Search results for: light weight encryption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7261

Search results for: light weight encryption

31 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria

Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde

Abstract:

An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.

Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component

Procedia PDF Downloads 83
30 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)

Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan

Abstract:

Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.

Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification

Procedia PDF Downloads 290
29 Molecular Signaling Involved in the 'Benzo(a)Pyrene' Induced Germ Cell DNA Damage and Apoptosis: Possible Protection by Natural Aryl Hydrocarbon Receptor Antagonist and Anti-Tumor Agent

Authors: Kuladip Jana

Abstract:

Benzo(a)pyrene [B(a)P] is an environmental toxicant present mostly in cigarette smoke and car exhaust, is an aryl hydrocarbon receptor (AhR) ligand that exerts its toxic effects on both male and female reproductive systems. In this study, the effect of B(a)P at different doses (0.1, 0.25, 0.5, 1 and 5 mg /kg body weight) was studied on male reproductive system of rat. A significant decrease in cauda epididymal sperm count and motility along with the presence of sperm head abnormalities and altered epididymal and testicular histology were documented following B(a)P treatment. B(a)P treatment resulted apoptotic sperm cells as observed by TUNEL and Annexin V-PI assay with increased ROS, altered sperm mitochondrial membrane potential (ΔΨm) with a simultaneous decrease in the activity of antioxidant enzymes and GSH status. TUNEL positive apoptotic cells also observed in testis as well as isolated germ and Leydig cells following B(a)P exposure. Western Blot analysis revealed the activation of p38MAPK, cytosolic translocation of cytochrome-c, up-regulation of Bax and inducible nitric oxide synthase (iNOS) with cleavage of PARP and down-regulation of BCl2 in testis upon B(a)P treatment. The protein and mRNA levels of testicular key steroidogenesis regulatory proteins like StAR, cytochrome P450 IIA1 (CYPIIA1), 3β HSD, 17β HSD showed a significant decrease in a dose dependent manner while an increase in the expression of cytochrome P450 1A1 (CYP1A1), Aryl hydrocarbon Receptor (AhR), active caspase- 9 and caspase- 3 following B(a)P exposure. We conclude that exposure of benzo(a)pyrene caused testicular gamatogenic and steroidogenic disorders by induction of oxidative stress, inhibition of StAR and other steroidogenic enzymes along with activation of p38MAPK and initiated caspase-3 mediated germ and Leydig cell apoptosis.The possible protective role of naturally occurring phytochemicals against B(a)P induced testicular toxicity needs immediate consideration. Curcumin and resveratrol separately were found to protect against B(a)P induced germ cell apoptosis, and their combinatorial effect was more significant. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted their synergistic protective effect against B(a)P induced germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3,8,9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, Apaf1.Curcumin-resveratrol co-treatment thus prevented B(a)P induced germ cell apoptosis. B(a)P induced testicular ROS generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 production. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ cells from B(a)P induced apoptosis.

Keywords: benzo(a)pyrene, germ cell, apoptosis, oxidative stress, resveratrol, curcumin

Procedia PDF Downloads 228
28 Primary and Secondary Big Bangs Theory of Creation of Universe

Authors: Shyam Sunder Gupta

Abstract:

For creation of Universe, theory of Big Bang , from Singularity is most acceptable theory, but has limitations as it does not answer ; how Singularity gets created and what causes Big Bang ?Further , Universe is composed of 95% Dark Energy and Dark Matter and balance 5% is visible part of Universe , but no explanation . Recently, it has been reported that there could be very large number of Universes, but only , a stipulation. This research which is based on Bhagvat Puran, a Vedic Scripture answers all questions. There is a Unique Energy Field which is eternal and infinite. The carrier Particles of Unique Energy are Paramanus; God Particles. Paramanus are Fundamental Particles and combination of these particles create bigger particles from which Universe gets created. For creation to initiate, Unique Energy gets represented in three phases; Positive Male Energy, Neutral Energy(creates Eternal Time)and Negative Female Energy. Positive Male Energy further expands in three forms of Creative Energies (CE1,CE2andCE3)and 16 principles get created, namely, Energy of Activation , Energy of Action, Energy of Darkness, Pradhan ( Equilibrium state of three energies ) , Prakriti(Non-equilibrium state of three energies, creating modes of Activation, Action and Darkness),Mahat-tattva ( consists of three modes , dominant in Mode of Darkness), Time, Energy of Consciousness, Ego Energy(consists of three modes , very strongly dominated by Mode of Darkness),Energy of Intellect, Mind Energy , Sky( creates Space and Sound Energy),Air(creates gaseous substances), Fire( creates different forms of energies like thermal, light, electrical etc.), Water( creates liquid substances)and Earth(creates solid substances). CE1 Energy creates Infinite number of Singularities from seven principles, Pradhan , Mahat-tattva, Sky , Air, Fire, Water and Earth . CE1 Energy gets divided as CE2 and enters along with other 9 principles , in each of Singularity and Primary Big Bang takes and infinite number of Universes get created. Each Universe has seven coverings of 7 principles and each layer is 10 times thicker than previous layer. By Energy CE2 , space in Universe under the coverings is divided in two parts , upper part and lower part. Upper part is occupied by Dark Energy which is created from Mode of Darkness in Ego Energy which keeps getting converted in Dark Matter and forms Invisible part of Universe. In the lower part , process of evolution gets initiated and seeds of 24 elements , Consciousness , Ego, Intellect, Mind, 5 Fundamental Elements( space, Air, Fire, Water Earth, which create non-living matter ),5 senses which receive inputs( eyes, nose, ears, tongue , skin), 5 Working Senses (Smell, Taste, Sight, Touch and Hearing);5 elements of Action( Organs of procreation , excretion, locomotion , speech and acquisition ), get created . In EC2 Energy, Singularity gets created which gets exploded by force of Energy of Action ,and Secondary Big Bang takes place and Visible Universe gets created in the shape of Bud of Flower Lotus . Within the Visible part of Universe, a small part gets created , Phenomenal Universe. Diameter of Sun and planetary system ,at the time of formation ,is 6.4 billion km, which is close to reported value . There are 5 different orbits , with reference to our Solar System. Moon around earth takes one month,, earth around sun one year, sun around Milk way one cosmic year(322.58 million years), Milky way around Universe 4.32 billion years and universe around center of universe 311.04 trillion years. Universe creation is a cyclic process with cycle time of 622.08 trillion years.In summary, Universe consists of 4 parts; covering of 7 layers, Dark Energy and Dark Matter, Visible and Phenomenal universe.

