Search results for: lanthanide complexes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 373

Search results for: lanthanide complexes

73 Preparation, Characterisation, and Measurement of the in vitro Cytotoxicity of Mesoporous Silica Nanoparticles Loaded with Cytotoxic Pt(II) Oxadiazoline Complexes

Authors: G. Wagner, R. Herrmann

Abstract:

Cytotoxic platinum compounds play a major role in the chemotherapy of a large number of human cancers. However, due to the severe side effects for the patient and other problems associated with their use, there is a need for the development of more efficient drugs and new methods for their selective delivery to the tumours. One way to achieve the latter could be in the use of nanoparticular substrates that can adsorb or chemically bind the drug. In the cell, the drug is supposed to be slowly released, either by physical desorption or by dissolution of the particle framework. Ideally, the cytotoxic properties of the platinum drug unfold only then, in the cancer cell and over a longer period of time due to the gradual release. In this paper, we report on our first steps in this direction. The binding properties of a series of cytotoxic Pt(II) oxadiazoline compounds to mesoporous silica particles has been studied by NMR and UV/vis spectroscopy. High loadings were achieved when the Pt(II) compound was relatively polar, and has been dissolved in a relatively nonpolar solvent before the silica was added. Typically, 6-10 hours were required for complete equilibration, suggesting the adsorption did not only occur to the outer surface but also to the interior of the pores. The untreated and Pt(II) loaded particles were characterised by C, H, N combustion analysis, BET/BJH nitrogen sorption, electron microscopy (REM and TEM) and EDX. With the latter methods we were able to demonstrate the homogenous distribution of the Pt(II) compound on and in the silica particles, and no Pt(II) bulk precipitate had formed. The in vitro cytotoxicity in a human cancer cell line (HeLa) has been determined for one of the new platinum compounds adsorbed to mesoporous silica particles of different size, and compared with the corresponding compound in solution. The IC50 data are similar in all cases, suggesting that the release of the Pt(II) compound was relatively fast and possibly occurred before the particles reached the cells. Overall, the platinum drug is chemically stable on silica and retained its activity upon prolonged storage.

Keywords: cytotoxicity, mesoporous silica, nanoparticles, platinum compounds

Procedia PDF Downloads 288
72 Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment

Authors: Atif Zafar Khan, Swarnendra Singh, Imrana Naseem

Abstract:

Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.

Keywords: apoptosis, breast cancer, copper chelation, coumestrol, reactive oxygens species, redox cycling

Procedia PDF Downloads 218
71 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.

Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample

Procedia PDF Downloads 294
70 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 238
69 Delivery of Ginseng Extract Containing Phytosome Loaded Microsphere System: A Preclinical Approach for Treatment of Neuropathic Pain in Rodent Model

Authors: Nitin Kumar

Abstract:

Purpose: The current research work focuses mainly on evolving a delivery system for ginseng extract (GE), which in turn will ameliorate the neuroprotective potential by means of enhancing the ginsenoside (Rb1) bio-availability (BA). For more noteworthy enhancement in oral bioavailability (OBA) along with pharmacological properties, the drug carriers’ performance can be strengthened by utilizing phytosomes-loaded microspheres (PM) delivery system. Methods: For preparing the disparate phytosome complexes (F1, F2, and F3), an aqueous extract of ginseng roots (GR) along with phospholipids were reacted in disparate ratio. Considering the outcomes, F3 formulation (spray-dried) was chosen for preparing the phytosomes powder (PP), PM, and extract microspheres (EM). PM was made by means of loading of F3 into Gum Arabic (GA) in addition to maltodextrin polymer mixture, whereas EM was prepared by means of the addition of extract directly into the same polymer mixture. For investigating the neuroprotective effect (NPE) in addition to their pharmacokinetic (PK) properties, PP, PM, and EM formulations were assessed. Results: F3 formulation gave enhanced entrapment efficiency (EE) (i.e., 50.61%) along with good homogeneity of spherical shaped particle size (PS) (42.58 ± 1.4 nm) with least polydispersity index (PDI) (i.e., 0.193 ± 0.01). The sustained release (up to 24 h) of ginsenoside Rb1 (GRb1) is revealed by the dissolution study of PM. A significantly (p < 0.05) greater anti-oxidant (AO) potential of PM can well be perceived as of the diminution in the lipid peroxidase level in addition to the rise in the glutathione superoxide dismutase (SOD) in addition to catalase levels. It also showed a greater neuroprotective potential exhibiting significant (p < 0.05) augmentation in the nociceptive threshold together with the diminution in damage to nerves. A noteworthy enhancement in the relative BA (157.94%) of GRb1 through the PM formulation can well be seen in the PK studies. Conclusion: It is exhibited that the PM system is an optimistic and feasible strategy to enhance the delivery of GE for the effectual treatment of neuropathic pain.

