Search results for: measuring wellbeing and happiness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2215

Search results for: measuring wellbeing and happiness

85 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 76
84 An eHealth Intervention Using Accelerometer- Smart Phone-App Technology to Promote Physical Activity and Health among Employees in a Military Setting

Authors: Emilia Pietiläinen, Heikki Kyröläinen, Tommi Vasankari, Matti Santtila, Tiina Luukkaala, Kai Parkkola

Abstract:

Working in the military sets special demands on physical fitness, however, reduced physical activity levels among employees in the Finnish Defence Forces (FDF), a trend also being seen among the working-age population in Finland, is leading to reduced physical fitness levels and increased risk of cardiovascular and metabolic diseases, something which also increases human resource costs. Therefore, the aim of the present study was to develop an eHealth intervention using accelerometer- smartphone app feedback technique, telephone counseling and physical activity recordings to increase physical activity of the personnel and thereby improve their health. Specific aims were to reduce stress, improve quality of sleep and mental and physical performance, ability to work and reduce sick leave absences. Employees from six military brigades around Finland were invited to participate in the study, and finally, 260 voluntary participants were included (66 women, 194 men). The participants were randomized into intervention (156) and control groups (104). The eHealth intervention group used accelerometers measuring daily physical activity and duration and quality of sleep for six months. The accelerometers transmitted the data to smartphone apps while giving feedback about daily physical activity and sleep. The intervention group participants were also encouraged to exercise for two hours a week during working hours, a benefit that was already offered to employees following existing FDF guidelines. To separate the exercise done during working hours from the accelerometer data, the intervention group marked this exercise into an exercise diary. The intervention group also participated in telephone counseling about their physical activity. On the other hand, the control group participants continued with their normal exercise routine without the accelerometer and feedback. They could utilize the benefit of being able to exercise during working hours, but they were not separately encouraged for it, nor was the exercise diary used. The participants were measured at baseline, after the entire intervention period, and six months after the end of the entire intervention. The measurements included accelerometer recordings, biochemical laboratory tests, body composition measurements, physical fitness tests, and a wide questionnaire focusing on sociodemographic factors, physical activity and health. In terms of results, the primary indicators of effectiveness are increased physical activity and fitness, improved health status, and reduced sick leave absences. The evaluation of the present scientific reach is based on the data collected during the baseline measurements. Maintenance of the studied outcomes is assessed by comparing the results of the control group measured at the baseline and a year follow-up. Results of the study are not yet available but will be presented at the conference. The present findings will help to develop an easy and cost-effective model to support the health and working capability of employees in the military and other workplaces.

Keywords: accelerometer, health, mobile applications, physical activity, physical performance

Procedia PDF Downloads 170
83 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 195
82 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 36
81 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 195
80 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 146
79 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 100
78 Perception Differences in Children Learning to Golf with Traditional versus Modified (Scaled) Equipment

Authors: Lindsey D. Sams, Dean R. Gorman, Cathy D. Lirgg, Steve W. Dittmore, Jack C. Kern

Abstract:

Golf is a lifetime sport that provides numerous physical and psychological benefits. The game has struggled with attrition and retention within minority groups and this has exposed the lack of a modified introduction to the game that is uniformly accessible and developmentally appropriate. Factors that have been related to sport participatory behaviors include perceived competence, enjoyment and intention. The purpose of this study was to examine self-reported perception differences in competence and enjoyment between learners using modified and traditional equipment as well as the potential effects these factors could have on intent for future participation. For this study, SNAG Golf was chosen to serve as the scaled equipment used by the modified equipment group. The participants in this study were 99 children (24 traditional equipment users/ 75 modified equipment users) located across the U.S. with ages ranging from 7 to 12 years (2nd-5th grade). Utilizing a convenience sampling method, data was obtained on a voluntary basis through surveys measuring children’s golf participation and self-perceptions concerning perceived competence, enjoyment and intention to continue participation. The scales used for perceived competence and enjoyment included Susan Harter’s Self-Perception Profile for Children (SPPC) along with the Physical Activity Enjoyment Scale (PACES). Analysis revealed no significant differences for enjoyment, perceived competence or intention between children learning with traditional golf equipment and modified golf equipment. This was true even though traditional equipment users reported significantly higher experience levels than that of modified users. Intention was regressed on the enjoyment and perceived competence variables. Congruent with current literature, enjoyment was a strong predictor of intention to continue participation, for both groups. Modified equipment users demonstrated significantly lower experience levels but reported similar levels of competence, enjoyment and intent to continue participation as reported by the more experienced, and potentially more skilled, traditional users. The ability to immediately generate these positive affects suggests the potential adoption of a more effective way to learn golf and a method that is conducive to participatory behaviors related to attrition and retention. These implications in turn, highlight an equipment candidate ideal for inception into physical education programs where new learners are introduced to various sports in safe and developmentally appropriate environments. A major goal of this study was to provide foundational research that instigates the further examination of golf’s introductory teaching methodologies, as there is a lack of its presence in current literature. Future research recommendations range from improvements in the current research design to expansive approaches related to the topic, such as progressive skill development, knowledge of the game’s tactical and strategic concepts, playing ability and teaching effectiveness when utilizing modified versus traditional equipment.

