Search results for: indoor residual spray
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1555

Search results for: indoor residual spray

1555 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.

Keywords: HVOF, residual stress, thermal spray, WC-Co

Procedia PDF Downloads 310
1554 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 242
1553 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 168
1552 Fluid Flow and Heat Transfer Characteristics Investigation in Spray Cooling Systems Using Nanofluids

Authors: Lee Derk Huan, Nur Irmawati

Abstract:

This paper aims to investigate the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: numerical investigation, spray cooling, heat transfer, nanofluids

Procedia PDF Downloads 464
1551 Quantitative Characterization of Single Orifice Hydraulic Flat Spray Nozzle

Authors: Y. C. Khoo, W. T. Lai

Abstract:

The single orifice hydraulic flat spray nozzle was evaluated with two global imaging techniques to characterize various aspects of the resulting spray. The two techniques were high resolution flow visualization and Particle Image Velocimetry (PIV). A CCD camera with 29 million pixels was used to capture shadowgraph images to realize ligament formation and collapse as well as droplet interaction. Quantitative analysis was performed to give the sizing information of the droplets and ligaments. This camera was then applied with a PIV system to evaluate the overall velocity field of the spray, from nozzle exit to droplet discharge. PIV images were further post-processed to determine the inclusion angle of the spray. The results from those investigations provided significant quantitative understanding of the spray structure. Based on the quantitative results, detailed understanding of the spray behavior was achieved.

Keywords: spray, flow visualization, PIV, shadowgraph, quantitative sizing, velocity field

Procedia PDF Downloads 379
1550 Sea-Spray Calculations Using the MESO-NH Model

Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola

Abstract:

A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.

Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols

Procedia PDF Downloads 148
1549 Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal

Authors: Hossein Arfaeinia, Azam Nadali, Zahra Asadgol, Mohammad Fahiminia

Abstract:

Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions.

Keywords: particle matter (PM), indoor air, negative air ions (NAIs), residential building

Procedia PDF Downloads 251
1548 The Residual Efficacy of Etofenprox WP on Different Surfaces for Malaria Control in the Brazilian Legal Amazon

Authors: Ana Paula S. A. Correa, Allan K. R. Galardo, Luana A. Lima, Talita F. Sobral, Josiane N. Muller, Jessica F. S. Barroso, Nercy V. R. Furtado, Ednaldo C. Rêgo., Jose B. P. Lima

Abstract:

Malaria is a public health problem in the Brazilian Legal Amazon. Among the integrated approaches for anopheline control, the Indoor Residual Spraying (IRS) remains one of the main tools in the basic strategy applied in the Amazonian States, where the National Malaria Control Program currently uses one of the insecticides from the pyrethroid class, the Etofenprox WP. Understanding the residual efficacy of insecticides on different surfaces is essential to determine the spray cycles, in order to maintain a rational use and to avoid product waste. The aim of this study was to evaluate the residual efficacy of Etofenprox - VECTRON ® 20 WP on surfaces of Unplastered Cement (UC) and Unpainted Wood (UW) on panels, in field, and in semi-field evaluation of Brazil’s Amapa State. The evaluation criteria used was the cone bioassay test, following the World Health Organization (WHO) recommended method, using plastic cones and female mosquitos of Anopheles sp. The tests were carried out in laboratory panels, semi-field evaluation in a “test house” built in the Macapa municipality, and in the field in 20 houses, being ten houses per surface type (UC and UW), in an endemic malaria area in Mazagão’s municipality. The residual efficacy was measured from March to September 2017, starting one day after the spraying, repeated monthly for a period of six months. The UW surface presented higher residual efficacy than the UC. In fact, the UW presented a residual efficacy of the insecticide throughout the period of this study with a mortality rate above 80% in the panels (= 95%), in the "test house" (= 86%) and in field houses ( = 87%). On the UC surface it was observed a mortality decreased in all the tests performed, with a mortality rate of 45, 47 and 29% on panels, semi-field and in field, respectively; however, the residual efficacy ≥ 80% only occurred in the first evaluation after the 24-hour spraying bioassay in the "test house". Thus, only the UW surface meets the specifications of the World Health Organization Pesticide Evaluation Scheme (WHOPES) regarding the duration of effective action (three to six months). To sum up, the insecticide residual efficacy presented variability on the different surfaces where it was sprayed. Although the IRS with Etofenprox WP was efficient on UW surfaces, and it can be used in spraying cycles at 4-month intervals, it is important to consider the diversity of houses in the Brazilian Legal Amazon, in order to implement alternatives for vector control, including the evaluation of new products or different formulations types for insecticides.

Keywords: Anopheles, vector control, insecticide, bioassay

Procedia PDF Downloads 164
1547 Effect of Humidity on In-Process Crystallization of Lactose During Spray Drying

Authors: Amirali Ebrahimi, T. A. G. Langrish

Abstract:

The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.

