Search results for: inverse filtering on graphs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1162

Search results for: inverse filtering on graphs

1162 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 311
1161 Domination Parameters of Middle Graphs: Connected and Outer-Connected Perspectives

Authors: Behnaz Pahlousay, Farshad Kazemnejad, Elisa Palezzato, Michele Torielli

Abstract:

In this paper, we study the notions of connected domination number and of outer-connected domination number for middle graphs. Indeed, we obtain tight bounds for these numbers in terms of the order of the middle graph M(G). We also compute the outer-connected domination number of some families of graphs such as star graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and some operation on graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the outer-connected domination number of middle graphs.

Keywords: connected domination number, outer-connected dom- ination number, domination number, middle graph, nordhaus- gaddum-like relation.

Procedia PDF Downloads 40
1160 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
1159 Semirings of Graphs: An Approach Towards the Algebra of Graphs

Authors: Gete Umbrey, Saifur Rahman

Abstract:

Graphs are found to be most capable in computing, and its abstract structures have been applied in some specific computations and algorithms like in phase encoding controller, processor microcontroller, and synthesis of a CMOS switching network, etc. Being motivated by these works, we develop an independent approach to study semiring structures and various properties by defining the binary operations which in fact, seems analogous to an existing definition in some sense but with a different approach. This work emphasizes specifically on the construction of semigroup and semiring structures on the set of undirected graphs, and their properties are investigated therein. It is expected that the investigation done here may have some interesting applications in theoretical computer science, networking and decision making, and also on joining of two network systems.

Keywords: graphs, join and union of graphs, semiring, weighted graphs

Procedia PDF Downloads 148
1158 Extremal Laplacian Energy of Threshold Graphs

Authors: Seyed Ahmad Mojallal

Abstract:

Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies.

Keywords: Laplacian eigenvalues, Laplacian energy, threshold graphs, extremal graphs

Procedia PDF Downloads 388
1157 Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study

Authors: Hossein Javidnia, Salehe Taheri

Abstract:

The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter.

Keywords: ECG noise filtering, Wiener filtering, median filtering, Gaussian noise, filtering performance

Procedia PDF Downloads 529
1156 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 479
1155 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem

Procedia PDF Downloads 234
1154 Developing a Structured Example Space for Finding the Collision Points of Functions and Their Inverse

Authors: M. Saeed, A. Shahidzadeh

Abstract:

Interaction between teachers and learners requires applying a set of samples (examples) which helps to create coordination between the goals and methods. The main result and achievement and application of samples (examples) are that they can bring the teacher and learner to a shared understanding of the concept. mathematical concepts, and also one of the challenging issues in the discussion of the function is to find the collision points of functions of and, regarding that the example space of teachers is different in this issue, this paper aims to present an example space including several problems of the secondary school with the help of intuition and drawing various graphs of functions of and for more familiarity of teachers.

Keywords: inverse function, educational example, Mathematic example, example space

Procedia PDF Downloads 179
1153 2D Structured Non-Cyclic Fuzzy Graphs

Authors: T. Pathinathan, M. Peter

Abstract:

Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.

Keywords: double layered fuzzy graph, double layered non–cyclic fuzzy graph, order, degree and size

Procedia PDF Downloads 402
1152 An Approach to Solving Some Inverse Problems for Parabolic Equations

Authors: Bolatbek Rysbaiuly, Aliya S. Azhibekova

Abstract:

Problems concerning the interpretation of the well testing results belong to the class of inverse problems of subsurface hydromechanics. The distinctive feature of such problems is that additional information is depending on the capabilities of oilfield experiments. Another factor that should not be overlooked is the existence of errors in the test data. To determine reservoir properties, some inverse problems for parabolic equations were investigated. An approach to solving the inverse problems based on the method of regularization is proposed.

Keywords: iterative approach, inverse problem, parabolic equation, reservoir properties

Procedia PDF Downloads 428
1151 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting

Procedia PDF Downloads 390
1150 Building 1-Well-Covered Graphs by Corona, Join, and Rooted Product of Graphs

Authors: Vadim E. Levit, Eugen Mandrescu

Abstract:

A graph is well-covered if all its maximal independent sets are of the same size. A well-covered graph is 1-well-covered if deletion of every vertex of the graph leaves it well-covered. It is known that a graph without isolated vertices is 1-well-covered if and only if every two disjoint independent sets are included in two disjoint maximum independent sets. Well-covered graphs are related to combinatorial commutative algebra (e.g., every Cohen-Macaulay graph is well-covered, while each Gorenstein graph without isolated vertices is 1-well-covered). Our intent is to construct several infinite families of 1-well-covered graphs using the following known graph operations: corona, join, and rooted product of graphs. Adopting some known techniques used to advantage for well-covered graphs, one can prove that: if the graph G has no isolated vertices, then the corona of G and H is 1-well-covered if and only if H is a complete graph of order two at least; the join of the graphs G and H is 1-well-covered if and only if G and H have the same independence number and both are 1-well-covered; if H satisfies the property that every three pairwise disjoint independent sets are included in three pairwise disjoint maximum independent sets, then the rooted product of G and H is 1-well-covered, for every graph G. These findings show not only how to generate some more families of 1-well-covered graphs, but also that, to this aim, sometimes, one may use graphs that are not necessarily 1-well-covered.