Keywords: adaptive sports, enjoyment, golf participation, modified equipment, perceived competence, SNAG golf

Procedia PDF Downloads 315
77 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density

Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi

Abstract:

Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.

Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density

Procedia PDF Downloads 233
76 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters

Authors: Jyoti Sahu, Vinay A. Juvekar

Abstract:

Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.

Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature

Procedia PDF Downloads 359
75 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 229
74 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data

Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito

Abstract:

Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.

Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement

Procedia PDF Downloads 357
73 Hydrogen Purity: Developing Low-Level Sulphur Speciation Measurement Capability

Authors: Sam Bartlett, Thomas Bacquart, Arul Murugan, Abigail Morris

Abstract:

Fuel cell electric vehicles provide the potential to decarbonise road transport, create new economic opportunities, diversify national energy supply, and significantly reduce the environmental impacts of road transport. A potential issue, however, is that the catalyst used at the fuel cell cathode is susceptible to degradation by impurities, especially sulphur-containing compounds. A recent European Directive (2014/94/EU) stipulates that, from November 2017, all hydrogen provided to fuel cell vehicles in Europe must comply with the hydrogen purity specifications listed in ISO 14687-2; this includes reactive and toxic chemicals such as ammonia and total sulphur-containing compounds. This requirement poses great analytical challenges due to the instability of some of these compounds in calibration gas standards at relatively low amount fractions and the difficulty associated with undertaking measurements of groups of compounds rather than individual compounds. Without the available reference materials and analytical infrastructure, hydrogen refuelling stations will not be able to demonstrate compliance to the ISO 14687 specifications. The hydrogen purity laboratory at NPL provides world leading, accredited purity measurements to allow hydrogen refuelling stations to evidence compliance to ISO 14687. Utilising state-of-the-art methods that have been developed by NPL’s hydrogen purity laboratory, including a novel method for measuring total sulphur compounds at 4 nmol/mol and a hydrogen impurity enrichment device, we provide the capabilities necessary to achieve these goals. An overview of these capabilities will be given in this paper. As part of the EMPIR Hydrogen co-normative project ‘Metrology for sustainable hydrogen energy applications’, NPL are developing a validated analytical methodology for the measurement of speciated sulphur-containing compounds in hydrogen at low amount fractions pmol/mol to nmol/mol) to allow identification and measurement of individual sulphur-containing impurities in real samples of hydrogen (opposed to a ‘total sulphur’ measurement). This is achieved by producing a suite of stable gravimetrically-prepared primary reference gas standards containing low amount fractions of sulphur-containing compounds (hydrogen sulphide, carbonyl sulphide, carbon disulphide, 2-methyl-2-propanethiol and tetrahydrothiophene have been selected for use in this study) to be used in conjunction with novel dynamic dilution facilities to enable generation of pmol/mol to nmol/mol level gas mixtures (a dynamic method is required as compounds at these levels would be unstable in gas cylinder mixtures). Method development and optimisation are performed using gas chromatographic techniques assisted by cryo-trapping technologies and coupled with sulphur chemiluminescence detection to allow improved qualitative and quantitative analyses of sulphur-containing impurities in hydrogen. The paper will review the state-of-the art gas standard preparation techniques, including the use and testing of dynamic dilution technologies for reactive chemical components in hydrogen. Method development will also be presented highlighting the advances in the measurement of speciated sulphur compounds in hydrogen at low amount fractions.

Keywords: gas chromatography, hydrogen purity, ISO 14687, sulphur chemiluminescence detector

Procedia PDF Downloads 191
72 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 101
71 The Role of Two Macrophyte Species in Mineral Nutrient Cycling in Human-Impacted Water Reservoirs

Authors: Ludmila Polechonska, Agnieszka Klink

Abstract:

The biogeochemical studies of macrophytes shed light on elements bioavailability, transfer through the food webs and their possible effects on the biota, and provide a basis for their practical application in aquatic monitoring and remediation. Measuring the accumulation of elements in plants can provide time-integrated information about the presence of chemicals in aquatic ecosystems. The aim of the study was to determine and compare the contents of micro- and macroelements in two cosmopolitan macrophytes, submerged Ceratophyllum demersum (hornworth) and free-floating Hydrocharis morsus-ranae (European frog-bit), in order to assess their bioaccumulation potential, elements stock accumulated in each plant and their role in nutrients cycling in small water reservoirs. Sampling sites were designated in 25 oxbow lakes in urban areas in Lower Silesia (SW Poland). In each sampling site, fresh whole plants of C. demersum and H. morsus-ranae were collected from squares of 1x1 meters each where the species coexisted. European frog-bit was separated into leaves, stems and roots. For biomass measurement all plants growing on 1 square meter were collected, dried and weighed. At the same time, water samples were collected from each reservoir and their pH and EC were determined. Water samples were filtered and acidified and plant samples were digested in concentrated nitric acid. Next, the content of Ca, Cu, Fe, K, Mg, Mn, Ni and Zn was determined using atomic absorption method (AAS). Statistical analysis showed that C. demersum and organs of H. morsus-ranae differed significantly in respect of metals content (Kruskal-Wallis Anova, p<0.05). Contents of Cu, Mn, Ni and Zn were higher in hornwort, while European frog-bit contained more Ca, Fe, K, Mg. Bioaccumulation Factors (BCF=content in plant/concentration in water) showed similar pattern of metal bioaccumulation – microelements were more intensively accumulated by hornwort and macroelements by frog-bit. Based on BCF values both species may be positively evaluated as good accumulators of Cu, Fe, Mn, Ni and Zn. However, the distribution of metals in H. morsus-ranae was uneven – the majority of studied elements were retained in roots, which may indicate to existence of physiological barriers developed for dealing with toxicity. Some percent of Ca and K was actively transported to stems, but to leaves Mg only. Although the biomass of C. demersum was two times greater than biomass of H. morsus-ranae, the element off-take was greater only for Cu, Mn, Ni and Zn. Nevertheless, it can be stated that despite a relatively small biomass, compared to other macrophytes, both species may have an influence on the removal of trace elements from aquatic ecosystems and, as they serve as food for some animals, also on the incorporation of toxic elements into food chains. There was a significant positive correlation between content of Mn and Fe in water and roots of H. morus-ranae (R=0.51 and R=0.60, respectively) as well as between Cu concentration in water and in C. demersum (R=0.41) (Spearman rank correlation, p<0.05). High bioaccumulation rates and correlation between plants and water elements concentrations point to their possible use as passive biomonitors of aquatic pollution.

Keywords: aquatic plants, bioaccumulation, biomonitoring, macroelements, phytoremediation, trace metals

Procedia PDF Downloads 155
70 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials

Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner

Abstract:

Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.

Keywords: CO₂ curing, carbonation, CCU, steel slag

Procedia PDF Downloads 76
69 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories

Authors: Oibar Martinez, Clara Oliver

Abstract:

The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.

Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations

Procedia PDF Downloads 86
68 Measuring the Impact of Social Innovation Education on Student’s Engagement

Authors: Irene Kalemaki, Ioanna Garefi

Abstract:

Social Innovation Education (SIE) is a new educational approach that aims to empower students to take action for a more democratic and sustainable society. Conceptually and pedagogically wise, it is situated at the intersection of Enterprise Education and Citizenship Education as it aspires to i) combine action with activism, ii) personal development with collective efficacy, iii) entrepreneurial mindsets with democratic values and iv) individual competences with collective competences. This paper abstract presents the work of the NEMESIS project, funded by H2020, that aims to design, test and validate the first consolidated approach for embedding Social Innovation Education in schools of primary and secondary education. During the academic year 2018-2019, eight schools from five European countries experimented with different approaches and methodologies to incorporate SIE in their settings. This paper reports briefly on these attempts and discusses the wider educational philosophy underlying these interventions with a particular focus on analyzing the learning outcomes and impact on students. That said, this paper doesn’t only report on the theoretical and practical underpinnings of SIE, but most importantly, it provides evidence on the impact of SIE on students. In terms of methodology, the study took place from September 2018 to July 2019 in eight schools from Greece, Spain, Portugal, France, and the UK involving directly 56 teachers, 1030 students and 69 community stakeholders. Focus groups, semi-structured interviews, classroom observations as well as students' written narratives were used to extract data on the impact of SIE on students. The overall design of the evaluation activities was informed by a realist approach, which enabled us to go beyond “what happened” and towards understanding “why it happened”. Research findings suggested that SIE can benefit students in terms of their emotional, cognitive, behavioral and agentic engagement. Specifically, the emotional engagement of students was increased because through SIE interventions; students voice was heard, valued, and acted upon. This made students feel important to their school, increasing their sense of belonging, confidence and level of autonomy. As regards cognitive engagement, both students and teachers reported positive outcomes as SIE enabled students to take ownership of their ideas to drive their projects forward and thus felt more motivated to perform in class because it felt personal, important and relevant to them. In terms of behavioral engagement, the inclusive environment and the collective relationships that were reinforced through the SIE interventions had a direct positive impact on behaviors among peers. Finally, with regard to agentic engagement, it has been observed that students became very proactive which was connected to the strong sense of ownership and enthusiasm developed during collective efforts to deliver real-life social innovations. Concluding, from a practical and policy point of view these research findings could encourage the inclusion of SIE in schools, while from a research point of view, they could contribute to the scientific discourse providing evidence and clarity on the emergent field of SIE.