Keywords: big bang, creation, dark energy, dark matter, singularity, universe

Procedia PDF Downloads 47
27 Evaluation of Functional Properties of Protein Hydrolysate from the Fresh Water Mussel Lamellidens marginalis for Nutraceutical Therapy

Authors: Jana Chakrabarti, Madhushrita Das, Ankhi Haldar, Roshni Chatterjee, Tanmoy Dey, Pubali Dhar

Abstract:

High incidences of Protein Energy Malnutrition as a consequence of low protein intake are quite prevalent among the children in developing countries. Thus prevention of under-nutrition has emerged as a critical challenge to India’s developmental Planners in recent times. Increase in population over the last decade has led to greater pressure on the existing animal protein sources. But these resources are currently declining due to persistent drought, diseases, natural disasters, high-cost of feed, and low productivity of local breeds and this decline in productivity is most evident in some developing countries. So the need of the hour is to search for efficient utilization of unconventional low-cost animal protein resources. Molluscs, as a group is regarded as under-exploited source of health-benefit molecules. Bivalve is the second largest class of phylum Mollusca. Annual harvests of bivalves for human consumption represent about 5% by weight of the total world harvest of aquatic resources. The freshwater mussel Lamellidens marginalis is widely distributed in ponds and large bodies of perennial waters in the Indian sub-continent and well accepted as food all over India. Moreover, ethno-medicinal uses of the flesh of Lamellidens among the rural people to treat hypertension have been documented. Present investigation thus attempts to evaluate the potential of Lamellidens marginalis as functional food. Mussels were collected from freshwater ponds and brought to the laboratory two days before experimentation for acclimatization in laboratory conditions. Shells were removed and fleshes were preserved at- 20oC until analysis. Tissue homogenate was prepared for proximate studies. Fatty acids and amino acids composition were analyzed. Vitamins, Minerals and Heavy metal contents were also studied. Mussel Protein hydrolysate was prepared using Alcalase 2.4 L and degree of hydrolysis was evaluated to analyze its Functional properties. Ferric Reducing Antioxidant Power (FRAP) and DPPH Antioxidant assays were performed. Anti-hypertensive property was evaluated by measuring Angiotensin Converting Enzyme (ACE) inhibition assay. Proximate analysis indicates that mussel meat contains moderate amount of protein (8.30±0.67%), carbohydrate (8.01±0.38%) and reducing sugar (4.75±0.07%), but less amount of fat (1.02±0.20%). Moisture content is quite high but ash content is very low. Phospholipid content is significantly high (19.43 %). Lipid constitutes, substantial amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which have proven prophylactic values. Trace elements are found present in substantial amount. Comparative study of proximate nutrients between Labeo rohita, Lamellidens and cow’s milk indicates that mussel meat can be used as complementary food source. Functionality analyses of protein hydrolysate show increase in Fat absorption, Emulsification, Foaming capacity and Protein solubility. Progressive anti-oxidant and anti-hypertensive properties have also been documented. Lamellidens marginalis can thus be regarded as a functional food source as this may combine effectively with other food components for providing essential elements to the body. Moreover, mussel protein hydrolysate provides opportunities for utilizing it in various food formulations and pharmaceuticals. The observations presented herein should be viewed as a prelude to what future holds.

Keywords: functional food, functional properties, Lamellidens marginalis, protein hydrolysate

Procedia PDF Downloads 390
26 Towards Better Integration: Qualitative Study on Perceptions of Russian-Speaking Immigrants in Australia

Authors: Oleg Shovkovyy

Abstract:

This research conducted in response to one of the most pressing questions on the agenda of many public administration offices around the world: “What could be done for better integration and assimilation of immigrants into hosting communities?” In author’s view, the answer could be suggested by immigrants themselves. They, often ‘bogged down in the past,’ snared by own idols and demons, perceive things differently, which, in turn, may result in their inability to integrate smoothly into hosting communities. Brief literature review suggests that perceptions of immigrants are completely neglected or something unsought in the current research on migrants, which, often, based on opinion polls by members of hosting communities themselves or superficial research data by various research organizations. Even those specimens that include voices of immigrants, unlikely to shed any additional light onto the problem simply because certain things are not made to speak out loud, especially to those in whose hands immigrants’ fate is (authorities). In this regard, this qualitative study, conducted by an insider to a few Russian-speaking communities, represents a unique opportunity for all stakeholders to look at the question of integration through the eyes of immigrants, from a different perspective and thus, makes research findings especially valuable for better understanding of the problem. Case study research employed ethnographic methods of gathering data where, approximately 200 Russian-speaking immigrants of first and second generations were closely observed by the Russian-speaking researcher in their usual setting, for eight months, and at different venues. The number of informal interviews with 27 key informants, with whom the researcher managed to establish a good rapport and who were keen enough to share their experiences voluntarily, were conducted. The field notes were taken at 14 locations (study sites) within the Brisbane region of Queensland, Australia. Moreover, all this time, researcher lived in dwelling of one of the immigrants and was an active participant in the social life (worship, picnics, dinners, weekend schools, concerts, cultural events, social gathering, etc.) of observed communities, whose members, to a large extent, belong to various religious lines of the Russian and Protestant Church. It was found that the majority of immigrants had experienced some discrimination in matters of hiring, employment, recognition of educational qualifications from home countries, and simply felt a sort of dislike from society in various everyday situations. Many noted complete absences or very limited state assistance in terms of employment, training, education, and housing. For instance, the Australian Government Department of Human Services not only does not stimulate job search but, on the contrary, encourages to refuse short-term works and employment. On the other hand, offered free courses on adaptation, and the English language proved to be ineffective and unpopular amongst immigrants. Many interviewees have reported overstated requirements for English proficiency and local work experience, whereas it was not critical for the given task or job. Based on the result of long-term monitoring, the researcher also had the courage to assert the negative and decelerating roles of immigrants’ communities, particularly religious communities, on processes of integration and assimilation. The findings suggest that governments should either change current immigration policies in the direction of their toughening or to take more proactive and responsible role in dealing with immigrant-related issues; for instance, increasing assistance and support to all immigrants and probably, paying more attention to and taking stake in managing and organizing lives of immigrants’ communities rather, simply leaving it all to chance.

Keywords: Australia, immigration, integration, perceptions

Procedia PDF Downloads 196
25 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics

Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe

Abstract:

Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.

Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test

Procedia PDF Downloads 86
24 Closing down the Loop Holes: How North Korea and Other Bad Actors Manipulate Global Trade in Their Favor

Authors: Leo Byrne, Neil Watts

Abstract:

In the complex and evolving landscape of global trade, maritime sanctions emerge as a critical tool wielded by the international community to curb illegal activities and alter the behavior of non-compliant states and entities. These sanctions, designed to restrict or prohibit trade by sea with sanctioned jurisdictions, entities, or individuals, face continuous challenges due to the sophisticated evasion tactics employed by countries like North Korea. As the Democratic People's Republic of Korea (DPRK) diverts significant resources to circumvent these measures, understanding the nuances of their methodologies becomes imperative for maintaining the integrity of global trade systems. The DPRK, one of the most sanctioned nations globally, has developed an intricate network to facilitate its trade in illicit goods, ensuring the flow of revenue from designated activities continues unabated. Given its geographic and economic conditions, North Korea predominantly relies on maritime routes, utilizing foreign ports to route its illicit trade. This reliance on the sea is exploited through various sophisticated methods, including the use of front companies, falsification of documentation, commingling of bulk cargos, and physical alterations to vessels. These tactics enable the DPRK to navigate through the gaps in regulatory frameworks and lax oversight, effectively undermining international sanctions regimes Maritime sanctions carry significant implications for global trade, imposing heightened risks in the maritime domain. The deceptive practices employed not only by the DPRK but also by other high-risk jurisdictions, necessitate a comprehensive understanding of UN targeted sanctions. For stakeholders in the maritime sector—including maritime authorities, vessel owners, shipping companies, flag registries, and financial institutions serving the shipping industry—awareness and compliance are paramount. Violations can lead to severe consequences, including reputational damage, sanctions, hefty fines, and even imprisonment. To mitigate risks associated with these deceptive practices, it is crucial for maritime sector stakeholders to employ rigorous due diligence and regulatory compliance screening measures. Effective sanctions compliance serves as a protective shield against legal, financial, and reputational risks, preventing exploitation by international bad actors. This requires not only a deep understanding of the sanctions landscape but also the capability to identify and manage risks through informed decision-making and proactive risk management practices. As the DPRK and other sanctioned entities continue to evolve their sanctions evasion tactics, the international community must enhance its collective efforts to demystify and counter these practices. By leveraging more stringent compliance measures, stakeholders can safeguard against the illicit use of the maritime domain, reinforcing the effectiveness of maritime sanctions as a tool for global security. This paper seeks to dissect North Korea's adaptive strategies in the face of maritime sanctions. By examining up-to-date, geographically, and temporally relevant case studies, it aims to shed light on the primary nodes through which Pyongyang evades sanctions and smuggles goods via third-party ports. The goal is to propose multi-level interaction strategies, ranging from governmental interventions to localized enforcement mechanisms, to counteract these evasion tactics.

Keywords: maritime, maritime sanctions, international sanctions, compliance, risk

Procedia PDF Downloads 21
23 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow

Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan

Abstract:

Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.

Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection

Procedia PDF Downloads 104
22 The Impact of Kids Science Labs Intervention Program on Independent Thinking and Academic Achievement in Young Children

Authors: Aliya Kamilyevna Salahova

Abstract:

This study examines the effectiveness of the Kids Science Labs intervention program, based on STEM, in fostering independent thinking among preschool and elementary school children and its influence on their academic achievement. Through a comprehensive methodology involving interviews, surveys, observations, case studies, and statistical tests, data were collected from various sources to accurately analyze the program's effects. The findings indicate a significant positive impact on children's independent thinking abilities, leading to improved academic performance in mathematics and science, enhanced learning motivation, and a propensity to critically evaluate problem-solving approaches. This research contributes to the theoretical understanding of how STEM activities can foster independent thinking and academic success in young children, providing valuable insights for the development of educational programs. Introduction: The goal of this study is to investigate the influence of the Kids Science Labs intervention program, grounded in STEM, on the development of independent thinking skills among preschool and elementary school children. By addressing this objective, we aim to explore the program's potential to enhance academic performance in mathematics and science. The study's findings have theoretical significance as they shed light on the ways in which STEM activities can foster independent thinking in young children, thus enabling educators to design effective learning programs that promote academic success. Methodology: This study employs a robust methodology that includes interviews, surveys, observations, case studies, and statistical tests. These methods were carefully selected to collect comprehensive data from multiple sources, such as documents and records, ensuring a thorough analysis of the program's effects. The use of diverse data collection and analysis procedures facilitated an in-depth exploration of the research questions and yielded reliable results. Results: The results indicate that children participating in the Kids Science Labs program experienced a sustained positive impact on their independent thinking abilities. Moreover, these children demonstrated improved academic performance in mathematics and science, displaying higher learning motivation and the capacity to critically evaluate problem-solving methods and seek optimal solutions. Theoretical Importance: This study contributes significantly to the existing theoretical knowledge by elucidating how STEM activities can foster independent thinking and enhance academic success in preschool and elementary school children. The findings have practical implications for educators, empowering them to develop learning programs that stimulate independent thinking, leading to improved academic performance in young children. Discussion: The findings of this research affirm that the Kids Science Labs intervention program is highly effective in fostering independent thinking among preschool and elementary school children. The program's positive impact extends to improved academic performance in mathematics and science, highlighting its potential to enhance learning outcomes. Educators can leverage these findings to develop educational programs that promote independent thinking and elevate academic achievement in young children. Conclusion: In conclusion, the Kids Science Labs intervention program has been found to be highly effective in fostering independent thinking among preschool and elementary school children. Furthermore, participation in the program correlates with improved academic performance in mathematics and science. The study's outcomes underscore the importance of developing educational initiatives that stimulate independent thinking in young children, thereby enhancing their academic success.

