Search results for: liquid storage tank
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4058

Search results for: liquid storage tank

3848 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel

Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende

Abstract:

Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction

Procedia PDF Downloads 603
3847 Preliminary Study on Chinese Traditional Garden Making Based on Water Storage Projects

Authors: Liu Fangxin, Zhao Jijun

Abstract:

Nowadays, China and the world are facing the same problems of flooding, city waterlogging and other environment issues. Throughout history, China had many excellent experiences dealing with the flood, and can be used as a significant reference for contemporary urban construction. In view of this, the research used the method of literature analysis to find out the main water storage measures in ancient cities, including reservoir storage and pond water storage. And it used the case study method to introduce the historical evolution, engineering measures and landscape design of 4 typical ancient Chinese cities in details. Then we found the pond and the reservoir were the main infrastructures for the ancient Chinese city to avoid the waterlogging and flood. At last this paper summed up the historical experience of Chinese traditional water storage and made conclusions that the establishment of a reasonable green water storage facilities could be used to solve today's rain and flood problems, and hoped to give some enlightenment of stormwater management to our modern city.

Keywords: ancient Chinese cities, water storage project, Chinese classical gardening, stormwater management, green facilities

Procedia PDF Downloads 333
3846 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method

Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer

Abstract:

This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.

Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper

Procedia PDF Downloads 341
3845 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 395
3844 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 413
3843 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover

Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan

Abstract:

Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.

Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover

Procedia PDF Downloads 145
3842 Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners

Authors: Mitia Ramarosaona, Sylvie Castagnet, Damien Halm, Henri-Alexandre Cayzac, Nicolas Dufaure, Philippe Papin

Abstract:

In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly.

Keywords: additives, hydrogen tank liner, microstructural analysis, PA11

Procedia PDF Downloads 35
3841 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: battery bank, photo-voltaic, pump-storage, wind energy

Procedia PDF Downloads 590
3840 Increasing the Use of LNG on the Java Island (Bali Province) through the Development of Small-Scale LNG Projects

Authors: Herman Susilo, Rahmat Budiman

Abstract:

Bali province is one of the most famous tourist destinations in Indonesia. As a central tourist destination, Bali is very concerned about the use of clean energy. Since Bali is an area that does not have natural resources, so all of its energy sources are imported from java island and other islands. As an example, currently, Pertagas is developing the use of LNG for the needs of the retail industry. Right now, LNG is transported from the LNG plant facility in Bontang (Kalimantan Province) using ISO Tanks which are transported by cargo ships and then transported by trucks to the island of Bali. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. The existing distribution scheme is very long and costly since the source of LNG is come from another island (Kalimantan) and is relatively far away. To solve this problem, we plan to build the mini-LNG plant on Java Island since there are lots of gas sources available. There are some small gas reserves (flared or stranded gas) that are not yet monetized and are less valuable (cheaper) because the volume is very small. After liquifying the gas from the gas field, the LNG is transported by the truck using ISO Tank. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. From this new LNG distribution scheme, there are 4-5 USD/MMBTU saving compared to the existing distribution scheme. It is hoped that with these cost savings, the number of retail LNG sales can increase rapidly.

Keywords: LNG, LNG retail, mini LNG, small scale LNG

Procedia PDF Downloads 94
3839 Simulation of the Effect of Sea Water using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams

Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty

Abstract:

The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. As it well known that, fiber reinforced polymer (FRP) has been applied to many purposes for civil engineering structures not only for new structures but also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance, as well as high tensile strength, to weight ratio. Glass composed FRP (GFRP) sheet is most commonly used due to its relatively lower cost compared to the other FRP materials. GFRP sheet is applied externally by bonding it on the concrete surface. Many studies have been done to investigate the bonding of GFRP sheet. However, it is still very rarely studies on the effect of sea water to the bonding capacity of GFRP sheet on the strengthened beams due to flexural loadings. This is important to be clarified for the wider application of GFRP sheet especially on the flexural structure that directly contact to the sea environment. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six months exposed to the sea water.