Keywords: education, engagement, social innovation, students

Procedia PDF Downloads 107
67 Scenario-Based Scales and Situational Judgment Tasks to Measure the Social and Emotional Skills

Authors: Alena Kulikova, Leonid Parmaksiz, Ekaterina Orel

Abstract:

Social and emotional skills are considered by modern researchers as predictors of a person's success both in specific areas of activity and in the life of a person as a whole. The popularity of this scientific direction ensures the emergence of a large number of practices aimed at developing and evaluating socio-emotional skills. Assessment of social and emotional development is carried out at the national level, as well as at the level of individual regions and institutions. Despite the fact that many of the already existing social and emotional skills assessment tools are quite convenient and reliable, there are now more and more new technologies and task formats which improve the basic characteristics of the tools. Thus, the goal of the current study is to develop a tool for assessing social and emotional skills such as emotion recognition, emotion regulation, empathy and a culture of self-care. To develop a tool assessing social and emotional skills, Rasch-Gutman scenario-based approach was used. This approach has shown its reliability and merit for measuring various complex constructs: parental involvement; teacher practices that support cultural diversity and equity; willingness to participate in the life of the community after psychiatric rehabilitation; educational motivation and others. To assess emotion recognition, we used a situational judgment task based on OCC (Ortony, Clore, and Collins) emotions theory. The main advantage of these two approaches compare to classical Likert scales is that it reduces social desirability in answers. A field test to check the psychometric properties of the developed instrument was conducted. The instrument was developed for the presidential autonomous non-profit organization “Russia - Land of Opportunity” for nationwide soft skills assessment among higher education students. The sample for the field test consisted of 500 people, students aged from 18 to 25 (mean = 20; standard deviation 1.8), 71% female. 67% of students are only studying and are not currently working and 500 employed adults aged from 26 to 65 (mean = 42.5; SD 9), 57% female. Analysis of the psychometric characteristics of the scales was carried out using the methods of IRT (Item Response Theory). A one-parameter rating scale model RSM (Rating scale model) and Graded Response model (GRM) of the modern testing theory were applied. GRM is a polyatomic extension of the dichotomous two-parameter model of modern testing theory (2PL) based on the cumulative logit function for modeling the probability of a correct answer. The validity of the developed scales was assessed using correlation analysis and MTMM (multitrait-multimethod matrix). The developed instrument showed good psychometric quality and can be used by HR specialists or educational management. The detailed results of a psychometric study of the quality of the instrument, including the functioning of the tasks of each scale, will be presented. Also, the results of the validity study by MTMM analysis will be discussed.

Keywords: social and emotional skills, psychometrics, MTMM, IRT

Procedia PDF Downloads 48
66 Preliminary Study Investigating Trunk Muscle Fatigue and Cognitive Function in Event Riders during a Simulated Jumping Test

Authors: Alice Carter, Lucy Dumbell, Lorna Cameron, Victoria Lewis

Abstract:

The Olympic discipline of eventing is the triathlon of equestrian sport, consisting of dressage, cross-country and show jumping. Falls on the cross-country are common and can be serious even causing death to rider. Research identifies an increased risk of a fall with an increasing number of obstacles and for jumping efforts later in the course suggesting fatigue maybe a contributing factor. Advice based on anecdotal evidence suggests riders undertake strength and conditioning programs to improve their ‘core’, thus improving their ability to maintain and control their riding position. There is little empirical evidence to support this advice. Therefore, the aim of this study is to investigate truck muscle fatigue and cognitive function during a simulated jumping test. Eight adult riders participated in a riding test on a Racewood Event simulator for 10 minutes, over a continuous jumping programme. The SEMG activity of six trunk muscles were bilaterally measured at every minute, and normalised root mean squares (RMS) and median frequencies (MDF) were computed from the EMG power spectra. Visual analogue scales (VAS) measuring Fatigue and Pain levels and Cognitive Function ‘tapping’ tests were performed before and after the riding test. Average MDF values for all muscles differed significantly between each sampled minute (p = 0.017), however a consistent decrease from Minute 1 and Minute 9 was not found, suggesting the trunk muscles fatigued and then recovered as other muscle groups important in maintaining the riding position during dynamic movement compensated. Differences between the MDF and RMS of different muscles were highly significant (H=213.01, DF=5, p < 0.001), supporting previous anecdotal evidence that different trunk muscles carry out different roles of posture maintenance during riding. RMS values were not significantly different between the sampled minutes or between riders, suggesting the riding test produced a consistent and repeatable effect on the trunk muscles. MDF values differed significantly between riders (H=50.8, DF = 5, p < 0.001), suggesting individuals may experience localised muscular fatigue of the same test differently, and that other parameters of physical fitness should be investigated to provide conclusions. Lumbar muscles were shown to be important in maintaining the position, therefore physical training program should focus on these areas. No significant differences were found between pre- and post-riding test VAS Pain and Fatigue scores or cognitive function test scores, suggesting the riding test was not significantly fatiguing for participants. However, a near significant correlation was found between time of riding test and VAS Pain score (p = 0.06), suggesting somatic pain may be a limiting factor to performance. No other correlations were found between the factors of participant riding test time, VAS Pain and Fatigue, however a larger sample needs to be tested to improve statistical analysis. The findings suggest the simulator riding test was not sufficient to provoke fatigue in the riders, however foundations for future studies have been laid to enable methodologies in realistic eventing settings.

