Search results for: losses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1064

Search results for: losses

314 Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification

Authors: A. Ribeiro, N. Valério, C. Vilarinho, J. Araujo, J. Carvalho

Abstract:

Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus Bacillus spp. Among all the species identified in compost samples, Bacillus licheniformis can be highlighted in the production of humic and fulvic acids.

Keywords: agricultural wastes, Bacillus licheniformis, Bacillus spp., humic-acids, fulvic-acids

Procedia PDF Downloads 94
313 Prioritizing Forest Conservation Strategies Using a Multi-Attribute Decision Model to Address Concerns with the Survival of the Endangered Dragon Tree (Dracaena ombet Kotschy and Peyr.)

Authors: Tesfay Gidey, Emiru Birhane, Ashenafi Manaye, Hailemariam Kassa, Tesfay Atsbha, Negasi Solomon, Hadgu Hishe, Aklilu Negussie, Petr Madera, Jose G. Borges

Abstract:

The globally endangered Dracaena ombet is one of the ten dragon multipurpose tree species in arid ecosystems. Anthropogenic and natural factors are now impacting the sustainability of the species. This study was conducted to prioritize criteria and alternative strategies for the conservation of the species using the analytical hierarchy process (AHP) model by involving all relevant stakeholders in the Desa'a dry Afromontane forest in northern Ethiopia. Information about the potential alternative strategies and the criteria for their evaluation was first collected from experts, personal experiences, and literature reviews. Afterward, they were validated using stakeholders' focus group discussions. Five candidate strategies with three evaluation criteria were considered for prioritization using the AHP techniques. The overall priority ranking value of the stakeholders showed that the ecological criterion was deemed as the most essential factor for the choice of alternative strategies, followed by the economic and social criteria. The minimum cut-off strategy, combining exclosures with the collection of only 5% of plant parts from the species, soil and water conservation, and silviculture interventions, was selected as the best alternative strategy for sustainable D. ombet conservation. The livelihood losses due to the selected strategy should be compensated by the collection of non-timber forest products, poultry farming, home gardens, rearing small ruminants, beekeeping, and agroforestry. This approach may be extended to study other dragon tree species and explore strategies for the conservation of other arid ecosystems.

Keywords: conservation strategies, analytical hierarchy process model, Desa'a forest, endangered species, Ethiopia, overexploitation

Procedia PDF Downloads 45
312 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia

Authors: Yihunie Hibstie Asres, Manny Mathuthu

Abstract:

Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.

Keywords: NAA, Yebrage, Chemoga, macro/micronutrient

Procedia PDF Downloads 141
311 Performance of Different Biodegradable Waxes Based Specialized Pheromone and Lure Application Technology-Male Anhelation Technique-Cue Lure Formulations in Bittergourd Field against Bactrocera cucurbitae

Authors: Amna Jalal, Muhammad Dildar Gogi, Muhammad Jalal Arif, Anum Tariq, Waleed Afzal Naveed, Talha Farooq, Mubashir Iqbal, Muhammad Junaid Nisar

Abstract:

Melon fruit flies (Diptera: Tephritidae: Dacinae) are economically important pests of the cucurbits and are geographically distributed throughout the tropics and subtropics of the world. It causes heavy quantitative and qualitative losses in bitter gourd. The present experiment was carried out to evaluate the performance of different biodegradable waxes based SPLAT-MAT-CL (Specialized Pheromone and Lure Application Technology-Male Anhelation Technique- Cue Lure) formulations in bitter gourd field. Fourteen SPLAT-MAT emulsions/formulations were prepared by admixing different SPLAT matrices with toxicant (spinosad) and sex pheromone cuelure (attractant) in different proportionate percentage by weight. The results revealed that attraction and trapping of fruit flies of B. cucurbitae varied significantly for different SPLAT-MAT-CL formulations (p < 0.05). The maximum B. cucurbitae males were trapped in SPLAT-MAT-CL-7 (60 flies/trap/day) followed by SPLAT-MAT-CL-9 (40 flies/trap/day). The performance of all other formulations of SPLAT-MAT-CL was found in the order of SPLAT-MAT-CL-8 (30 flies/trap/day) > SPLAT-MAT-CL-3 (28 flies/trap/day) > SPLAT-MAT-CL-5 (25 flies/trap/day) > SPLAT-MAT-CL-4 (22 flies/trap/day) > SPLAT-MAT-CL-12 (20 flies/trap/day) SPLAT-MAT-CL-2 (19 flies/trap/day) > SPLAT-MAT-CL-14 (17 flies/trap/day) > SPLAT-MAT-CL-13 (15 flies/trap/day) > SPLAT-MAT-CL-11 (10 flies/trap/day) > SPLAT-MAT-CL-1 (8 flies/trap/day) > SPLAT-MAT-CL-10 (02 flies/trap/day). Overall, all the SPLAT-MAT-CL formulations, except SPLAT-MAT-CL-10, demonstrated higher density of captures of B. cucurbitae males as compared to standard (06 flies/trap/day). The results also demonstrate that SPLAT-MAT-CL-7, SPLAT-MAT-CL-9, SPLAT-MAT-CL-8, SPLAT-MAT-CL-3, SPLAT-MAT-CL-5, SPLAT-MAT-CL-4, SPLAT-MAT-CL-12, SPLAT-MAT-CL-2, SPLAT-MAT-CL-14, SPLAT-MAT-CL-13, SPLAT-MAT-CL-11 and SPLAT-MAT-CL-1 explained approximately 5, 4.6, 4.1, 3.6, 3.3, 3.1,2.8,2.5 and 1.6 times higher captures of B. cucurbitae males over standards. However, SPLAT-MAT-CL-10 demonstrated 3 times fewer captures of B. cucurbitae males over standards. In conclusion, SPLAT-MAT-CL-7, SPLAT-MAT-CL-9 can be exploited for the monitoring and trapping of B. cucurbitae in its IPM of program.

Keywords: attractancy, field conditions, melon fruit fly, SPLAT-MAT-CL

Procedia PDF Downloads 240
310 Antibacterial Studies on Cellulolytic Bacteria for Termite Control

Authors: Essam A. Makky, Chan Cai Wen, Muna Jalal, Mashitah M. Yusoff

Abstract:

Termites are considered as important pests that could cause severe wood damage and economic losses in urban, agriculture and forest of Malaysia. The ability of termites to degrade cellulose depends on association of gut cellulolytic microflora or better known as mutual symbionts. With the idea of disrupting the mutual symbiotic association, better pest control practices can be attained. This study is aimed to isolate cellulolytic bacteria from the gut of termites and carry out antibacterial studies for the termite. Confirmation of cellulase activity is done by qualitative and quantitative methods. Impacts of antibiotics and their combinations, as well as heavy metals and disinfectants, are conducted by using disc diffusion method. Effective antibacterial agents are then subjected for termite treatment to study the effectiveness of the agents as termiticides. 24 cellulolytic bacteria are isolated, purified and screened from the gut of termites. All isolates were identified as Gram-negative with either rod or cocci in shape. For antibacterial studies result, isolates were found to be 100% sensitive to 4 antibiotics (rifampicin, tetracycline, gentamycin, and neomycin), 2 heavy metals (cadmium and mercury) and 3 disinfectants (lactic acid, formalin, and hydrogen peroxide). 22 out of 36 antibiotic combinations showed synergistic effect while 15 antibiotic combinations showed an antagonistic effect on isolates. The 2 heavy metals and 3 disinfectants that showed 100% effectiveness, as well as 22 antibiotic combinations, that showed synergistic effect were used for termite control. Among the 27 selected antibacterial agents, 12 of them were found to be effective to kill all the termites within 1 to 6 days. Mercury, lactic acid, formalin and hydrogen peroxide were found to be the most effective termiticides in which all termites were killed within 1 day only. These effective antibacterial agents possess a great potential to be a new application to control the termite pest species in the future.