Keywords: STEM in preschool, STEM in elementary school, kids science labs, independent thinking, STEM activities in early childhood education

Procedia PDF Downloads 60
21 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 162
20 Cardiac Hypertrophy in Diabetes; The Role of Factor Forkhead Box Class O-Regulation by O-GlcNAcylation

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Cardiac hypertrophy arises in response to persistent increases in hemodynamic loads. In comparison, diabetic cardiomyopathy is defined by an abnormal myocardial changes without other cardiac-related risk factors. Pathological cardiac hypertrophy and myocardial remodeling are hallmarks of cardiovascular diseases and are risk factors for heart failure. The transcription factor forkhead box class O (FOXOs) can protect heart tissue by hostile oxidative stress and stimulating apoptosis and autophagy. FOXO proteins, as sensitive elements and mediators in response to environmental changes, have been revealed to prevent and inverse cardiac hypertrophy. FOXOs are inhibited by insulin and are critical mediators of insulin action. Insulin deficiency and uncontrolled diabetes lead to a catabolic state. FOXO1 acts downstream of the insulin-dependent pathways, which are dysregulated in diabetes. It regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K/Akt activation, which are critical regulators of cardiac hypertrophy. The complex network of signaling pathways comprising insulin/IGF-1 signaling, AMPK, JNK, and Sirtuins regulate the development of cardiovascular dysfunction by modulating the activity of FOXOs. Insulin receptors and IGF1R act via the PI3k/Akt and the MAPK/ERK pathways. Activation of Akt in response to insulin or IGF-1 induces phosphorylation of FOXOs. Increased protein synthesis induced by activation of the IGF-I/Akt/mTOR signaling pathway leads to hypertrophy. This pathway and the myostatin/Smad pathway are potent negative muscle development regulators. In cardiac muscle, insulin receptor substrates (IRS)-1 or IRS-2 activates the Akt signaling pathway and inactivate FOXO1. Under metabolic stress, p38 MAPK promotes degradation of IRS-1 and IRS-2 in cardiac myocytes and activates FOXO1, leading to cardiomyopathy. Sirt1 and FOXO1 interaction play an essential role in starvation-induced autophagy in cardiac metabolism. Inhibition of Angiotensin-II induced cardiomyocyte hypertrophy is associated with reduced FOXO1 acetylation and activation of Sirt1. The NF-κB, ERK, and FOXOs are de-acetylated by SIRT1. De-acetylation of FOXO1 induces the expression of genes involved in autophagy and stimulates autophagy flux. Therefore, under metabolic stress, FOXO1 can cause diabetic cardiomyopathy. The overexpression of FOXO1 leads to decreased cardiomyocyte size and suppresses cardiac hypertrophy through inhibition of the calcineurin–NFAT pathway. Diabetes mellitus is associated with elevation of O-GlcNAcylation. Some of its binding partners regulate the substrate selectivity of O-GlcNAc transferase (OGT). O-GlcNAcylation of essential contractile proteins may inhibit protein-protein interactions, reduce calcium sensitivity, and modulate contractile function. Uridine diphosphate (UDP)-GlcNAc is the obligatory substrate of OGT, which catalyzes a reversible post-translational protein modification. The increase of O-GlcNAcylation is accompanied by impaired cardiac hypertrophy in diabetic hearts. Inhibition of O-GlcNAcylation blocks activation of ERK1/2 and hypertrophic growth. O-GlcNAc modification on NFAT is required for its translocation from the cytosol to the nucleus, where NFAT stimulates the transcription of various hypertrophic genes. Inhibition of O-GlcNAcylation dampens NFAT-induced cardiac hypertrophic growth. Transcriptional activity of FOXO1 is enriched by improved O-GlcNAcylation upon high glucose stimulation or OGT overexpression. In diabetic conditions, the modification of FOXO1 by O-GlcNAc is promoted in cardiac troponin I and myosin light chain 2. Therefore targeting O-GlcNAcylation represents a potential therapeutic option to prevent hypertrophy in the diabetic heart.

Keywords: diabetes, cardiac hypertrophy, O-GlcNAcylation, FOXO1, Akt, PI3K, AMPK, insulin

Procedia PDF Downloads 81
19 Resveratrol Ameliorates Benzo(a)Pyrene Induced Testicular Dysfunction and Apoptosis: Involvement of p38 MAPK/ATF2/iNOS Signaling

Authors: Kuladip Jana, Bhaswati Banerjee, Parimal C. Sen

Abstract:

Benzo(a)pyrene [B(a)P] is an environmental toxicant present mostly in cigarette smoke and car exhaust, is an aryl hydrocarbon receptor (AhR) ligand that exerts its toxic effects on both male and female reproductive systems along with carcinogenesis in skin, prostate, ovary, lung and mammary glands. Our study was focused on elucidating the molecular mechanism of B(a)P induced male reproductive toxicity and its prevention with phytochemical like resveratrol. In this study, the effect of B(a)P at different doses (0.1, 0.25, 0.5, 1 and 5 mg /kg body weight) was studied on male reproductive system of Wistar rat. A significant decrease in cauda epididymal sperm count and motility along with the presence of sperm head abnormalities and altered epididymal and testicular histology were documented following B(a)P treatment. B(a)P treatment resulted apoptotic sperm cells as observed by TUNEL and Annexin V-PI assay with increased Reactive Oxygen Species (ROS), altered sperm mitochondrial membrane potential (ΔΨm) with a simultaneous decrease in the activity of antioxidant enzymes and GSH status. TUNEL positive apoptotic cells also observed in testis as well as isolated germ and Leydig cells following B(a)P exposure. Western Blot analysis revealed the activation of p38 mitogen activated protein kinase (p38MAPK), cytosolic translocation of cytochrome-c, upregulation of Bax and inducible nitric oxide synthase (iNOS) with cleavage of poly ADP ribose polymerase (PARP) and down regulation of BCl2 in testis upon B(a)P treatment. The protein and mRNA levels of testicular key steroidogenesis regulatory proteins like steroidogenic acute regulatory protein (StAR), cytochrome P450 IIA1 (CYPIIA1), 3β hydroxy steroid dehydrogenase (3β HSD), 17β hydroxy steroid dehydrogenase (17β HSD) showed a significant decrease in a dose dependent manner while an increase in the expression of cytochrome P450 1A1 (CYP1A1), Aryl hydrocarbon Receptor (AhR), active caspase- 9 and caspase- 3 following B(a)P exposure. We conclude that exposure of benzo(a)pyrene caused testicular gamatogenic and steroidogenic disorders by induction of oxidative stress, inhibition of StAR and other steroidogenic enzymes along with activation of p38MAPK and initiated caspase-3 mediated germ and Leydig cell apoptosis. Next we investigated the role of resveratrol on B(a)P induced male reproductive toxicity. Our study highlighted that resveratrol co-treatment with B(a)P maintained testicular redox potential, increased serum testosterone level and prevented steroidogenic dysfunction with enhanced expression of major testicular steroidogenic proteins (CYPIIA1, StAR, 3β HSD,17β HSD) relative to treatment with B(a)P only. Resveratrol suppressed B(a)P-induced testicular activation of p38 MAPK, ATF2, iNOS and ROS production; cytosolic translocation of Cytochome c and Caspase 3 activation thereby prevented oxidative stress of testis and inhibited apoptosis. Resveratrol co-treatment also decreased B(a)P-induced AhR protein level, its nuclear translocation and subsequent CYP1A1 promoter activation, thereby decreased protein and mRNA levels of testicular cytochrome P4501A1 (CYP1A1) and prevented BPDE-DNA adduct formation. Our findings cumulatively suggest that resveratrol prevents activation of B(a)P by modulating the transcriptional regulation of CYP1A1 and acting as an antioxidant thus prevents B(a)P-induced oxidative stress and testicular apoptosis.

