO 1M was the most promising treatment for embryo cooling, with 41.7% ± 20.2 of normal larvae, while mature oocytes were highly sensitive to cold.

Keywords: cryoconservation, cooling, embryos, freezing, oocytes, south American fish

Procedia PDF Downloads 215
18133 Molecular Simulation Study on the Catalytic Role of Silicon-Doped Graphene in Carbon Dioxide Hydrogenation

Authors: Wilmer Esteban Vallejo Narváez, Serguei Fomine

Abstract:

The theoretical investigation of Si-doped graphene nanoflakes (NFs) was conducted to understand their catalytic impact on CO₂ reduction using molecular hydrogen at the Density Functional Theory (DFT) level. The introduction of silicon by substituting carbon induces defects in the NF structure, resulting in a polyradical ground state. This silicon defect significantly boosts reactivity towards substrates, making Si-doped graphene NFs more catalytically active in CO₂ reduction to formic acid compared to silicene. Notably, Si-doped graphene demonstrates a preference for formic acid over carbon monoxide, mirroring the behavior of silicene. Furthermore, investigations into formic acid-to-formaldehyde and formaldehyde-to-methanol conversions reveal instances where Si-doped graphene outperforms silicene in terms of efficacy. In the final reduction step, the methanol-to-methane reaction unfolds in four stages, with the rate-determining step involving hydrogen transfer from silicon to methyl. Notably, the activation energy for this step is lower in Si-doped graphene compared to silicene. Consequently, Si-doped graphene NFs emerge as superior catalysts with lower activation energies overall. Remarkably, throughout these catalytic processes, Si-doped graphene maintains environmental stability, further highlighting its enhanced catalytic activity without compromising graphene's inherent stability.

Keywords: silicon-doped graphene, CO₂ reduction, DFT, catalysis

Procedia PDF Downloads 26
18132 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 76
18131 Between the Pen and the Dish Towel: Paradox of Globalization

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

In Brazil, women are the majority of the country's population. They have advanced in terms of years of education and professional training. However, this has not prevented the differences in the labor market from being sustained, particularly the wage gap and inequalities concerning the access to command positions and promotions, i.e., in the gender relations and treatment. One of the conditions which constitute a barrier to career advancement is the necessary support chain to support women when they are in the labor market. Therefore, the purpose of this research is to demonstrate, describe, and criticize some of the current conformations of support chains and how these compete to promote the phenomenon known as glass ceiling in the country. However, this support may come even from inside a woman's own home, with a fairer division of household activities between men and women. Such behavior can free an entire network of women within the same family. In addition, it can serve as pressure to structure better conditions for women as a whole, improving the living conditions of the poor population. This can occur through programs and projects for qualification and retraining of adult women. In answer to the question that guides this study, it is concluded that a family support system is critical to the success of women in management positions. To meet this demand, one of the ways could be the development of specific gender policies by the public authorities, in accordance with the emerging global economic policies, in order to provide and structure the necessary support. This would respond to feminist manifestations - which should go on pointing needs – although the legislative assembly should also propose ideas to change this picture. This is a qualitative research, with a poststructuralist approach, featuring a cutout corpus of three interviews carried out with women holding leadership positions in the academia. Questions related to this very discussion are many. New studies could address points as the promotion of qualification and expansion of skills of women in subaltern condition. There is also need to investigate possible support systems, considering the inequalities and local economic conditions.

Keywords: gender and labor market, glass ceiling, post-structuralism, support chain

Procedia PDF Downloads 213
18130 Allelopathic Effect of Foliar Extracts of Leucaena leucocephala on Germination and Growth Behavior of Zea mays L.

Authors: Guru Prasad Satsangi, Shiv Shankar Gautam

Abstract:

Allelopathy is a potential area of research for sustainable agriculture. It is environmentally safe, can conserve the available resources, and also may mitigate the problems raised by synthetic chemicals. The allelo-chemicals are secondary metabolites produced by plants, which are the byproducts of the primary metabolic process. These allelo-chemicals may be stimulatory, inhibitory, or may have no effect on the growth of the other plants. It has been observed in the present study that foliar extracts of Leucaena leucocephala showed an inhibitory effect on the germination of the test crop maize. The results revealed that at different concentrations of Leucaena leucocephala foliar extract, caused a significant inhibition in germination and growth behavior of Zea mays L. seedlings. Minimum germination and growth occurred in 100 % concentration, and an increase in extract concentrations result in a decrease in the germination. Bioassay also depicted that this inhibitory effect was proportional to the concentration of the extract as the higher concentration having a lesser stimulatory effect or vice versa. The phytochemical analysis of the secondary metabolites from foliar extracts of Leucaena leucocephala L. showed the presence of tannins, saponins, phenols, alkaloids, and flavanoids. Among various extracts, the presence of methanol extract was found in a significant amount of phytochemicals, followed by the aqueous and ethanol extracts. Leaves showed a significantly higher amount of the allelochemicals.

Keywords: allelopathic effect, germination /growth behavior , foliar extracts, Leucaena leucceophala , Zea mays L.

Procedia PDF Downloads 172
18129 Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties

Authors: Yik Sin Chan, Bee Ling Chuah, Wei Quan Chan, Ri Jin Cheng, Yan Hang Oon, Kong Soo Khoo, Nam Weng Sit

Abstract:

Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties.

Keywords: bactericidal, Chikungunya virus, extraction, fungicidal

Procedia PDF Downloads 377
18128 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site.

Keywords: air pollution, air quality, polution, monitoring

Procedia PDF Downloads 295
18127 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel

Authors: Jay J. Vora, Vishvesh J. Badheka

Abstract:

This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.

Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding

Procedia PDF Downloads 188
18126 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Authors: Mohanapriya Subramanian, V. Raj

Abstract:

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.

Keywords: biopolymers, fuel cells, nanocomposite, methanol crossover

Procedia PDF Downloads 113
18125 Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract

Authors: Sharareh Mohseni

Abstract:

Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially.

Keywords: Crocus sativus L., saffron extract, solvent extraction, distilled water

Procedia PDF Downloads 422
18124 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, polymer membrane, gas permeability, CO₂ separation, nanotubes

Procedia PDF Downloads 256
18123 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 274
18122 Optimization of Quercus cerris Bark Liquefaction

Authors: Luísa P. Cruz-Lopes, Hugo Costa e Silva, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves

Abstract:

The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of Quercus cerris (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of Quercus cerris, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of Quercus cerris is mostly composed by suberin (ca. 30%) and lignin (ca. 24%) as well as insolvent hemicelluloses in hot water (ca. 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction.

Keywords: liquefaction, Quercus cerris, polyalcohol liquefaction, temperature

Procedia PDF Downloads 304
18121 Evaluation of the Analgesic Activity of Defatted Methanol Extract of Capparis spinosa L. Root Barks

Authors: Asma Meddour, Mouloud Yahia, Afaf Benhouda, Souhila Benbia, Hachani Khadhraoui

Abstract:

Peripheral analgesic activity of defatted methanol extract of root barks of Capparis spinosa was tested orally at the dose of 100 and 200 mg/kg against pain induced by acetic acid in rats. The dose of 200 mg/kg presents significant analgesic effect with a percentage of inhibition of torsions of 88.51% compared to the positive control which is the acetylsalicylic acid which represents a percentage of inhibition of 92.55%. The dose of 100 mg/kg presents a percentage of inhibition of 81.68%.

Keywords: peripheral analgesic activity, Capparis spinosa, percentage of inhibition of torsions, chemical sciences

Procedia PDF Downloads 267