Keywords: antibacterial, cellulase, termicide, termites

Procedia PDF Downloads 446
309 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 393
308 An Approach towards Elementary Investigation on HCCI Technology

Authors: Jitendra Sharma

Abstract:

Here a Homogeneous Charge is used as in a spark-ignited engine, but the charge is compressed to auto ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine. HCCI has a homogeneous charge and have no problems associated with soot and Nox but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP (Indicated Mean Effective Pressure) values with HCCI. The Homogeneous charge compression ignition (HCCI) is an attractive technology because of its high efficiency and low emissions. However, HCCI lakes a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios and engine speeds. HCCI a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low Knox and particulate matter emissions. The homogenous charge compression ignition (HCCI) is a promising new engine technology that combines elements of the diesel and gasoline engine operating cycles. HCCI as a way to increase the efficiency of the gasoline engine. The attractive properties are increased fuel efficiency due to reduced throttling losses, increased expansion ratio and higher thermodynamic efficiency. With the advantages there are some mechanical limitations to the operation of the HCCI engine. The implementation of homogenous charge compression ignition (HCCI) to gasoline engines is constrained by many factors. The main drawback of HCCI is the absence of direct combustion timing control. Therefore all the right conditions for auto ignition have to be set before combustion starts. This paper describes the past and current research done on HCCI engine. Many research got considerable success in doing detailed modeling of HCCI combustion. This paper aims at studying the fundamentals of HCCI combustion, the strategy to control the limitation of HCCI engine.

Keywords: HCCI, diesel engine, combustion, elementary investigation

Procedia PDF Downloads 414
307 Geospatial Techniques for Impact Assessment of Canal Rehabilitation Program in Sindh, Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi, Muhammad Arslan Hafeez

Abstract:

Indus Basin Irrigation System (IBIS) is the largest contiguous irrigation system of the world comprising Indus River and its tributaries, canals, distributaries, and watercourses. A big challenge faced by IBIS is transmission losses through seepage and leaks that account to 41 percent of the total water derived from the river and about 40 percent of that is through watercourses. Irrigation system rehabilitation programs in Pakistan are focused on improvement of canal system at the watercourse level (tertiary channels). Under these irrigation system management programs more than 22,800 watercourses have been improved or lined out of 43,000 (12,900 Kilometers) watercourses. The evaluation of the improvement work is required at this stage to testify the success of the programs. In this paper, emerging technologies of GIS and satellite remote sensing are used for impact assessment of watercourse rehabilitation work in Sindh. To evaluate the efficiency of the improved watercourses, few parameters are selected like soil moisture along watercourses, availability of water at tail end and changes in cultivable command areas. Improved watercourses details and maps are acquired from National Program for Improvement of Watercourses (NPIW) and Space and Upper Atmospheric Research Commission (SUPARCO). High resolution satellite images of Google Earth for the year of 2004 to 2013 are used for digitizing command areas. Temporal maps of cultivable command areas show a noticeable increase in the cultivable land served by improved watercourses. Field visits are conducted to validate the results. Interviews with farmers and landowners also reveal their overall satisfaction in terms of availability of water at the tail end and increased crop production.

Keywords: geospatial, impact assessment, watercourses, GIS, remote sensing, seepage, canal lining

Procedia PDF Downloads 319
306 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 188
305 Molecular and Serological Diagnosis of Newcastle and Ornithobacterium rhinotracheale Broiler in Chicken in Fars Province, Iran

Authors: Mohammadjavad Mehrabanpour, Maryam Ranjbar Bushehri, Dorsa Mehrabanpour

Abstract:

Respiratory diseases are the most important problems in the country’s poultry industry, particularly when it comes to broiler flocks. Ornithobacterium rhinotracheale (ORT) is a species that causes poor performance in growth rate, egg production, and mortality. This pathogen causes a respiratory infection including pulmonary alveolar inflammation, and pneumonia of birds throughout the world. Newcastle disease (ND) is a highly contagious disease in poultry, and also, it causes considerable losses to the poultry industry. The aim of this study was to evaluate the simultaneous occurrence of ORT and ND and NDV isolation by inoculation in embryonated eggs and confirmed by RT-PCR in broiler chicken flocks in Fars province. In this study, 318 blood and 85 tissue samples (brain, trachea, liver, and cecal tonsils) were collected from 15 broiler chicken farms. Survey serum antibody titers against ORT by using a commercial enzyme-linked immunosorbent assay (ELISA) kit performed. Evaluation of antibody titer against ND virus is performed by hemagglutination inhibition test. Virus isolation with chick embryo eggs 9-11 and RT-PCR method were carried out. A total of 318 serum samples, 135 samples (42.5%) were positive for antibodies to ORT and titer of HI antibodies against NDV in 122 serum samples (38/4%) were 7-10 (log2) and 61 serum samples (19/2%) had occurrence antibody titer against Newcastle virus and ORT. Results of the present study indicated that 20 tissue samples were positive in embryonated egg and in rapid hemagglutination (HA) test. HI test with specific ND positive serum confirmed that 6 of 20 samples. PCR confirmed that all six samples were positive and PCR products of samples indicated 535-base pair fragments in electrophrosis. Due to the great economic importance of these two diseases in the poultry industry, it is necessary to design and implement a comprehensive plan for prevention and control of these diseases.