Keywords: GFRP sheet, sea water, concrete beams, bonding

Procedia PDF Downloads 316
3838 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant

Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz

Abstract:

Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.

Keywords: biogas, digestion, heating system, mixing system

Procedia PDF Downloads 145
3837 A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer

Authors: James Q. Feng

Abstract:

Pneumatic nebulizers (as variations based on the Collison nebulizer) have been widely used for producing fine aerosol droplets from a liquid material. As qualitatively described by many authors, the basic working principle of those nebulizers involves utilization of the negative pressure associated with an expanding gas jet to syphon liquid into the jet stream, then to blow and shear into liquid sheets, filaments, and eventually droplets. But detailed quantitative analysis based on fluid mechanics theory has been lacking in the literature. The purpose of present work is to investigate the nature of negative pressure distribution associated with compressible gas jet flow in the Collison nebulizer by a computational fluid dynamics (CFD) analysis, using an OpenFOAM® compressible flow solver. The value of the negative pressure associated with a gas jet flow is examined by varying geometric parameters of the jet expansion channel adjacent to the jet orifice outlet. Such an analysis can provide valuable insights into fundamental mechanisms in liquid aspiration process, helpful for effective design of the pneumatic atomizer in the Aerosol Jet® direct-write system for micro-feature, high-aspect-ratio material deposition in additive manufacturing.

Keywords: collison nebulizer, compressible gas jet flow, liquid aspiration, pneumatic atomization

Procedia PDF Downloads 174
3836 An Evaluation Method of Accelerated Storage Life Test for Typical Mechanical and Electronic Products

Authors: Jinyong Yao, Hongzhi Li, Chao Du, Jiao Li

Abstract:

Reliability of long-term storage products is related to the availability of the whole system, and the evaluation of storage life is of great necessity. These products are usually highly reliable and little failure information can be collected. In this paper, an analytical method based on data from accelerated storage life test is proposed to evaluate the reliability index of the long-term storage products. Firstly, singularities are eliminated by data normalization and residual analysis. Secondly, with the pre-processed data, the degradation path model is built to obtain the pseudo life values. Then by life distribution hypothesis, we can get the estimator of parameters in high stress levels and verify failure mechanisms consistency. Finally, the life distribution under the normal stress level is extrapolated via the acceleration model and evaluation of the true average life available. An application example with the camera stabilization device is provided to illustrate the methodology we proposed.

Keywords: accelerated storage life test, failure mechanisms consistency, life distribution, reliability

Procedia PDF Downloads 385
3835 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 551
3834 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software

Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan

Abstract:

Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.

Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine

Procedia PDF Downloads 388
3833 Efficient Liquid Desiccant Regeneration for Fresh Air Dehumidification Application

Authors: M. V. Rane, Tareke Tekia

Abstract:

Fresh Air Dehumidifier having a capacity of 1 TR has been developed by Heat Pump Laboratory at IITB. This fresh air dehumidifier is based on potassium formate liquid desiccant. The regeneration of the liquid desiccant can be done in two stages. The first stage of liquid desiccant regeneration involves the boiling of liquid desiccant inside the evacuated glass type solar thermal collectors. Further regeneration of liquid desiccant can be achieved using Low Temperature Regenerator, LTR. The coefficient of performance of the fresh air dehumidifier greatly depends on the performance of the major components such as high temperature regenerator, low temperature regenerator, fresh air dehumidifier, and solution heat exchangers. High effectiveness solution heat exchanger has been developed and tested. The solution heat exchanger is based on a patented aluminium extrusion with special passage geometry to enhance the heat transfer rate. Effectiveness up to 90% was achieved. Before final testing of the dehumidifier, major components have been tested individually. Testing of the solar thermal collector as hot water and steam generator reveals that efficiency up to 55% can be achieved. In this paper, the development of 1 TR fresh air dehumidifier with special focus on solution heat exchangers and solar thermal collector performance is presented.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration, coefficient of performance

Procedia PDF Downloads 185
3832 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 401
3831 Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine

Authors: Gurlal Singh, Rupinder Singh

Abstract:

The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine.