Keywords: benzo(a)pyrene, resveratrol, testis, apoptosis, cytochrome P450 1A1 (CYP1A1), aryl hydrocarbon receptor (AhR), p38 MAPK/ATF2/iNOS

Procedia PDF Downloads 197
18 Evidence Based Dietary Pattern in South Asian Patients: Setting Goals

Authors: Ananya Pappu, Sneha Mishra

Abstract:

Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices.

Keywords: BMI, diet, obesity, South Asian, time-restricted eating

Procedia PDF Downloads 1
17 Consecration from the Margins: El Anatsui in Venice and the Turbine Hall

Authors: Jonathan Adeyemi

Abstract:

Context: This study focuses on El Anatsui and his global acclaim in the art world despite his origins from the global artworld’s margins. It addresses the disparities in the treatment between Western and non-Western artists and questions whether Anatsui’s consecration is a result of exoticism or the growing consensus on decolonization. Research Aim: The aim of this study is to investigate how El Anatsui achieved global acclaim from the margins of the art world and determine if his consecration represents a mark of decolonization or the typical Western desire for exoticism. Methodology: The study utilizes a case study approach, literature analysis, and in-depth interviews. The artist, the organizers of the Venice Biennale, the relevant curators at Tate Modern London, and the October Gallery in London, and other galleries in Nigeria, which represent the artist were interviewed for data collection. Findings: The study seeks to determine the authenticity of the growing consensus on decolonization, inclusion, and diversity in the global artistic field. Preliminary findings show that domestic socio-economic and political factors debilitated the mechanisms for local validation in Nigeria, weakening the domestic foundation for international engagement. However, alternative systems of exhibition, especially in London and the USA contributed critically to providing the initial international visibility, which formed the foundation for his global acclaim. Out of the 21 winners of the Golden Lion for Lifetime Achievement since its inception at the 47th Venice Biennale in 1997, American artists have dominated with 10 recipients, 8 recipients from Europe, 2 recipients from Africa (2007 and 2015) and 1 from Asia. This aligns with Bourdieu’s concept of cultural and economic capital, which prevented Africa countries from participation until recently. Moreover, while the average age of recipients is 76 years, Anatsui received the award at the age of 71, while Malick Sidibé (Mali) was awarded at 72. Thus, the Venice Biennale award for El Anatsui incline more towards a commitment to decolonisation than exoticism. Theoretical Importance: This study contributes to the field by examining the dynamics of the art world's monopoly of legitimation and the role of national, ethnicity and cultural differences in the promotion of artists. It aims to challenge the Westernized hierarchy of valorization and consecration in the art world. The research supports Bourdieu’s artistic field theory, which emphasises the importance of cultural, economic and social capital in determining agents’ position and access to the field resources (symbolic capital). Bourdieu also established that dominated agents can change their position in the field’s hierarchy either by establishing or navigating alternative systems. Data Collection and Analysis Procedures: The opacity of art world’s operations places the required information within the purview of the insiders (agents). Thus, the study collects data through in-depth interviews with relevant and purposively selected individuals and organizations. The data was/will be analyzed using qualitative methods, such as thematic analysis and content analysis. The interpretive analytical approach adopted facilitated the construction of meanings that may not be apparent in the data or responses. Questions Addressed: The study addresses how El Anatsui achieved global acclaim despite being from the margins, whether his consecration represents decolonization or exoticism, and the extent to which the global artistic field embraces decolonization, inclusion, and diversity. Conclusion: The study will contribute to knowledge by providing insights into the extent of commitment to decolonization, inclusion, and diversity in the global artistic field. It also shed light on the mechanisms behind El Anatsui's rise to global acclaim and challenge Western-dominated artistic hierarchies.

Keywords: decolonisation, exorticism, artistic field, culture game

Procedia PDF Downloads 30
16 Experiences and Perceptions of the Barriers and Facilitators of Continence Care Provision in Residential and Nursing Homes for Older Adults: A Systematic Evidence Synthesis and Qualitative Exploration

Authors: Jennifer Wheeldon, Nick de Viggiani, Nikki Cotterill

Abstract:

Background: Urinary and fecal incontinence affect a significant proportion of older adults aged 65 and over who permanently reside in residential and nursing home facilities. Incontinence symptoms have been linked to comorbidities, an increased risk of infection and reduced quality of life and mental wellbeing of residents. However, continence care provision can often be poor, further compromising the health and wellbeing of this vulnerable population. Objectives: To identify experiences and perceptions of continence care provision in older adult residential care settings and to identify factors that help or hinder good continence care provision. Settings included both residential care homes and nursing homes for older adults. Methods: A qualitative evidence synthesis using systematic review methodology established the current evidence-base. Data from 20 qualitative and mixed-method studies was appraised and synthesized. Following the review process, 10* qualitative interviews with staff working in older adult residential care settings were conducted across six* sites, which included registered managers, registered nurses and nursing/care assistants/aides. Purposive sampling recruited individuals from across England. Both evidence synthesis and interview data was analyzed thematically, both manually and with NVivo software. Results: The evidence synthesis revealed complex barriers and facilitators for continence care provision at three influencing levels: macro (structural and societal external influences), meso (organizational and institutional influences) and micro (day-to-day actions of individuals impacting service delivery). Macro-level barriers included negative stigmas relating to incontinence, aging and working in the older adult social care sector, restriction of continence care resources such as containment products (i.e. pads), short staffing in care facilities, shortfalls in the professional education and training of care home staff and the complex health and social care needs of older adult residents. Meso-level barriers included task-centered organizational cultures, ageist institutional perspectives regarding old age and incontinence symptoms, inadequate care home management and poor communication and teamwork among care staff. Micro-level barriers included poor knowledge and negative attitudes of care home staff and residents regarding incontinence symptoms and symptom management and treatment. Facilitators at the micro-level included proactive and inclusive leadership skills of individuals in management roles. Conclusions: The findings of the evidence synthesis study help to outline the complexities of continence care provision in older adult care homes facilities. Macro, meso and micro level influences demonstrate problematic and interrelated barriers across international contexts, indicating that improving continence care in this setting is extremely challenging due to the multiple levels at which care provision and services are impacted. Both international and national older adult social care policy-makers, researchers and service providers must recognize this complexity, and any intervention seeking to improve continence care in older adult care home settings must be planned accordingly and appreciatively of the complex and interrelated influences. It is anticipated that the findings of the qualitative interviews will shed further light on the national context of continence care provision specific to England; data collection is ongoing*. * Sample size is envisaged to be between 20-30 participants from multiple sites by Spring 2023.