Keywords: ELISA, Ornithobacterium rhinotracheale, newcastle disease, seroprevalence

Procedia PDF Downloads 275
304 Waste Heat Recovery System

Authors: A. Ramkumar, Anvesh Sagar, Preetham P. Karkera

Abstract:

Globalization in the modern era is dependent on the International logistics, the economic and reliable means is provided by the ocean going merchant vessel. The propulsion system which drives this massive vessels has gone through leaps and bounds of evolution. Most reliable system of propulsion adopted by the majority of vessels is by marine diesel engine. Since the first oil crisis of 1973, there is demand in increment of efficiency of main engine. Due to increase in the oil prices ship-operators explores for reduction in the operational cost of ship. And newly adopted IMO’s EEDI & SEEMP rules calls for the effective measures taken in this regard. The main engine of a ship suffers a lot of thermal losses, they mainly occur due to exhaust gas waste heat, radiation and cooling. So to increase the overall efficiency of system, we have to look into the solution to harnessing this waste energy of main engine to increase the fuel economy. During the course of research, engine manufacturers have developed many waste heat recovery systems. In our paper we see about additional options to harness this waste heat. The exhaust gas of engine coming out from the turbocharger still holds enough heat to go to the exhaust gas economiser to produce steam. This heat of exhaust gas can be used to heat a liquid of less boiling point after coming out from the turbocharger. The vapour of this secondary liquid can be superheated by a bypass exhaust or exhaust of turbocharger. This vapour can be utilized to rotate the turbine which is coupled to a generator. And the electric power for ship service can be produced with proper configuration of system. This can be included in PMS of ship. In this paper we seek to concentrate on power generation with use of exhaust gas. Thereby taking out the load on the main generator and increasing the efficiency of the system. This will help us to comply with the new rules of IMO. Our method helps to develop clean energy.

Keywords: EEDI–energy efficiency design index, IMO–international maritime organization PMS-power management system, SEEMP–ship energy efficiency management plan

Procedia PDF Downloads 330
303 Low-Cost Wireless Power Transfer System for Smart Recycling Containers

Authors: Juan Luis Leal, Rafael Maestre, Ovidio López

Abstract:

As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system.

Keywords: electromagnetic coupling, resonant wireless charging, smart recycling containers, wireless power transfer

Procedia PDF Downloads 65
302 Tsunami Disasters Preparedness among the Coastal Residence in Penang, Malaysia

Authors: A. R. Shakura, A. B. Elistina, M. S. Aini, S. Norhasmah, A. Fakhru’l-Razi

Abstract:

Tsunami 2004 was an unforeseeable event that caught Malaysia of guard resulting with 68 losses of lives and with an estimated economic loss of about 55.15billion US dollar. Scientists predict that if the earthquake epicentre originates from the Andaman-Nicobar region, the coastal population of Penang will have about 30 minutes to evacuate to safety. Thus, a study was conducted to enhance resiliency of Penang community as the area was the worst affected region during 2004 tsunami disaster. This paper is intended to examine the factors that influence intention to prepare for future tsunami among the coastal residence in Penang. The differences in the level of intention to prepare were also examined between those who experience and did not experience the 2004 tsunami. This study utilized a cross-sectional research design using a survey method. A total of 503 respondents were chosen systematically and data gathered were analysed using SPSS. Both genders, male and female were equally represented with a mean age of 44 years. Data indicated that the level of intention to prepare for tsunami disaster was moderate (M=3.72) with no significant difference in intention to prepare between those who had experienced or had not experienced the 2004 tsunami. Subsequently, results from a multiple regression analysis found that sense of community to be the most influential factor followed by subjective norm, trust, positive outcome expectancy and risk perception, explaining the 57% variance in intention to prepare. These factors reflect the influence of the collectivistic culture in Malaysia whereby households plus communities have a central role in encouraging each other. Therefore, the findings highlights the potential of adopting a community based disaster risk management as recommended by the United Nations International Strategy Disaster Reduction (UNISDR) which encompasses the cooperation between the local community and relevant stakeholders in preparing for future tsunami disaster.