Keywords: maximum independent set, corona, concatenation, join, well-covered graph

Procedia PDF Downloads 208
1149 Study of Storms on the Javits Center Green Roof

Authors: Alexander Cho, Harsho Sanyal, Joseph Cataldo

Abstract:

A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.

Keywords: green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter

Procedia PDF Downloads 114
1148 Reductions of Control Flow Graphs

Authors: Robert Gold

Abstract:

Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.

Keywords: control flow graph, graph reduction, software engineering, software applications

Procedia PDF Downloads 552
1147 Nullity of t-Tupple Graphs

Authors: Khidir R. Sharaf, Didar A. Ali

Abstract:

The nullity η (G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f (w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced sub-graph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the end vertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived and determined for some special types of graphs. Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs.

Keywords: graph theory, graph spectra, nullity of graphs, statistic

Procedia PDF Downloads 240
1146 Congruences Induced by Certain Relations on Ag**-Groupoids

Authors: Faisal Yousafzai, Murad-ul-Islam Khan, Kar Ping Shum

Abstract:

We introduce the concept of partially inverse AG**-groupoids which is almost parallel to the concepts of E-inversive semigroups and E-inversive E-semigroups. Some characterization problems are provided on partially inverse AG**-groupoids. We give necessary and sufficient conditions for a partially inverse AG**-subgroupoid E to be a rectangular band. Furthermore, we determine the unitary congruence η on a partially inverse AG**-groupoid and show that each partially inverse AG**-groupoid possesses an idempotent separating congruence μ. We also study anti-separative commutative image of a locally associative AG**-groupoid. Finally, we give the concept of completely N-inverse AG**-groupoid and characterize a maximum idempotent separating congruence.

Keywords: AG**-groupoids, congruences, inverses, rectangular band

Procedia PDF Downloads 342
1145 Uncontrollable Inaccuracy in Inverse Problems

Authors: Yu Menshikov

Abstract:

In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solution are analyzed. Several methods for remove the influence of uncontrollable inaccuracy have been suggested.

Keywords: inverse problems, filtration, uncontrollable inaccuracy

Procedia PDF Downloads 505
1144 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 516
1143 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues

Authors: Abdon Choque-Rivero

Abstract:

The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.

Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method

Procedia PDF Downloads 144
1142 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.

Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds

Procedia PDF Downloads 244
1141 On the Zeros of the Degree Polynomial of a Graph

Authors: S. R. Nayaka, Putta Swamy

Abstract:

Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained.

Keywords: degree polynomial, regular graph, minimum and maximum degree, graph operations

Procedia PDF Downloads 249
1140 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering

Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song

Abstract:

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection

Procedia PDF Downloads 401
1139 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal

Abstract:

Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 379
1138 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 309
1137 On Chvátal’s Conjecture for the Hamiltonicity of 1-Tough Graphs and Their Complements

Authors: Shin-Shin Kao, Yuan-Kang Shih, Hsun Su

Abstract:

In this paper, we show that the conjecture of Chv tal, which states that any 1-tough graph is either a Hamiltonian graph or its complement contains a specific graph denoted by F, does not hold in general. More precisely, it is true only for graphs with six or seven vertices, and is false for graphs with eight or more vertices. A theorem is derived as a correction for the conjecture.

Keywords: complement, degree sum, hamiltonian, tough

Procedia PDF Downloads 289
1136 3D Guided Image Filtering to Improve Quality of Short-Time Binned Dynamic PET Images Using MRI Images

Authors: Tabassum Husain, Shen Peng Li, Zhaolin Chen

Abstract:

This paper evaluates the usability of 3D Guided Image Filtering to enhance the quality of short-time binned dynamic PET images by using MRI images. Guided image filtering is an edge-preserving filter proposed to enhance 2D images. The 3D filter is applied on 1 and 5-minute binned images. The results are compared with 15-minute binned images and the Gaussian filtering. The guided image filter enhances the quality of dynamic PET images while also preserving important information of the voxels.

Keywords: dynamic PET images, guided image filter, image enhancement, information preservation filtering

Procedia PDF Downloads 133
1135 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance

Procedia PDF Downloads 439
1134 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.

Keywords: melting furnace, inverse heat transfer, enthalpy method, levenberg–marquardt method

Procedia PDF Downloads 324
1133 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs

Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli

Abstract:

We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.

Keywords: diffusion processes, metric graphs, invariant measure, reversibility

Procedia PDF Downloads 173