Keywords: eventing, fatigue, horse-rider, surface EMG, trunk muscles

Procedia PDF Downloads 168
65 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 43
64 Isolation and Transplantation of Hepatocytes in an Experimental Model

Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia

Abstract:

Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.

Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1

Procedia PDF Downloads 287
63 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 20
62 Cystic Ganglionosis in Child: Rare Entity

Authors: Jatinder Pal Singh, Harpreet Singh, Gagandeep Singh Digra, Mandeep Kaur Sidhu, Pawan Kumar

Abstract:

Introduction: Ganglion cyst is a benign condition in which there is a cystic lesion in relation to a joint or a tendon sheath arising from myxoid degeneration of fibrous connective tissue. These can be unilocular or multilocular. In rare cases, there may be multiple ganglion cysts, known as cystic ganglionosis. They can occur at any age but are commonly seen in adults. Clinically they may be asymptomatic or present as swelling or mass effect in adjacent structures. These are common in extremities such as hands and feet. Case Presentation: 11-year-old female child presented with slowly progressive painless swelling of her right hand since the age of 4. Antenatal and perinatal history was unremarkable. Her family history was negative. She denies fever, malaise, morning stiffness, weight loss, fatigue, restriction of joint movements, or any sensory and motor deficit. Lab parameters were negative for inflammatory or infectious etiology. No other joint or extremity involvement was present. On physical examination, the swelling was present on the dorsum and palmer aspect of the right hand and wrist. They were non-tender on palpation without any motor or sensory deficit. MRI hand revealed multiple well-defined fluid signal intensity cystic appearing lesions in periarticular/intraarticular locations in relation to distal radio-ulnar, radio-carpal, intercarpal, carpometacarpal, metacarpophalangeal and interphalangeal joints as well as peritendinous location around flexor tendons more so in the region of wrist, palm, 1st and 5th digit and along extensor tendons in the region of wrist, largest one noted along flexor pollicis longus tendon in thenar region and along 1st digit measuring approx. 4.6 x 1.2 x 1.2 centimeter. Pressure erosions and bone remodelling were noted in the bases of the 2nd to 5th metacarpals, capitate, trapezoid, the distal shaft of 1st metacarpal, and proximal phalanx of 1st digit. Marrow edema was noted in the base and proximal shaft of the 4th metacarpal and proximal shaft of the 3rd metacarpal – likely stress or pressure related. The patient was advised of aspiration, but the family refused the procedure. Therefore the patient was kept on conservative treatment. Conclusion: Cystic ganglionosis is a rare condition with very few cases reported in the medical literature. Its prevalence and association are not known because of the rarity of this condition. It should be considered as an important differential in patients presenting with soft tissue swelling in extremities. Treatment option includes conservative management, aspiration, and surgery. Aspiration has a high recurrence rate. Although surgery has a low recurrence rate, it carries a high rate of complications. Imaging with MRI is essential for confirmation of the cystic nature of lesions and their relation with the joint capsules or tendons. This helps in differentiating from other soft tissue lesions and presurgical planning.