Keywords: disaster management, experience, intention to prepare, tsunami

Procedia PDF Downloads 137
301 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 161
300 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene

Authors: Berkas Khaoula

Abstract:

Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.

Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging

Procedia PDF Downloads 51
299 Rural Sanitation in India: Special Context in the State of Odisa

Authors: Monalisha Ghosh, Asit Mohanty

Abstract:

The lack of sanitation increases living costs, decreases spend on education and nutrition, lowers income earning potential, and threatens safety and welfare. This is especially true for rural India. Only 32% of rural households have their own toilets and that less than half of Indian households have a toilet at home. Of the estimated billion people in the world who defecate in the open, more than half reside in rural India. It is empirically established that poor sanitation leads to high infant mortality rate and low income generation in rural India. In India, 1,600 children die every day before reaching their fifth birthday and 24% of girls drop out of school as the lack of basic sanitation. Above all, lack of sanitation is not a symptom of poverty but a major contributing factor. According to census 2011, 67.3% of the rural households in the country still did not have access to sanitation facilities. India’s sanitation deficit leads to losses worth roughly 6% of its gross domestic product (GDP) according to World Bank estimates by raising the disease burden in the country. The dropout rate for girl child is thirty percent in schools in rural areas because of lack of sanitation facilities for girl students. The productivity loss per skilled labors during a year is calculated at Rs.44, 160 in Odisha. The performance of the state of Odisha has not been satisfactory in improving sanitation facilities. The biggest challenge is triggering behavior change in vast section of rural population regarding need to use toilets. Another major challenge is funding and implementation for improvement of sanitation facility. In an environment of constrained economic resources, Public Private Partnership in form of performance based management or maintenance contract will be all the more relevant to improve the sanitation status in rural sector.

Keywords: rural sanitation, infant mortality rate, income, granger causality, pooled OLS method test public private partnership

Procedia PDF Downloads 388
298 Histological and Microbiological Study about the Pneumonic Lungs of Calves Slaughtered in the Slaughterhouse of Batna

Authors: Hamza Hadj Abdallah, Brahim Belabdi

Abstract:

Respiratory disease is a dominant pathology in cattle. It causes mortality and especially morbidity and irreversible damage. Although the dairy herd is affected, it is essentially the lactating herd and especially young cattle either nursing or fattening that undergo the greatest economic impact. The objective of this study is to establish a microbiological diagnosis of bovine respiratory inffections from lung presented with gross lesions at the slaughter of Batna. A total of 124 samples (pharyngeal and nasal swabs and lung fragments) from 31 seven months old calves, with lung lesions was collected to determine possible correlations between etiologic agents and lesion types. The hépatisation injury (or consolidation) was the major lesion (45.17%) preferentially localized in the right apical lobe. A diverse microbial flora (15 genera and 291 strains was isolated. The bacteria most frequently isolated are the Enterobacteriaceae (49.45%), Staphylococci (25.1%) followed by non Enterobacteriaceae bacilli represented by Pseudomonas (5.83%) and finally, Streptococcus (13.38 %). The pneumotropic bacteria (Pasteurellaaerogenes and Pasteurellapneumotropica) were isolated at a rate of 0.68%. The study of the sensitivity of some germs to antibiotics showed a sensitivity of 100% for ceftazidime. A very high sensitivity was also observed for kanamycin, Ciprofloxacin, Imepinem, Cefepime, Tobramycin and Gentamycin (between 90% and 97%). Strains of E. coli showed a sensitivity of 100% for Imepinem, while only 55.9% of the strains were sensitive to Ampicillin. The isolated Pasteurella exhibited excellent sensitivity (100%) for the antimicrobials used with the exception of Colistin and Ticarcillin-Clavulanic acid association which showed a sensitivity of 50%.This survey has demonstrated the strong spread of atypical pneumonia in cattle population (bulls) at the slaughterhouse of Batna justifying stunting and losses in cattle farms in the region.Thus, it was considered urgent to establish a profile of sensitivity of different germs to antibiotics isolated to limit this increasingly dreadful infection.