Keywords: exhaust gas, automobiles, solenoid, airbrake

Procedia PDF Downloads 257
3830 Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography

Authors: Jonida Canaj

Abstract:

A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples.

Keywords: high performance liquid chromatography, HPLC, method validation, polycyclic aromatic hydrocarbons, PAHs, water

Procedia PDF Downloads 98
3829 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang

Authors: Siti Aminatu Zuhria

Abstract:

On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.

Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste

Procedia PDF Downloads 300
3828 Microbiological Analysis on Anatomical Specimens of Cats for Use in Veterinary Surgery

Authors: Raphael C. Zero, Marita V. Cardozo, Thiago A. S. S. Rocha, Mariana T. Kihara, Fernando A. Ávila, Fabrício S. Oliveira

Abstract:

There are several fixative and preservative solutions for use on cadavers, many of them using formaldehyde as the fixative or anatomical part preservative. In some countries, such as Brazil, this toxic agent has been increasingly restricted. The objective of this study was to microbiologically identify and quantify the key agents in tanks containing 96GL ethanol or sodium chloride solutions, used respectively as fixatives and preservatives of cat cadavers. Eight adult cat corpses, three females and five males, with an average weight of 4.3 kg, were used. After injection via the external common carotid artery (120 ml/kg, 95% 96GL ethyl alcohol and 5% pure glycerin), the cadavers were fixed in a plastic tank with 96GL ethanol for 60 days. After fixing, they were stored in a 30% sodium chloride aqueous solution for 120 days in a similar tank. Samples were collected at the start of the experiment - before the animals were placed in the ethanol tanks, and monthly thereafter. The bacterial count was performed by Pour Plate Method in BHI agar (Brain Heart Infusion) and the plates were incubated aerobically and anaerobically for 24h at 37ºC. MacConkey agar, SPS agar (Sulfite Polymyxin Sulfadizine) and MYP Agar Base were used to isolate the microorganisms. There was no microbial growth in the samples prior to alcohol fixation. After 30 days of fixation in the alcohol solution, total aerobic and anaerobic (<1.0 x 10 CFU/ml) were found and Pseudomonas sp., Staphylococcus sp., Clostridium sp. were the identified agents. After 60 days in the alcohol fixation solution, total aerobes (<1.0 x 10 CFU/ml) and total anaerobes (<2.2 x 10 CFU/mL) were found, and the identified agents were the same. After 30 days of storage in the aqueous solution of 30% sodium chloride, total aerobic (<5.2 x 10 CFU/ml) and total anaerobes (<3.7 x 10 CFU/mL) were found and the agents identified were Staphylococcus sp., Clostridium sp., and fungi. After 60 days of sodium chloride storage, total aerobic (<3.0 x 10 CFU / ml) and total anaerobes (<7.0 x 10 CFU/mL) were found and the identified agents remained the same: Staphylococcus sp., Clostridium sp., and fungi. The microbiological count was low and visual inspection did not reveal signs of contamination in the tanks. There was no strong odor or purification, which proved the technique to be microbiologically effective in fixing and preserving the cat cadavers for the four-month period in which they are provided to undergraduate students of University of Veterinary Medicine for surgery practice. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, fixation, microbiology, small animal, surgery

Procedia PDF Downloads 281
3827 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia

Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah

Abstract:

The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.

Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin

Procedia PDF Downloads 352
3826 Effect of Sodium Chloride in the Recovery of Acetic Acid from Aqueous Solutions

Authors: Aidaoui Ahleme, Hasseine Abdelmalek

Abstract:

Acetic acid is one of the simplest and most widely used carboxylic acids having many important chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tonnes per year. A great deal of efforts has been made in developing feasible and economic method for recovery of carboxylic acids. Among them, Liquid-liquid extraction using aqueous two-phase systems (ATPS) has been demonstrated to be a highly efficient separation technique. The study of efficiently separating and recovering Acetic acid from aqueous solutions is an important significance on industry and environmentally sustainable development. Many research groups in different countries are working in this field and some methods are proposed in the literature. In this work, effect of sodium chloride with different content (5%, 10% and 20%) on the liquid-liquid equilibrium data of (water+ acetic acid+ DCM) system is investigated. The addition of the salt in an aqueous solution introduces ionic forces which affect liquid-liquid equilibrium and which influence directly the distribution coefficient of the solute. From the experimental results, it can be concluded that when the percentage of salt increases in the aqueous solution, the equilibrium between phases is modified in favor of the extracted phase.