Keywords: ginseng, neuropathic, phytosome, pain

Procedia PDF Downloads 167
68 Technological and Economic Investigation of Concentrated Photovoltaic and Thermal Systems: A Case Study of Iran

Authors: Moloud Torkandam

Abstract:

Any cities must be designed and built in a way that minimizes their need for fossil fuel. Undoubtedly, the necessity of accepting this principle in the previous eras is undeniable with respect to the mode of constructions. Perhaps only due to the great diversity of materials and new technologies in the contemporary era, such a principle in buildings has been forgotten. The question of optimizing energy consumption in buildings has attracted a great deal of attention in many countries and, in this way, they have been able to cut down the consumption of energy up to 30 percent. The energy consumption is remarkably higher than global standards in our country, and the most important reason is the undesirable state of buildings from the standpoint of energy consumption. In addition to providing the means to protect the natural and fuel resources for the future generations, reducing the use of fossil energies may also bring about desirable outcomes such as the decrease in greenhouse gases (whose emissions cause global warming, the melting of polar ice, the rise in sea level and the climatic changes of the planet earth), the decrease in the destructive effects of contamination in residential complexes and especially urban environments and preparation for national self-sufficiency and the country’s independence and preserving national capitals. This research realize that in this modern day and age, living sustainably is a pre-requisite for ensuring a bright future and high quality of life. In acquiring this living standard, we will maintain the functions and ability of our environment to serve and sustain our livelihoods. Electricity is now an integral part of modern life, a basic necessity. In the provision of electricity, we are committed to respecting the environment by reducing the use of fossil fuels through the use of proven technologies that use local renewable and natural resources as its energy source. As far as this research concerned it is completely necessary to work on different type of energy producing such as solar and CPVT system.

Keywords: energy, photovoltaic, termal system, solar energy, CPVT

Procedia PDF Downloads 57
67 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics

Authors: Titus A. Beu

Abstract:

Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.

Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.

Procedia PDF Downloads 94
66 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad

Abstract:

The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1

Procedia PDF Downloads 56
65 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions

Authors: Nicholas C. Rose, Christopher D. Spicer

Abstract:

The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.

Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological

Procedia PDF Downloads 66
64 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 246
63 Joubert Syndrome and Related Disorders: A Single Center Experience

Authors: Ali Al Orf, Khawaja Bilal Waheed

Abstract:

Background and objective: Joubert syndrome (JS) is a rare, autosomal-recessive condition. Early recognition is important for management and counseling. Magnetic resonance imaging (MRI) can help in diagnosis. Therefore, we sought to evaluate clinical presentation and MRI findings in Joubert syndrome and related disorders. Method: A retrospective review of genetically proven cases of Joubert syndromes and related disorders was reviewed for their clinical presentation, demographic information, and magnetic resonance imaging findings in a period of the last 10 years. Two radiologists documented magnetic resonance imaging (MRI) findings. The presence of hypoplasia of the cerebellar vermis with hypoplasia of the superior cerebellar peduncle resembling the “Molar Tooth Sign” in the mid-brain was documented. Genetic testing results were collected to label genes linked to the diagnoses. Results: Out of 12 genetically proven JS cases, most were females (9/12), and nearly all presented with hypotonia, ataxia, developmental delay, intellectual impairment, and speech disorders. 5/12 children presented at age of 1 or below. The molar tooth sign was seen in 10/12 cases. Two cases were associated with other brain findings. Most of the cases were found associated with consanguineous marriage Conclusion and discussion: The molar tooth sign is a frequent and reliable sign of JS and related disorders. Genes related to defective cilia result in malfunctioning in the retina, renal tubule, and neural cell migration, thus producing heterogeneous syndrome complexes known as “ciliopathies.” Other ciliopathies like Senior-Loken syndrome, Bardet Biedl syndrome, and isolated nephronophthisis must be considered as the differential diagnosis of JS. The main imaging findings are the partial or complete absence of the cerebellar vermis, hypoplastic cerebellar peduncles (giving MTS), and (bat-wing appearance) fourth ventricular deformity. LimitationsSingle-center, small sample size, and retrospective nature of the study were a few of the study limitations.