Keywords: Pasteurella, enterobacteria, bacteriology, pneumonia

Procedia PDF Downloads 184
297 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 170
296 Rational Allocation of Resources in Water Infrastructure Development Projects

Authors: M. Macchiaroli, V. Pellecchia, L. Dolores

Abstract:

Within any European and world model of management of the integrated water service (in Italy only since 2012 is regulated by a national Authority, that is ARERA), a significant part is covered by the development of assets in terms of hydraulic networks and wastewater collection networks, including all their relative building works. The process of selecting the investments to be made starts from the preventive analysis of critical issues (water losses, unserved areas, low service standards, etc.) who occur in the managed territory of the Operator. Through the Program of Interventions (Provision by ARERA n. 580/2019/R/idr), the Operator provides to program the projects that can meet the emerged needs to determine the improvement of the water service levels. This phase (analyzed and solved by the author with a work published in 2019) involves the use of evaluation techniques (cost-benefit analysis, multi-criteria, and multi-objective techniques, neural networks, etc.) useful in selecting the most appropriate design answers to the different criticalities. However, at this point, the problem of establishing the time priorities between the various works deemed necessary remains open. That is, it is necessary to hierarchize the investments. In this decision-making moment, the interests of the private Operator are often opposed, which favors investments capable of generating high profitability, compared to those of the public controller (ARERA), which favors investments in greater social impact. In support of the concertation between these two actors, the protocol set out in the research has been developed, based on the AHP and capable of borrowing from the programmatic documents an orientation path for the settlement of the conflict. The protocol is applied to a case study of the Campania Region in Italy and has been professionally applied in the shared decision process between the manager and the local Authority.

Keywords: analytic hierarchy process, decision making, economic evaluation of projects, integrated water service

Procedia PDF Downloads 91
295 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 45
294 The Determinants of Enterprise Risk Management: Literature Review, and Future Research

Authors: Sylvester S. Horvey, Jones Mensah

Abstract:

The growing complexities and dynamics in the business environment have led to a new approach to risk management, known as enterprise risk management (ERM). ERM is a system and an approach to managing the risks of an organization in an integrated manner to achieve the corporate goals and strategic objectives. Regardless of the diversities in the business environment, ERM has become an essential factor in managing individual and business risks because ERM is believed to enhance shareholder value and firm growth. Despite the growing number of literature on ERM, the question about what factors drives ERM remains limited. This study provides a comprehensive literature review of the main factors that contribute to ERM implementation. Google Scholar was the leading search engine used to identify empirical literature, and the review spanned between 2000 and 2020. Articles published in Scimago journal ranking and Scopus were examined. Thirteen firm characteristics and sixteen articles were considered for the empirical review. Most empirical studies agreed that firm size, institutional ownership, industry type, auditor type, industrial diversification, earnings volatility, stock price volatility, and internal auditor had a positive relationship with ERM adoption, whereas firm size, institutional ownership, auditor type, and type of industry were mostly seen be statistically significant. Other factors such as financial leverage, profitability, asset opacity, international diversification, and firm complexity revealed an inconclusive result. The growing literature on ERM is not without limitations; hence, this study suggests that further research should examine ERM determinants within a new geographical context while considering a new and robust way of measuring ERM rather than relying on a simple proxy (dummy) for ERM measurement. Other firm characteristics such as organizational culture and context, corporate scandals and losses, and governance could be considered determinants of ERM adoption.

Keywords: enterprise risk management, determinants, ERM adoption, literature review

Procedia PDF Downloads 141
293 The Impact of Legislation on Waste and Losses in the Food Processing Sector in the UK/EU

Authors: David Lloyd, David Owen, Martin Jardine

Abstract:

Introduction: European weight regulations with respect to food products require a full understanding of regulation guidelines to assure regulatory compliance. It is suggested that the complexity of regulation leads to practices which result to over filling of food packages by food processors. Purpose: To establish current practices by food processors and the financial, sustainable and societal impacts on the food supply chain of ineffective food production practices. Methods: An analysis of food packing controls with 10 companies of varying food categories and quantitative based research of a further 15 food processes on the confidence in weight control analysis of finished food packs within their organisation. Results: A process floor analysis of manufacturing operations focussing on 10 products found over fill of packages ranging from 4.8% to 20.2%. Standard deviation figures for all products showed a potential for reducing average weight of the pack whilst still retain the legal status of the product. In 20% of cases, an automatic weight analysis machine was in situ however weight packs were still significantly overweight. Collateral impacts noted included the effect of overfill on raw material purchase and added food miles often on a global basis with one raw material alone creating 10,000 extra food miles due to the poor weight control of the processing unit. A case study of a meat and bakery product will be discussed with the impact of poor controls resulting from complex legislation. The case studies will highlight extra energy costs in production and the impact of the extra weight on fuel usage. If successful a risk assessment model used primarily on food safety but adapted to identify waste /sustainability risks will be discussed within the presentation.