Keywords: radiology, rare, cystic ganglionosis, child

Procedia PDF Downloads 51
61 Measuring Digital Literacy in the Chilean Workforce

Authors: Carolina Busco, Daniela Osses

Abstract:

The development of digital literacy has become a fundamental element that allows for citizen inclusion, access to quality jobs, and a labor market capable of responding to the digital economy. There are no methodological instruments available in Chile to measure the workforce’s digital literacy and improve national policies on this matter. Thus, the objective of this research is to develop a survey to measure digital literacy in a sample of 200 Chilean workers. Dimensions considered in the instrument are sociodemographics, access to infrastructure, digital education, digital skills, and the ability to use e-government services. To achieve the research objective of developing a digital literacy model of indicators and a research instrument for this purpose, along with an exploratory analysis of data using factor analysis, we used an empirical, quantitative-qualitative, exploratory, non-probabilistic, and cross-sectional research design. The research instrument is a survey created to measure variables that make up the conceptual map prepared from the bibliographic review. Before applying the survey, a pilot test was implemented, resulting in several adjustments to the phrasing of some items. A validation test was also applied using six experts, including their observations on the final instrument. The survey contained 49 items that were further divided into three sets of questions: sociodemographic data; a Likert scale of four values ranked according to the level of agreement; iii) multiple choice questions complementing the dimensions. Data collection occurred between January and March 2022. For the factor analysis, we used the answers to 12 items with the Likert scale. KMO showed a value of 0.626, indicating a medium level of correlation, whereas Bartlett’s test yielded a significance value of less than 0.05 and a Cronbach’s Alpha of 0.618. Taking all factor selection criteria into account, we decided to include and analyze four factors that together explain 53.48% of the accumulated variance. We identified the following factors: i) access to infrastructure and opportunities to develop digital skills at the workplace or educational establishment (15.57%), ii) ability to solve everyday problems using digital tools (14.89%), iii) online tools used to stay connected with others (11.94%), and iv) residential Internet access and speed (11%). Quantitative results were discussed within six focus groups using heterogenic selection criteria related to the most relevant variables identified in the statistical analysis: upper-class school students; middle-class university students; Ph.D. professors; low-income working women, elderly individuals, and a group of rural workers. The digital divide and its social and economic correlations are evident in the results of this research. In Chile, the items that explain the acquisition of digital tools focus on access to infrastructure, which ultimately puts the first filter on the development of digital skills. Therefore, as expressed in the literature review, the advance of these skills is radically different when sociodemographic variables are considered. This increases socioeconomic distances and exclusion criteria, putting those who do not have these skills at a disadvantage and forcing them to seek the assistance of others.

Keywords: digital literacy, digital society, workforce digitalization, digital skills

Procedia PDF Downloads 50
60 Towards a Measuring Tool to Encourage Knowledge Sharing in Emerging Knowledge Organizations: The Who, the What and the How

Authors: Rachel Barker

Abstract:

The exponential velocity in the truly knowledge-intensive world today has increasingly bombarded organizations with unfathomable challenges. Hence organizations are introduced to strange lexicons of descriptors belonging to a new paradigm of who, what and how knowledge at individual and organizational levels should be managed. Although organizational knowledge has been recognized as a valuable intangible resource that holds the key to competitive advantage, little progress has been made in understanding how knowledge sharing at individual level could benefit knowledge use at collective level to ensure added value. The research problem is that a lack of research exists to measure knowledge sharing through a multi-layered structure of ideas with at its foundation, philosophical assumptions to support presuppositions and commitment which requires actual findings from measured variables to confirm observed and expected events. The purpose of this paper is to address this problem by presenting a theoretical approach to measure knowledge sharing in emerging knowledge organizations. The research question is that despite the competitive necessity of becoming a knowledge-based organization, leaders have found it difficult to transform their organizations due to a lack of knowledge on who, what and how it should be done. The main premise of this research is based on the challenge for knowledge leaders to develop an organizational culture conducive to the sharing of knowledge and where learning becomes the norm. The theoretical constructs were derived and based on the three components of the knowledge management theory, namely technical, communication and human components where it is suggested that this knowledge infrastructure could ensure effective management. While it is realised that it might be a little problematic to implement and measure all relevant concepts, this paper presents effect of eight critical success factors (CSFs) namely: organizational strategy, organizational culture, systems and infrastructure, intellectual capital, knowledge integration, organizational learning, motivation/performance measures and innovation. These CSFs have been identified based on a comprehensive literature review of existing research and tested in a new framework adapted from four perspectives of the balanced score card (BSC). Based on these CSFs and their items, an instrument was designed and tested among managers and employees of a purposefully selected engineering company in South Africa who relies on knowledge sharing to ensure their competitive advantage. Rigorous pretesting through personal interviews with executives and a number of academics took place to validate the instrument and to improve the quality of items and correct wording of issues. Through analysis of surveys collected, this research empirically models and uncovers key aspects of these dimensions based on the CSFs. Reliability of the instrument was calculated by Cronbach’s a for the two sections of the instrument on organizational and individual levels.The construct validity was confirmed by using factor analysis. The impact of the results was tested using structural equation modelling and proved to be a basis for implementing and understanding the competitive predisposition of the organization as it enters the process of knowledge management. In addition, they realised the importance to consolidate their knowledge assets to create value that is sustainable over time.