Keywords: continence care, residential and nursing homes, evidence synthesis, qualitative

Procedia PDF Downloads 55
15 Modelling Farmer’s Perception and Intention to Join Cashew Marketing Cooperatives: An Expanded Version of the Theory of Planned Behaviour

Authors: Gospel Iyioku, Jana Mazancova, Jiri Hejkrlik

Abstract:

The “Agricultural Promotion Policy (2016–2020)” represents a strategic initiative by the Nigerian government to address domestic food shortages and the challenges in exporting products at the required quality standards. Hindered by an inefficient system for setting and enforcing food quality standards, coupled with a lack of market knowledge, the Federal Ministry of Agriculture and Rural Development (FMARD) aims to enhance support for the production and activities of key crops like cashew. By collaborating with farmers, processors, investors, and stakeholders in the cashew sector, the policy seeks to define and uphold high-quality standards across the cashew value chain. Given the challenges and opportunities faced by Nigerian cashew farmers, active participation in cashew marketing groups becomes imperative. These groups serve as essential platforms for farmers to collectively navigate market intricacies, access resources, share knowledge, improve output quality, and bolster their overall bargaining power. Through engagement in these cooperative initiatives, farmers not only boost their economic prospects but can also contribute significantly to the sustainable growth of the cashew industry, fostering resilience and community development. This study explores the perceptions and intentions of farmers regarding their involvement in cashew marketing cooperatives, utilizing an expanded version of the Theory of Planned Behaviour. Drawing insights from a diverse sample of 321 cashew farmers in Southwest Nigeria, the research sheds light on the factors influencing decision-making in cooperative participation. The demographic analysis reveals a diverse landscape, with a substantial presence of middle-aged individuals contributing significantly to the agricultural sector and cashew-related activities emerging as a primary income source for a substantial proportion (23.99%). Employing Structural Equation Modelling (SEM) with Maximum Likelihood Robust (MLR) estimation in R, the research elucidates the associations among latent variables. Despite the model’s complexity, the goodness-of-fit indices attest to the validity of the structural model, explaining approximately 40% of the variance in the intention to join cooperatives. Moral norms emerge as a pivotal construct, highlighting the profound influence of ethical considerations in decision-making processes, while perceived behavioural control presents potential challenges in active participation. Attitudes toward joining cooperatives reveal nuanced perspectives, with strong beliefs in enhanced connections with other farmers but varying perceptions on improved access to essential information. The SEM analysis establishes positive and significant effects of moral norms, perceived behavioural control, subjective norms, and attitudes on farmers’ intention to join cooperatives. The knowledge construct positively affects key factors influencing intention, emphasizing the importance of informed decision-making. A supplementary analysis using partial least squares (PLS) SEM corroborates the robustness of our findings, aligning with covariance-based SEM results. This research unveils the determinants of cooperative participation and provides valuable insights for policymakers and practitioners aiming to empower and support this vital demographic in the cashew industry.

Keywords: marketing cooperatives, theory of planned behaviour, structural equation modelling, cashew farmers

Procedia PDF Downloads 34
14 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 19
13 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial

Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava

Abstract:

Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.

Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke

Procedia PDF Downloads 368
12 Moths of Indian Himalayas: Data Digging for Climate Change Monitoring

Authors: Angshuman Raha, Abesh Kumar Sanyal, Uttaran Bandyopadhyay, Kaushik Mallick, Kamalika Bhattacharyya, Subrata Gayen, Gaurab Nandi Das, Mohd. Ali, Kailash Chandra

Abstract:

Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations.

Keywords: altitudinal shifts, climate change, historical records, Indian Himalayan region, Lepidoptera

Procedia PDF Downloads 151
11 Exploring Factors That May Contribute to the Underdiagnosis of Hereditary Transthyretin Amyloidosis in African American Patients

Authors: Kelsi Hagerty, Ami Rosen, Aaliyah Heyward, Nadia Ali, Emily Brown, Erin Demo, Yue Guan, Modele Ogunniyi, Brianna McDaniels, Alanna Morris, Kunal Bhatt

Abstract:

Hereditary transthyretin amyloidosis (hATTR) is a progressive, multi-systemic, and life-threatening disease caused by a disruption in the TTR protein that delivers thyroxine and retinol to the liver. This disruption causes the protein to misfold into amyloid fibrils, leading to the accumulation of the amyloid fibrils in the heart, nerves, and GI tract. Over 130 variants in the TTR gene are known to cause hATTR. The Val122Ile variant is the most common in the United States and is seen almost exclusively in people of African descent. TTR variants are inherited in an autosomal dominant fashion and have incomplete penetrance and variable expressivity. Individuals with hATTR may exhibit symptoms from as early as 30 years to as late as 80 years of age. hATTR is characterized by a wide range of clinical symptoms such as cardiomyopathy, neuropathy, carpal tunnel syndrome, and GI complications. Without treatment, hATTR leads to progressive disease and can ultimately lead to heart failure. hATTR disproportionately affects individuals of African descent; the estimated prevalence of hATTR among Black individuals in the US is 3.4%. Unfortunately, hATTR is often underdiagnosed and misdiagnosed because many symptoms of the disease overlap with other cardiac conditions. Due to the progressive nature of the disease, multi-systemic manifestations that can lead to a shortened lifespan, and the availability of free genetic testing and promising FDA-approved therapies that enhance treatability, early identification of individuals with a pathogenic hATTR variant is important, as this can significantly impact medical management for patients and their relatives. Furthermore, recent literature suggests that TTR genetic testing should be performed in all patients with suspicion of TTR-related cardiomyopathy, regardless of age, and that follow-up with genetic counseling services is recommended. Relatives of patients with hATTR benefit from genetic testing because testing can identify carriers early and allow relatives to receive regular screening and management. Despite the striking prevalence of hATTR among Black individuals, hATTR remains underdiagnosed in this patient population, and germline genetic testing for hATTR in Black individuals seems to be underrepresented, though the reasons for this have not yet been brought to light. Historically, Black patients experience a number of barriers to seeking healthcare that has been hypothesized to perpetuate the underdiagnosis of hATTR, such as lack of access and mistrust of healthcare professionals. Prior research has described a myriad of factors that shape an individual’s decision about whether to pursue presymptomatic genetic testing for a familial pathogenic variant, such as family closeness and communication, family dynamics, and a desire to inform other family members about potential health risks. This study explores these factors through 10 in-depth interviews with patients with hATTR about what factors may be contributing to the underdiagnosis of hATTR in the Black population. Participants were selected from the Emory University Amyloidosis clinic based on having a molecular diagnosis of hATTR. Interviews were recorded and transcribed verbatim, then coded using MAXQDA software. Thematic analysis was completed to draw commonalities between participants. Upon preliminary analysis, several themes have emerged. Barriers identified include i) Misdiagnosis and a prolonged diagnostic odyssey, ii) Family communication and dynamics surrounding health issues, iii) Perceptions of healthcare and one’s own health risks, and iv) The need for more intimate provider-patient relationships and communication. Overall, this study gleaned valuable insight from members of the Black community about possible factors contributing to the underdiagnosis of hATTR, as well as potential solutions to go about resolving this issue.

Keywords: cardiac amyloidosis, heart failure, TTR, genetic testing

Procedia PDF Downloads 73
10 Structural Characteristics of HPDSP Concrete on Beam Column Joints

Authors: Hari Krishan Sharma, Sanjay Kumar Sharma, Sushil Kumar Swar

Abstract:

Inadequate transverse reinforcement is considered as the main reason for the beam column joint shear failure observed during recent earthquakes. DSP matrix consists of cement and high content of micro-silica with low water to cement ratio while the aggregates are graded quartz sand. The use of reinforcing fibres leads not only to the increase of tensile/bending strength and specific fracture energy, but also to reduction of brittleness and, consequently, to production of non-explosive ruptures. Besides, fibre-reinforced materials are more homogeneous and less sensitive to small defects and flaws. Recent works on the freeze-thaw durability (also in the presence of de-icing salts) of fibre-reinforced DSP confirm the excellent behaviour in the expected long term service life.DSP materials, including fibre-reinforced DSP and CRC (Compact Reinforced Composites) are obtained by using high quantities of super plasticizers and high volumes of micro-silica. Steel fibres with high tensile yield strength of smaller diameter and short length in different fibre volume percentage and aspect ratio tilized to improve the performance by reducing the brittleness of matrix material. In the case of High Performance Densified Small Particle Concrete (HPDSPC), concrete is dense at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. Beam-column sub-assemblages used as moment resisting constructed using HPDSPC in the joint region with varying quantities of steel fibres, fibre aspect ratio and fibre orientation in the critical section. These HPDSPC in the joint region sub-assemblages tested under cyclic/earthquake loading. Besides loading measurements, frame displacements, diagonal joint strain and rebar strain adjacent to the joint will also be measured to investigate stress-strain behaviour, load deformation characteristics, joint shear strength, failure mechanism, ductility associated parameters, stiffness and energy dissipated parameters of the beam column sub-assemblages also evaluated. Finally a design procedure for the optimum design of HPDSPC corresponding to moment, shear forces and axial forces for the reinforced concrete beam-column joint sub-assemblage proposed. The fact that the implementation of material brittleness measure in the design of RC structures can improve structural reliability by providing uniform safety margins over a wide range of structural sizes and material compositions well recognized in the structural design and research. This lead to the development of high performance concrete for the optimized combination of various structural ratios in concrete for the optimized combination of various structural properties. The structural applications of HPDSPC, because of extremely high strength, will reduce dead load significantly as compared to normal weight concrete thereby offering substantial cost saving and by providing improved seismic response, longer spans, and thinner sections, less reinforcing steel and lower foundation cost. These cost effective parameters will make this material more versatile for use in various structural applications like beam-column joints in industries, airports, parking areas, docks, harbours, and also containers for hazardous material, safety boxes and mould & tools for polymer composites and metals.

Keywords: high performance densified small particle concrete (HPDSPC), steel fibre reinforced concrete (SFRC), slurry infiltrated concrete (SIFCON), Slurry infiltrated mat concrete (SIMCON)

Procedia PDF Downloads 277
9 Microdiamond and Moissanite Inclusions in Garnets from Pohorje Mountains, Eastern Alps, Slovenia

Authors: Mirijam Vrabec, Marian Janak, Bojan Ambrozic, Angelja K. Surca, Nastja Rogan Smuc, Nina Zupancic, Saso Sturm

Abstract:

Natural microdiamonds and moissanite (SiC) can form during the orogenic events under ultrahigh-pressure metamorphic conditions (UHP), when parts of Earth’s crust are subducted to extreme depths. So far, such processes were identified only in few places on the Earth, and therefore, represent unique opportunity to study the evolution of the Earth’s deep interior. An important discovery of microdiamonds and moissanite was reported from Pohorje, (Slovenia), where they occurred as single or polyphase inclusions in garnets. Metasedimentary rocks from Pohorje are predominantly gneisses representing parts of the Austroalpine metamorphic units of the Eastern Alps. During Cretaceous orogeny, (ca. 95–92 Ma) continental crustal rocks were deeply subducted to the mantle depths (below 100 km) and metamorphosed at pressures exceeding 3.5 GPa and temperatures between 800–850 °C. Microstructural and phase analysis of the inclusions as well as detailed elemental analysis of host garnets were carried out combining several analytical techniques: optical microscope in plane polarized transmitted light, electron probe microanalysis (EPMA) with wavelength-dispersive x-ray spectrometry (WDS) and field-emission scanning microscope (FEG-SEM) with energy-dispersive x-ray spectroscopy (EDS). Micro-Raman analysis revealed sharp, first order diamond bands sometimes accompanied by graphite bands implying that transformation of diamond back to graphite occurred. To study the chemical and crystallographic relationship between microdiamonds and co-inclusions, advanced techniques of transmission electron microscopy (TEM) were applied, which included high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), combined with EDS and electron energy-loss spectroscopy (EELS). To prepare electron transparent TEM lamellae selectively a dual-beam Focused Ion Beam/SEM (FIB/SEM) was employed. Detailed study of TEM lamellae, which was cross-sectioned from the highly faceted inclusion body located within the host garnet crystal matrix, revealed rich and rather complex internal structure. Namely, the negative crystal facets of the main inclusion body were typically decorated with up to 1 μm thick amorphous layer, reflecting the general garnet composition with slight variations in Fe/Ca content. Within these layers, ELNES analysis revealed the presence of a 28–30 nm thick layer of amorphous carbon. The very last section of this layer corresponds to composition of SiO2. Within the inclusion, besides diamond and moissanite alumosilicate mineral with pronounced layered structure, iron sulfides and chlorine were identified under TEM and CO2 and CH4 using Raman. Moissanite is found as single crystal or composed from numerous highly textured nano-crystals with the average size of 10 nm. Moissanite inclusions were found embedded inside the amorphous crust implying that moissanite crystalized well before the deposition of the amorphous layer. From the microstructural, crystallographic and chemical observations so far we can deduce, that polyphase inclusions in diamond bearing garnets from Pohorje most probably crystallized from reduced supercritical fluids. Based on layered interface structure of the host mineral multiphase process of crystallization is possible. The presence of microdiamonds and moissanite in rocks from Pohorje demonstrates that these parts of the Eastern Alps were subducted to extreme depths, and were subsequently exhumed back to the Earth's surface without complete breakdown of UHP mineral phases, allowing a rear and exceptional opportunity to study them in-situ.

Keywords: diamond, fluid inclusions, moissanite, TEM, UHP metamorphism.

Procedia PDF Downloads 274
8 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction

Authors: Leila Safazadeh, Brad Berron

Abstract:

Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.

Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting

Procedia PDF Downloads 196
7 Hydrocarbon Source Rocks of the Maragh Low

Authors: Elhadi Nasr, Ibrahim Ramadan

Abstract:

Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough.

Keywords: Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.

Procedia PDF Downloads 382
6 SockGEL/PLUG: Injectable Nano-Scaled Hydrogel Platforms for Oral and Maxillofacial Interventional Application

Authors: Z. S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease, or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture, or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL); alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise, and risk of immune reactions. For cases of dry socket, specifically, the commercially available and often-prescribed home remedies are highly-lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Herein, SockGEL/PLUG (patent pending), an innovative, all-natural, drug-free, and injectable thermo-responsive hydrogel, was designed, formulated, characterized, and evaluated as an osteogenic, angiogenic, anti-microbial, and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in fresh extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (1) prevent the on-set of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (2) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physical-chemical-mechanically for safety (cell viability), viscosity, rheology, bio-distribution, and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The proposed animal model of cranial critical-sized and non-vascularized bone defects shall provide new and critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease, and speed in producing stable, biodegradable, and sterilizable thermo-sensitive matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for the intra-socket application. Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the innovation before engaging the market for feasibility, acceptance, and cost-effectiveness studies.

Keywords: hydrogel, nanotechnology, bioengineering, bone regeneration, nanogel, drug delivery

Procedia PDF Downloads 84
5 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 52
4 Reassembling a Fragmented Border Landscape at Crossroads: Indigenous Rights, Rural Sustainability, Regional Integration and Post-Colonial Justice in Hong Kong

Authors: Chiu-Yin Leung

Abstract:

This research investigates a complex assemblage among indigenous identities, socio-political organization and national apparatus in the border landscape of post-colonial Hong Kong. This former British colony had designated a transient mode of governance in its New Territories and particularly the northernmost borderland in 1951-2012. With a discriminated system of land provisions for the indigenous villagers, the place has been inherited with distinctive village-based culture, historic monuments and agrarian practices until its sovereignty return into the People’s Republic of China. In its latest development imperatives by the national strategic planning, the frontier area of Hong Kong has been identified as a strategy site for regional economic integration in South China, with cross-border projects of innovation and technology zones, mega-transport infrastructure and inter-jurisdictional arrangement. Contemporary literature theorizes borders as the material and discursive production of territoriality, which manifest in state apparatus and the daily lives of its citizens and condense in the contested articulations of power, security and citizenship. Drawing on the concept of assemblage, this paper attempts to tract how the border regime and infrastructure in Hong Kong as a city are deeply ingrained in the everyday lived spaces of the local communities but also the changing urban and regional strategies across different longitudinal moments. Through an intensive ethnographic fieldwork among the borderland villages since 2008 and the extensive analysis of colonial archives, new development plans and spatial planning frameworks, the author navigates the genealogy of the border landscape in Ta Kwu Ling frontier area and its implications as the milieu for new state space, covering heterogeneous fields particularly in indigenous rights, heritage preservation, rural sustainability and regional economy. Empirical evidence suggests an apparent bias towards indigenous power and colonial representation in classifying landscape values and conserving historical monuments. Squatter and farm tenants are often deprived of property rights, statutory participation and livelihood option in the planning process. The postcolonial bureaucracies have great difficulties in mobilizing resources to catch up with the swift, political-first approach of the mainland counterparts. Meanwhile, the cultural heritage, lineage network and memory landscape are not protected altogether with any holistic view or collaborative effort across the border. The enactment of land resumption and compensation scheme is furthermore disturbed by lineage-based customary law, technocratic bureaucracy, intra-community conflicts and multi-scalar political mobilization. As many traces of colonial misfortune and tyranny have been whitewashed without proper management, the author argues that postcolonial justice is yet reconciled in this fragmented border landscape. The assemblage of border in mainstream representation has tended to oversimplify local struggles as a collective mist and setup a wider production of schizophrenia experiences in the discussion of further economic integration among Hong Kong and other mainland cities in the Pearl River Delta Region. The research is expected to shed new light on the theorizing of border regions and postcolonialism beyond Eurocentric perspectives. In reassembling the borderland experiences with other arrays in state governance, village organization and indigenous identities, the author also suggests an alternative epistemology in reconciling socio-spatial differences and opening up imaginaries for positive interventions.

Keywords: heritage conservation, indigenous communities, post-colonial borderland, regional development, rural sustainability

Procedia PDF Downloads 178
3 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor

Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini

Abstract:

Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.

Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance

Procedia PDF Downloads 245
2 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 96