Keywords: Joubart syndrome, magnetic resonance imaging, molar tooth sign, hypotonia

Procedia PDF Downloads 67
62 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.

Keywords: biosorption, brown marine macroalgae, copper, ion-exchange

Procedia PDF Downloads 296
61 Departures from Anatolian Seljuk Building Complex with Iwan/Eyvan: The Tradition of Iwan Tombs

Authors: Mehmet Uysal, Yavuz Arat, Uğur Tuztaşı

Abstract:

As man constructed the spaces that he lived in he also designed spaces where their dead will stay according to their belief systems. These spaces are sometimes monumentalized by the means of a stone on the top of a mountain, sometimes signed by totems and sometimes became structures to protect graves and symbolize the person or make him unforgettable. Various grave monuments have been constructed from the earliest primitive societies to developed societies. Every belief system built structures for itself; Pyramids for pharaohs, grave monuments for kings and emperors, temples and tombs for important men of religion. These spaces are also architectural works like a school or a dwelling and have importance in history of architecture. After Turks embraced Islamism, examples of very beautiful tombs are built in Middle Asia during the Seljuk Period. By the time Seljuks came to Anatolia they built important tombs having peerless architectural characteristics firstly around Ahlat. After Anatolia Seljuks made Konya the capital city and Konya became administrative, cultural and scientific center, very important tombs were built in Konya. Different from the local tomb architecture, the architecture of tombs with half-open “eyvan/Iwan” is significant. Although iwan buildings is vastly used in Anatolian civil architecture and monumental buildings its best exmaples are observed in 13th century Medrese buildings. The iwan tomb tradition which was observed during the time period when this building typology was shaped and departed from the resident tradition in the form of iwan tombs are rarely represented. However, similar tombs were build in resemblance to this tradition. This study provides information on samples of iwan tombs (Gömeç Hatun Tomb, Emir Yavaştagel Tomb, and Beşparmak Tomb) and evaluates the departures from iwan building complexes in view of architectural language. This paper also gives information about iwan tombs among tombs having importance in Islamic Architectural Heritage.

Keywords: Seljuk Building Complex, Eyvan/Iwan, Anatolia, Islamic Architectural Heritage, tomb

Procedia PDF Downloads 379
60 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 83
59 In situ Investigation of PbI₂ Precursor Film Formation and Its Subsequent Conversion to Mixed Cation Perovskite

Authors: Dounya Barrit, Ming-Chun Tang, Hoang Dang, Kai Wang, Detlef-M. Smilgies, Aram Amassian

Abstract:

Several deposition methods have been developed for perovskite film preparation. The one-step spin-coating process has emerged as a more popular option thanks to its ability to produce films of different compositions, including mixed cation and mixed halide perovskites, which can stabilize the perovskite phase and produce phases with desired band gap. The two-step method, however, is not understood in great detail. There is a significant need and opportunity to adopt the two-step process toward mixed cation and mixed halide perovskites, but this requires deeper understanding of the two-step conversion process, for instance when using different cations and mixtures thereof, to produce high-quality perovskite films with uniform composition. In this work, we demonstrate using in situ investigations that the conversion of PbI₂ to perovskite is largely dictated by the state of the PbI₂ precursor film in terms of its solvated state. Using time-resolved grazing incidence wide-angle X-Ray scattering (GIWAXS) measurements during spin coating of PbI₂ from a DMF (Dimethylformamide) solution we show the film formation to be a sol-gel process involving three PbI₂-DMF solvate complexes: disordered precursor (P₀), ordered precursor (P₁, P₂) prior to PbI₂ formation at room temperature after 5 minutes. The ordered solvates are highly metastable and eventually disappear, but we show that performing conversion from P₀, P₁, P₂ or PbI₂ can lead to very different conversion behaviors and outcomes. We compare conversion behaviors by using MAI (Methylammonium iodide), FAI (Formamidinium Iodide) and mixtures of these cations, and show that conversion can occur spontaneously and quite rapidly at room temperature without requiring further thermal annealing. We confirm this by demonstrating improvements in the morphology and microstructure of the resulting perovskite films, using techniques such as in situ quartz crystal microbalance with dissipation monitoring, SEM and XRD.

Keywords: in situ GIWAXS, lead iodide, mixed cation, perovskite solar cell, sol-gel process, solvate phase

Procedia PDF Downloads 117
58 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media

Procedia PDF Downloads 279
57 Changes in Expression of Galanin in the CSMG Neurons Supplying the Prepyloric Area of the Porcine Stomach Induced by Intragastric Infusion of Hydrochloric Acid

Authors: Katarzyna Palus, Jarosław Całka

Abstract:

Gastrointestinal disorders, especially acid-related diseases, including peptic and duodenal ulcers, gastroesophageal reflux disease, upper GI bleeding or stress-related mucosal disease, are currently serious health issues encountered very frequently in patients worldwide. However, to date, the response of sympathetic neurons to gastric mucosal injury and local inflammation following hyperacidity is unknown. Thus, the present study was designed to determine possible changes in expression of galanin (GAL) in the CSMG neurons supplying the prepyloric area of the porcine stomach in a physiological state and following experimentally-induced hyperacidity by using combined retrograde tracing and double-labelling immunohistochemistry. The choice of the domestic pig as an experimental model in the present study is not accidental and is justified by the high degree of physiological and anatomical similarity to human digestive system functions. In this experiment ten juvenile female pigs of the Large White Polish breed were used. The animals were divided into two groups: control and animals with hydrochloric acid infusion (HCl). The neuronal retrograde marker Fast Blue (FB) was injected into the anterior prepyloric wall of the stomach of all animals. After 23 days, animals of the HCl-group were reintroduced into a state of general anesthesia and intragastrically given 5 ml/kg of body weight of 0.25 M aqueous solution of hydrochloric acid. On the 28th day, all animals were euthanized. The CSMG complexes were then collected and the CSMG cryostat sections were stained immunocytochemically for GAL and TH (tyrosine hydroxylase). Immunohistochemistry revealed that in the control group 8.40 ± 0.53 % out of 200 FB-positive CSMG neurons contained GAL. In HCl group upregulation of the GAL-IR neurons to 22.52 ± 1.18 % were observed. All GAL-IR neurons in both groups showed the simultaneously TH immunoreactivity. Increase in the expression of GAL in FB-positive neurons of the HCL group may suggest its participation in the protective mechanisms of neurons in different pathological processes, such as gastric hyperacidity.

Keywords: coeliac-superior mesenteric ganglion complex, gastric innervation, hyperacidity, immunohistochemistry

Procedia PDF Downloads 217
56 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 98
55 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface

Procedia PDF Downloads 441
54 Siderophore Receptor Protein from Klebsiella pneumoniae as a Promising Immunogen for Serotype-Independent Therapeutic Lead Development

Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri

Abstract:

Klebsiella pneumoniae causes a wide range of infections, including urinary tract infections, sepsis, bacteremia, pneumonia, and liver abscesses. The emergence of multi-drug resistance in this bacterium led to a major setback for clinical management. WHO also endorsed a need for finding alternative therapy to antibiotics for the treatment of these infections. Development of vaccines and passive antibody therapy has been proven as a potent alternative to antibiotics in the case of MDR, XDR, and PDR Klebsiella infections. Siderophore receptors have been demonstrated to be overexpressed for the internalization of iron siderophore complexes during infections in most Gram-negative bacteria. For the present study, immune response to siderophore receptors to establish this protein as a potential immunogen for the development of therapeutic leads was explored. Clinical strains of Klebsiella pneumoniae were grown in iron-deficient conditions, and the iron-regulated outer membrane proteins were extracted and characterized through mass spectrometry for specific identification. The gene for identified protein was cloned in pET- 28a vector and expressed in E. coli. The native protein and the recombinant protein were isolated and purified and used as antigens for the generation of immune response in BALB/c mice. The native protein of Klebsiella pneumoniae grown in iron-deficient conditions was identified as FepA (Ferrienterobactin receptor) and other siderophore receptors. This 80 kDa protein generated an immune response in BALB/c mice. The antiserum from mice after subsequent booster doses was collected and showed binding with FepA protein in western blot and phagocytic uptake of the K. pneumoniae in the presence antiserum from immunized mice also observed from the animal studies after bacterial challenge post immunisation in mice have shown bacterial clearance. The antiserum from mice showed binding and clearance of the Klebsiella pneumoniae bacteria in vitro and in vivo. These antigens used for generating an active immune response in mice can further be used for therapeutic monoclonal antibody development against Klebsiella pneumoniae infections.

Keywords: antiserum, FepA, Klebsiella pneumoniae, multi drug resistance, siderophore receptor

Procedia PDF Downloads 73
53 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 266
52 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors

Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub

Abstract:

Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.

Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance

Procedia PDF Downloads 245
51 Effect of a Synthetic Platinum-Based Complex on Autophagy Induction in Leydig TM3 Cells

Authors: Ezzati Givi M., Hoveizi E., Nezhad Marani N.

Abstract:

Platinum-based anticancer therapeutics are the most widely used drugs in clinical chemotherapy but have major limitations and various side effects in clinical applications. Gonadotoxicity and sterility is one of the most common complications for cancer survivors, which seem to be drug-specific and dose-related. Therefore, many efforts have been dedicated to discovering a new structure of platinum-based anticancer agents with improved therapeutic index, fewer side effects. In this regard, new Pt(II)-phosphane complexes containing heterocyclic thionate ligands (PCTL) have been synthesized, which show more potent antitumor activities in comparison to cisplatin. Cisplatin, the best leading metal-based antitumor drug in the field, induces testicular toxicity on Leydig and Sertoli cells leading to serious side effects such as azoospermia and infertility. Therefore in the present study, we aimed to investigate the cytotoxicity effect of PCTL on mice TM4 Sertoli cells with particular emphasis on the role of autophagy in comparison to cisplatin. In this study, an MTT assay was performed to evaluate the IC50 of PCTL and to analyze the TM3 Leydig cell's viability. Cells morphology was evaluated via invert microscope and Changing in morphology for nuclei swelling or autophagic vacuoles formation were assessed by DAPI and MDC staining. Testosterone production in the culture medium was measured using an ELISA kit. Finally, the expression of Autophagy-related genes, Atg5, Beclin1 and p62, were analyzed by qPCR. Based on the obtained results by MTT, the IC50 value of PCTL was 50 μM in TM3 cells and cytotoxic effects was in a dose- and time-dependent manner. Cells morphological changes investigated by inverted microscopy, DAPI, and MDC staining which showed the cytotoxic concentrations of PCTL was significantly higher than cisplatin in the treated TM3 Leydig cells. The results of PCR showed a lack of expression of the p62, Atg5 and Beclin1 gene in TM3 cells treated with PCTL in comparison to cisplatin and control groups. It should be noted that the effects of 25 μM PCTL concentration on TM3 cells have been associated with increased testosterone production and secretion, which requires further study to explain the possible causes and involved molecular mechanisms. The results of the study showed that the PCTL had less-lethal effects on TM3 cells in comparison to cisplatin and probably did not induce autophagy in TM3 cells.