Keywords: legislation, overfill, profile, waste

Procedia PDF Downloads 375
292 Resistance Gene Expression and Antioxidant Enzymes Activities in Wheat Genotypes Affected by Bipolaris sorokiniana and Heterodera filipjevi

Authors: Maryam Monazzah, Ronak Samadpour, Mehdi Nasr-esfahani, Fatemeh Qalavand, Marziye Motamedi

Abstract:

Bipolaris sorokiniana, and Heterodera filipjevi, are important wheat diseases that lead to yield losses worldwide. Identifying novel resistant sources helps us combat these devastating diseases. In this study, we studied the role of Cre3 gene and antioxidant enzymes in the immune responses of wheat genotypes to H. filipjevi and B. sorokiniana. Therefore, real-time PCR analysis using Cre3 gene marker, a resistant gene to cereal cyst nematodes, was conducted on leaves and roots, along with changes ‎in the activity of antioxidant enzymes, peroxidase, and catalase. Enzyme activity assay was performed on roots attacked by nematode and in leaves infected with Bipolaris. Wheat accessions including “Bam” (resistant), “Parsi” (moderately-resistant), “Azar2”, “Ohadi”, “Homa” (highly-susceptible) were previously screened against both stresses under greenhouse and field conditions. Results showed that Cre3 expression against cyst nematodes was significantly higher in resistant cultivars compared to susceptible cultivars. Cre3 was used in marker-assisted selection programs to identify genotypes carrying resistant genes to cyst nematodes. Interestingly, Cre3 was also up-regulated in both tissues of resistant cultivars to B. sorokiniana. Therefore, Cre3 in wheat similarly modulates immunity against B. sorokiniana and might be one of the central components of the induced immune system in wheat. The activity of antioxidant enzymes also indicated the highest increase in resistant genotypes upon both stresses that subsequently neutralize oxidative stress in tissues and decrease damage. Further studies on these resistance components may help us gain insight into the molecular basis of resistance and shed new light on the interaction and overlap between different forms of stress.

Keywords: Bipolaris sorokiniana, Heterodera filipjevi, resistant gene expression, wheat

Procedia PDF Downloads 47
291 Financial Performance Model of Local Economic Enterprises in Matalam, Cotabato

Authors: Kristel Faye Tandog

Abstract:

The State Owned Enterprise (SOE) or also called Public Enterprise (PE) has been playing a vital role in a country’s social and economic development. Following this idea, this study focused on the Factor Structures of Financial Performance of the Local Economic Enterprises (LEEs) namely: Food Court, Market, Slaughterhouse, and Terminal in Matalam, Cotabato. It aimed to determine the profile of the LEEs in terms of organizational structure, manner of creation, years in operation, source of initial operating requirements, annual operating budget, geographical location, and size or description of the facility. This study also included the different financial ratios of LEE that covered a five year period from Calendar Year 2009 to 2013. Primary data using survey questionnaire was administered to 468 respondents and secondary data were sourced out from the government archives and financial documents of the said LGU. There were 12 dominant factors identified namely: “management”, “enforcement of laws”, “strategic location”, “existence of non-formal competitors”, “proper maintenance”, “pricing”, “customer service”, “collection process”, “rentals and services”, “efficient use of resources”, “staffing”, and “timeliness and accuracy”. On the other hand, the financial performance of the LEE of Matalam, Cotabato using financial ratios needs reformatting. This denotes that refinement as to the following ratios: Cash Flow Indicator, Activity, Profitability and Growth is necessary. The cash flow indicator ratio showed difficulty in covering its debts in successive years. Likewise, the activity ratios showed that the LEE had not been effective in putting its investment at work. Moreover, profitability ratios revealed that it had operated in minimum capacity and had incurred net losses and thus, it had a weak profit performance. Furthermore, growth ratios showed that LEE had a declining growth trend particularly in net income.