Keywords: innovation, intellectual capital, knowledge sharing, performance measures

Procedia PDF Downloads 168
59 Endometrial Ablation and Resection Versus Hysterectomy for Heavy Menstrual Bleeding: A Systematic Review and Meta-Analysis of Effectiveness and Complications

Authors: Iliana Georganta, Clare Deehan, Marysia Thomson, Miriam McDonald, Kerrie McNulty, Anna Strachan, Elizabeth Anderson, Alyaa Mostafa

Abstract:

Context: A meta-analysis of randomized controlled trials (RCTs) comparing hysterectomy versus endometrial ablation and resection in the management of heavy menstrual bleeding. Objective: To evaluate the clinical efficacy, satisfaction rates and adverse events of hysterectomy compared to more minimally invasive techniques in the treatment of HMB. Evidence Acquisition: A literature search was performed for all RCTs and quasi-RCTs comparing hysterectomy with either endometrial ablation endometrial resection of both. The search had no language restrictions and was last updated in June 2020 using MEDLINE, EMBASE, Cochrane Central Register of Clinical Trials, PubMed, Google Scholar, PsycINFO, Clinicaltrials.gov and Clinical trials. EU. In addition, a manual search of the abstract databases of the European Haemophilia Conference on women's health was performed and further studies were identified from references of acquired papers. The primary outcomes were patient-reported and objective reduction in heavy menstrual bleeding up to 2 years and after 2 years. Secondary outcomes included satisfaction rates, pain, adverse events short and long term, quality of life and sexual function, further surgery, duration of surgery and hospital stay and time to return to work and normal activities. Data were analysed using RevMan software. Evidence synthesis: 12 studies and a total of 2028 women were included (hysterectomy: n = 977 women vs endometrial ablation or resection: n = 1051 women). Hysterectomy was compared with endometrial ablation only in five studies (Lin, Dickersin, Sesti, Jain, Cooper) and endometrial resection only in five studies (Gannon, Schulpher, O’Connor, Crosignani, Zupi) and a mixture of the Ablation and Resection in two studies (Elmantwe, Pinion). Of the 1² studies, 10 reported women’s perception of bleeding symptoms as improved. Meta-analysis showed that women in the hysterectomy group were more likely to show improvement in bleeding symptoms when compared with endometrial ablation or resection up to 2-year follow-up (RR 0.75, 95% CI 0.71 to 0.79, I² = 95%). Objective outcomes of improvement in bleeding also favored hysterectomy. Patient satisfaction was higher after hysterectomy within the 2 years follow-up (RR: 0.90, 95%CI: 0.86 to 0.94, I²:58%), however, there was no significant difference between the two groups at more than 2 years follow up. Sepsis (RR: 0.03, 95% CI 0.002 to 0.56; 1 study), wound infection (RR: 0.05, 95% CI: 0.01 to 0.28, I²: 0%, 3 studies) and Urinary tract infection (UTI) (RR: 0.20, 95% CI: 0.10 to 0.42, I²: 0%, 4 studies) all favoured hysteroscopic techniques. Fluid overload (RR: 7.80, 95% CI: 2.16 to 28.16, I² :0%, 4 studies) and perforation (RR: 5.42, 95% CI: 1.25 to 23.45, I²: 0%, 4 studies) however favoured hysterectomy in the short term. Conclusions: This meta-analysis has demonstrated that endometrial ablation and endometrial resection are both viable options when compared with hysterectomy for the treatment of heavy menstrual bleeding. Hysteroscopic procedures had better outcomes in the short term with fewer adverse events including wound infection, UTI and sepsis. The hysterectomy performed better when measuring more long-term impacts such as recurrence of symptoms, overall satisfaction at two years and the need for further treatment or surgery.

Keywords: menorrhagia, hysterectomy, ablation, resection

Procedia PDF Downloads 131
58 Personality, Coping, Quality of Life, and Distress in Persons with Hearing Loss: A Cross-Sectional Study of Patients Referred to an Audiological Service

Authors: Oyvind Nordvik, Peder O. L. Heggdal, Jonas Brannstrom, Flemming Vassbotn, Anne Kari Aarstad, Hans Jorgen Aarstad

Abstract:

Background: Hearing Loss (HL) is a condition that may affect people in all stages of life, but the prevalence increases with age, mostly because of age-related HL, generally referred to as presbyacusis. As human speech is related to relatively high frequencies, even a limited hearing loss at high frequencies may cause impaired speech intelligibility. Being diagnosed with, treated for and living with a chronic condition such as HL, must for many be a disabling and stressful condition that put ones coping resources to test. Stress is a natural part of life and most people will experience stressful events or periods. Chronic diseases, such as HL, are risk factor for distress in individuals, causing anxiety and lowered mood. How an individual cope with HL may be closely connected to the level of distress he or she is experiencing and to personality, which can be defined as those characteristics of a person that account for consistent patterns of feelings, thinking, and behavior. Thus, as to distress in life, such as illness or disease, available coping strategies may be more important than the challenge itself. The same line of arguments applies to level of experienced health-related quality of life (HRQoL). Aim: The aim of this study was to investigate the relationship between distress, HRQoL, reported hearing loss, personality and coping in patients with HL. Method: 158 adult (aged 18-78 years) patients with HL, referred for hearing aid (HA) fitting at Haukeland University Hospital in western Norway, participated in the study. Both first-time users, as well as patients referred for HA renewals were included. First-time users had been pre-examined by an ENT-specialist. The questionnaires were answered before the actual HA fitting procedure. The pure-tone average (PTA; frequencies 0.5, 1, 2, and 4 kHz) was determined for each ear. The Eysenck personality inventory, neuroticism and lie scales, the Theoretically Originated Measure of the Cognitive Activation Theory of Stress (TOMCATS) measuring active coping, hopelessness and helplessness, as well as distress (General Health Questionnaire (GHQ) - 12 items) and the EORTC Quality of Life Questionnaire general part were answered. In addition, we used a revised and shortened version of the Abbreviated Profile of Hearing Aid Benefit (APHAB) as a measure of patient-reported hearing loss. Results: Significant correlations were determined between APHAB (weak), HRQoL scores (strong), distress scores (strong) on the one side and personality and choice of coping scores on the other side. As measured by stepwise regression analyses, the distress and HRQoL scores were scored secondary to the obtained personality and coping scores. The APHAB scores were as determined by regression analyses scored secondary to PTA (best ear), level of neuroticism and lie score. Conclusion: We found that reported employed coping style, distress/HRQoL and personality are closely connected to each other in this patient group. Patient-reported HL was associated to hearing level and personality. There is need for further investigations on these questions, and how these associations may influence the clinical context.

Keywords: coping, distress, hearing loss, personality

Procedia PDF Downloads 123
57 A Resilience-Based Approach for Assessing Social Vulnerability in New Zealand's Coastal Areas

Authors: Javad Jozaei, Rob G. Bell, Paula Blackett, Scott A. Stephens

Abstract:

In the last few decades, Social Vulnerability Assessment (SVA) has been a favoured means in evaluating the susceptibility of social systems to drivers of change, including climate change and natural disasters. However, the application of SVA to inform responsive and practical strategies to deal with uncertain climate change impacts has always been challenging, and typically agencies resort back to conventional risk/vulnerability assessment. These challenges include complex nature of social vulnerability concepts which influence its applicability, complications in identifying and measuring social vulnerability determinants, the transitory social dynamics in a changing environment, and unpredictability of the scenarios of change that impacts the regime of vulnerability (including contention of when these impacts might emerge). Research suggests that the conventional quantitative approaches in SVA could not appropriately address these problems; hence, the outcomes could potentially be misleading and not fit for addressing the ongoing uncertain rise in risk. The second phase of New Zealand’s Resilience to Nature’s Challenges (RNC2) is developing a forward-looking vulnerability assessment framework and methodology that informs the decision-making and policy development in dealing with the changing coastal systems and accounts for complex dynamics of New Zealand’s coastal systems (including socio-economic, environmental and cultural). Also, RNC2 requires the new methodology to consider plausible drivers of incremental and unknowable changes, create mechanisms to enhance social and community resilience; and fits the New Zealand’s multi-layer governance system. This paper aims to analyse the conventional approaches and methodologies in SVA and offer recommendations for more responsive approaches that inform adaptive decision-making and policy development in practice. The research adopts a qualitative research design to examine different aspects of the conventional SVA processes, and the methods to achieve the research objectives include a systematic review of the literature and case study methods. We found that the conventional quantitative, reductionist and deterministic mindset in the SVA processes -with a focus the impacts of rapid stressors (i.e. tsunamis, floods)- show some deficiencies to account for complex dynamics of social-ecological systems (SES), and the uncertain, long-term impacts of incremental drivers. The paper will focus on addressing the links between resilience and vulnerability; and suggests how resilience theory and its underpinning notions such as the adaptive cycle, panarchy, and system transformability could address these issues, therefore, influence the perception of vulnerability regime and its assessment processes. In this regard, it will be argued that how a shift of paradigm from ‘specific resilience’, which focuses on adaptive capacity associated with the notion of ‘bouncing back’, to ‘general resilience’, which accounts for system transformability, regime shift, ‘bouncing forward’, can deliver more effective strategies in an era characterised by ongoing change and deep uncertainty.

Keywords: complexity, social vulnerability, resilience, transformation, uncertain risks

Procedia PDF Downloads 68
56 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 447