Keywords: platinum-based anticancer agents, cisplatin, Leydig TM3 cells, autophagy

Procedia PDF Downloads 102
50 The Toxicity of Doxorubicin Connected with Nanotransporters

Authors: Iva Blazkova, Amitava Moulick, Vedran Milosavljevic, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissue

Keywords: doxorubicin, chicken embryos, nanotransporters, toxicity

Procedia PDF Downloads 426
49 Water Balance in the Forest Basins Essential for the Water Supply in Central America

Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan

Abstract:

The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.

Keywords: Costa Rica, infiltration, soil, water

Procedia PDF Downloads 354
48 Rheological Study of Chitosan/Montmorillonite Nanocomposites: The Effect of Chemical Crosslinking

Authors: K. Khouzami, J. Brassinne, C. Branca, E. Van Ruymbeke, B. Nysten, G. D’Angelo

Abstract:

The development of hybrid organic-inorganic nanocomposites has recently attracted great interest. Typically, polymer silicates represent an emerging class of polymeric nanocomposites that offer superior material properties compared to each compound alone. Among these materials, complexes based on silicate clay and polysaccharides are one of the most promising nanocomposites. The strong electrostatic interaction between chitosan and montmorillonite can induce what is called physical hydrogel, where the coordination bonds or physical crosslinks may associate and dissociate reversibly and in a short time. These mechanisms could be the main origin of the uniqueness of their rheological behavior. However, owing to their structure intrinsically heterogeneous and/or the lack of dissipated energy, they are usually brittle, possess a poor toughness and may not have sufficient mechanical strength. Consequently, the properties of these nanocomposites cannot respond to some requirements of many applications in several fields. To address the issue of weak mechanical properties, covalent chemical crosslink bonds can be introduced to the physical hydrogel. In this way, quite homogeneous dually crosslinked microstructures with high dissipated energy and enhanced mechanical strength can be engineered. In this work, we have prepared a series of chitosan-montmorillonite nanocomposites chemically crosslinked by addition of poly (ethylene glycol) diglycidyl ether. This study aims to provide a better understanding of the mechanical behavior of dually crosslinked chitosan-based nanocomposites by relating it to their microstructures. In these systems, the variety of microstructures is obtained by modifying the number of cross-links. Subsequently, a superior uniqueness of the rheological properties of chemically crosslinked chitosan-montmorillonite nanocomposites is achieved, especially at the highest percentage of clay. Their rheological behaviors depend on the clay/chitosan ratio and the crosslinking. All specimens exhibit a viscous rheological behavior over the frequency range investigated. The flow curves of the nanocomposites show a Newtonian plateau at very low shear rates accompanied by a quite complicated nonlinear decrease with increasing the shear rate. Crosslinking induces a shear thinning behavior revealing the formation of network-like structures. Fitting shear viscosity curves via Ostward-De Waele equation disclosed that crosslinking and clay addition strongly affect the pseudoplasticity of the nanocomposites for shear rates γ ̇>20.

Keywords: chitosan, crossliking, nanocomposites, rheological properties

Procedia PDF Downloads 115
47 A Method against Obsolescence of Three-Dimensional Archaeological Collection. Two Cases of Study from Qubbet El-Hawa Necropolis, Aswan, Egypt

Authors: L. Serrano-Lara, J.M Alba-Gómez

Abstract:

Qubbet el–Hawa Project has been documented archaeological artifacts as 3d models by laser scanning technique since 2015. Currently, research has obtained the right methodology to develop a high accuracy photographic texture for each geometrical 3D model. Furthermore, the right methodology to attach the complete digital surrogate into a 3DPDF document has been obtained; it is used as a catalogue worksheet that brings archaeological data and, at the same time, allows us to obtain precise measurements, volume calculations and cross-section mapping of each scanned artifact. This validated archaeological documentation is the first step for dissemination, application as Qubbet el-Hawa Virtual Museum, and, moreover, multi-sensory experience through 3D print archaeological artifacts. Material culture from four funerary complexes constructed in West Aswan has become physical replicas opening the archaeological research process itself and offering creative possibilities on museology or educational projects. This paper shares a method of acquiring texture for scanning´s output product in order to achieve a 3DPDF archaeological cataloguing, and, on the other hand, to allow the colorfully 3D printing of singular archaeological artifacts. The proposed method has undergone two concrete cases, a polychrome wooden ushabti, and, a cartonnage mask belonging to a lady, bought recovered on intact tomb QH34aa. Both 3D model results have been implemented on three main applications, archaeological 3D catalogue, public dissemination activities, and the 3D artifact model in a bachelor education program. Due to those three already mentioned applications, productive interaction among spectator and three-dimensional artifact have been increased; moreover, functionality as archaeological documentation has been consolidated. Finding the right methodology to assign a specific color to each vector on the geometric 3D model, we had been achieved two essential archaeological applications. Firstly, 3DPDF as a display document for an archaeological catalogue, secondly, the possibility to obtain a colored 3d printed object to be displayed in public exhibitions. Obsolescences 3D models have become updated archaeological documentation of QH43aa tomb cultural material. Therefore, Qubbet el-Hawa Project has been actualized the educational potential of its results thanks to a multi-sensory experience that arose from 3d scanned´s archaeological artifacts.

Keywords: 3D printed, 3D scanner, Middle Kingdom, Qubbet el-Hawa necropolis, virtual archaeology

Procedia PDF Downloads 112
46 Apatite Flotation Using Fruits' Oil as Collector and Sorghum as Depressant

Authors: Elenice Maria Schons Silva, Andre Carlos Silva

Abstract:

The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower.

Keywords: collectors, depressants, flotation, mineral processing

Procedia PDF Downloads 124
45 Chongqing, a Megalopolis Disconnected with Its Rivers: An Assessment of Urban-Waterside Disconnect in a Chinese Megacity and Proposed Improvement Strategies, Chongqing City as a Case Study

Authors: Jaime E. Salazar Lagos

Abstract:

Chongqing is located in southwest China and is becoming one of the most significant cities in the world. Its urban territories and metropolitan-related areas have one of the largest urban populations in China and are partitioned and shaped by two of the biggest and longest rivers on Earth, the Yangtze and Jialing Rivers, making Chongqing a megalopolis intersected by rivers. Historically, Chongqing City enjoyed fundamental connections with its rivers; however, current urban development of Chongqing City has lost effective integration of the riverbanks within the urban space and structural dynamics of the city. Therefore, there exists a critical lack of physical and urban space conjoined with the rivers, which diminishes the economic, tourist, and environmental development of Chongqing. Using multi-scale satellite-map site verification the study confirmed the hypothesis and urban-waterside disconnect. Collected data demonstrated that the Chongqing urban zone, an area of 5292 square-kilometers and a water front of 203.4 kilometers, has only 23.49 kilometers of extension (just 11.5%) with high-quality physical and spatial urban-waterside connection. Compared with other metropolises around the world, this figure represents a significant lack of spatial development along the rivers, an issue that has not been successfully addressed in the last 10 years of urban development. On a macro scale, the study categorized the different kinds of relationships between the city and its riverbanks. This data was then utilized in the creation of an urban-waterfront relationship map that can be a tool for future city planning decisions and real estate development. On a micro scale, we discovered there are three primary elements that are causing the urban-waterside disconnect: extensive highways along the most dense areas and city center, large private real estate developments that do not provide adequate riverside access, and large industrial complexes that almost completely lack riverside utilization. Finally, as part of the suggested strategies, the study concludes that the most efficient and practical way to improve this situation is to follow the historic master-planning of Chongqing and create connective nodes in critical urban locations along the river, a strategy that has been used for centuries to handle the same urban-waterside relationship. Reviewing and implementing this strategy will allow the city to better connect with the rivers, reducing the various impacts of disconnect and urban transformation.

Keywords: Chongqing City, megalopolis, nodes, riverbanks disconnection, urban

Procedia PDF Downloads 196
44 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 205