Keywords: acetic acid recovery, aqueous solution, salting-effect, sodium chloride

Procedia PDF Downloads 266
3825 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: building materials, flammability, phase change materials, thermal energy storage

Procedia PDF Downloads 328
3824 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank

Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani

Abstract:

This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.

Keywords: induction heating, AVC control, CDM, PLL, resonant inverter

Procedia PDF Downloads 661
3823 Storage System Validation Study for Raw Cocoa Beans Using Minitab® 17 and R (R-3.3.1)

Authors: Anthony Oppong Kyekyeku, Sussana Antwi-Boasiako, Emmanuel De-Graft Johnson Owusu Ansah

Abstract:

In this observational study, the performance of a known conventional storage system was tested and evaluated for fitness for its intended purpose. The system has a scope extended for the storage of dry cocoa beans. System sensitivity, reproducibility and uncertainties are not known in details. This study discusses the system performance in the context of existing literature on factors that influence the quality of cocoa beans during storage. Controlled conditions were defined precisely for the system to give reliable base line within specific established procedures. Minitab® 17 and R statistical software (R-3.3.1) were used for the statistical analyses. The approach to the storage system testing was to observe and compare through laboratory test methods the quality of the cocoa beans samples before and after storage. The samples were kept in Kilner jars and the temperature of the storage environment controlled and monitored over a period of 408 days. Standard test methods use in international trade of cocoa such as the cut test analysis, moisture determination with Aqua boy KAM III model and bean count determination were used for quality assessment. The data analysis assumed the entire population as a sample in order to establish a reliable baseline to the data collected. The study concluded a statistically significant mean value at 95% Confidence Interval (CI) for the performance data analysed before and after storage for all variables observed. Correlational graphs showed a strong positive correlation for all variables investigated with the exception of All Other Defect (AOD). The weak relationship between the before and after data for AOD had an explained variability of 51.8% with the unexplained variability attributable to the uncontrolled condition of hidden infestation before storage. The current study concluded with a high-performance criterion for the storage system.

Keywords: benchmarking performance data, cocoa beans, hidden infestation, storage system validation

Procedia PDF Downloads 170
3822 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 564
3821 Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications

Authors: M. A. Amer, J. A. Chávez, M. J. García-Hernández, J. Salazar, A. Turó

Abstract:

In this paper, the design of a QCM sensor for liquid media measurements in vertical position is described. A rugged and low-cost proof holder has been designed, the cost of which is significantly lower than those of traditional commercial holders. The crystal is not replaceable but it can be easily cleaned. Its small volume permits to be used by dipping it in the liquid with the desired location and orientation. The developed design has been experimentally validated by measuring changes in the resonance frequency and resistance of the QCM sensor immersed vertically in different calibrated aqueous glycerol solutions. The obtained results show a great agreement with the Kanazawa theoretical expression. Consequently, the designed QCM sensor would be appropriate for sensing applications in liquids, and might take part of a future on-line multichannel low-cost QCM-based measurement system.

Keywords: holder design, liquid-media measurements, multi-channel measurements, QCM

Procedia PDF Downloads 378
3820 Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles

Authors: O. S. Pradeep, S. Vigneshwaran, K. Praveen Kumar, K. Jeyendran, V. R. Sanal Kumar

Abstract:

The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.  

Keywords: combustion chamber, injector, liquid rocket, rocket engine wall heat flux

Procedia PDF Downloads 482
3819 Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters

Authors: Junya Kouwa, Shinsuke Matsuno, Chihiro Inoue, Takehiro Himeno, Toshinori Watanabe

Abstract:

Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically.

Keywords: bi-propellant thrusters, CIP-LSM, free-surface flow simulation, impinging jet atomization

Procedia PDF Downloads 277