Keywords: factor structures, financial performance, financial ratios, state owned enterprises

Procedia PDF Downloads 227
290 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)

Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.

Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake

Procedia PDF Downloads 15
289 Development of Transgenic Tomato Immunity to Pepino Mosaic Virus and Tomato Yellow Leaf Curl Virus by Gene Silencing Approach

Authors: D. Leibman, D. Wolf, A. Gal-On

Abstract:

Viral diseases of tomato crops result in heavy yield losses and may even jeopardize the production of these crops. Classical tomato breeding for disease resistance against Tomato yellow leaf curl virus (TYLCV), leads to partial resistance associated with a number of recessive genes. To author’s best knowledge Pepino mosaic virus (PepMV) genetic resistance is not yet available. The generation of viral resistance by means of genetic engineering was reported and implemented for many crops, including tomato. Transgenic resistance against viruses is based, in most cases, on Post Transcriptional Gene Silencing (PTGS), an endogenous mechanism which destroys the virus genome. In this work, we developed immunity against PepMV and TYLCV in a tomato based on a PTGS mechanism. Tomato plants were transformed with a hairpin-construct-expressed transgene-derived double-strand-RNA (tr-dsRNA). In the case of PepMV, the binary construct harbored three consecutive fragments of the replicase gene from three different PepMV strains (Italian, Spanish and American), to provide resistance against a range of virus strains. In the case of TYLCV, the binary vector included three consecutive fragments of the IR, V2 and C2 viral genes constructed in a hairpin configuration. Selected transgenic lines (T0) showed a high accumulation of transgene siRNA of 21-24 bases, and T1 transgenic lines showed complete immunity to PepMV and TYLCV. Graft inoculation displayed immunity of the transgenic scion against PepMV and TYLCV. The study presents the engineering of resistance in tomato against two serious diseases, which will help in the production of high-quality tomato. However, unfortunately, these resistant plants have not been implemented due to public ignorance and opposition against breeding by genetic engineering.

Keywords: PepMV, PTGS, TYLCV, tr-dsRNA

Procedia PDF Downloads 98
288 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur

Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh

Abstract:

Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.

Keywords: hanging, channelling, blast furnace, coke

Procedia PDF Downloads 161
287 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products

Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil

Abstract:

In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.

Keywords: hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff

Procedia PDF Downloads 186
286 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing

Authors: Aldona Kluczek

Abstract:

In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.

Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment

Procedia PDF Downloads 216
285 Evaluation and Selection of Contractors in Construction Projects with a View Supply Chain Management and Utilization of Promthee

Authors: Sara Najiazarpour, Mahsa Najiazarpour

Abstract:

There are many problems in contracting projects and their performance. At each project stage and due to different reasons, these problems affect cost, time and overall project quality. Hence, in order to increase the efficiency and performance in all levels of the chain and with supply chain management approach, there will be a coordination from the beginning of a project (contractor selection) to the end of project (handover of project). Contractor selection is the foremost part of construction projects which in this multi-criteria decision-making, the best contractor is determined by expert judgment, different variables and their priorities. In this paper for selecting the best contractor, numerous criteria were collected by asking from adept experts and then among them, 16 criteria with highest frequency were considered for questionnaire. This questionnaire was distributed between experts. Cronbach's alpha coefficient was obtained as 72%. Then based on Borda's function 12 important criteria was selected which was categorized in four main criteria and related sub-criteria as follow: Environmental factors and physical equipment: procurement and materials (supplier), company's machines, contractor’s proposed cost estimate - financial capacity: bank turnover and company's assets, the income of tax declaration in last year, Ability to compensate for losses or delays - past performance- records and technical expertise: experts and key personnel, the past technical backgrounds and experiences, employer satisfaction of previous contracts, the number of similar projects was done - standards: rank and field of expertise which company is qualified for and its validity, availability and number of permitted projects done. Then with PROMTHEE method, the criteria were normalized and monitored, finally the best alternative was selected. In this research, qualitative criteria of each company is became a quantitative criteria. Finally, information of some companies was evaluated and the best contractor was selected based on all criteria and their priorities.

Keywords: contractor evaluation and selection, project development, supply chain management, PROMTHEE method

Procedia PDF Downloads 39