Keywords: lactose, crystallization, spray drying, humid air

Procedia PDF Downloads 423
1546 A Finite Memory Residual Generation Filter for Fault Detection

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults.

Keywords: residual generation filter, finite memory structure, kalman filter, fast detection

Procedia PDF Downloads 697
1545 The Influence of Residual Stress on Hardness and Microstructure in Railway Rails

Authors: Muhammet Emre Turan, Sait Özçelik, Yavuz Sun

Abstract:

In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress.

Keywords: residual stress, hardness, micro structure, rail, strain gauge

Procedia PDF Downloads 600
1544 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 306
1543 Press Hardening of Tubes with Additional Interior Spray Cooling

Authors: B. A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier

Abstract:

Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.

Keywords: 22MnB5, press hardening, water-air spray cooling, hollow profiles, tubes

Procedia PDF Downloads 271
1542 Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique

Authors: Musa Momoh, A. U. Moreh, A. M. Bayawa, Sanusi Abdullahi, I. Atiku

Abstract:

In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline.

Keywords: zinc oxide, spray pyrolysis, rf sputtering, optical properties, electrical properties

Procedia PDF Downloads 263
1541 Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag

Authors: Sumaya Ismail, Aijaz Ahmad Rehi

Abstract:

Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture.

Keywords: RFID, GPS, indoor location tracking, application architecture, passive RFID tag

Procedia PDF Downloads 116
1540 Colour Formation and Maillard Reactions in Spray-Dried Milk Powders

Authors: Zelin Zhou, Timothy Langrish

Abstract:

Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed.

Keywords: colour formation, Maillard reactions, spray drying, skim milk powder

Procedia PDF Downloads 182
1539 Effect of Temperature and Feed Solution on Microencapsulation of Quercetin by Spray Drying Technique

Authors: S. Lekhavat, U. Srimongkoluk, P. Ratanachamnong, G. Laungsopapun

Abstract:

Quercetin was encapsulated with whey protein and high methoxyl pectin by spray drying technique. Feed solution, consisting of 0.1875 0.125 and 0.0625 % w/w quercetin, respectively, was prepared and then sprays at outlet temperature of 70, 80 and 90 °C. Quercetin contents either in feed solution or in spray dried powder were determined by HPLC technique. Physicochemical properties such as viscosity and total soluble solid of feed solution as well as moisture content and water activity of spray dried powder were examined. Particle morphology was imaged using scanning electron microscope. The results showed that feed solution has total soluble solid and viscosity in range of 1.73-5.60 ºBrix and 2.58-8.15 cP, in that order. After spray drying, the moisture content and water activity value of powder are in range of 0.58-2.72 % and 0.18-0.31, respectively. Quercetin content in dried sample increased along with outlet drying temperature but decreased when total soluble solid increased. It was shown that particles are likely to shrivel when spray drying at high temperature. The suggested conditions for encapsulation of quercetin are feed solution with 0.0625 % (w/w) quercetin and spray drying at drying outlet temperature of 90°C.

Keywords: drying temperature, particle morphology, spray drying, quercetin

Procedia PDF Downloads 259
1538 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation

Procedia PDF Downloads 325
1537 The Physics of Cold Spray Technology

Authors: Ionel Botef

Abstract:

Studies show that, for qualitative coatings, the knowledge of cold spray technology must focus on a variety of interdisciplinary fields and a framework for problem solving. The integrated disciplines include, but are not limited to, engineering, material sciences, and physics. Due to its importance, the purpose of this paper is to summarize the state of the art of this technology alongside its theoretical and experimental studies, and explore the role and impact of physics upon cold spraying technology.

Keywords: surface engineering, cold spray, physics, modelling

Procedia PDF Downloads 530
1536 Estimating the Timing Interval for Malarial Indoor Residual Spraying: A Modelling Approach

Authors: Levicatus Mugenyi, Joaniter Nankabirwa, Emmanuel Arinaitwe, John Rek, Niel Hens, Moses Kamya, Grant Dorsey

Abstract:

Background: Indoor residual spraying (IRS) reduces vector densities and malaria transmission, however, the most effective spraying intervals for IRS have not been well established. We aim to estimate the optimal timing interval for IRS using a modeling approach. Methods: We use a generalized additive model to estimate the optimal timing interval for IRS using the predicted malaria incidence. The model is applied to post IRS cohort clinical data from children aged 0.5–10 years in selected households in Tororo, historically a high malaria transmission setting in Uganda. Six rounds of IRS were implemented in Tororo during the study period (3 rounds with bendiocarb: December 2014 to December 2015, and 3 rounds with actellic: June 2016 to July 2018). Results: Monthly incidence of malaria from October 2014 to February 2019 decreased from 3.25 to 0.0 per person-years in the children under 5 years, and 1.57 to 0.0 for 5-10 year-olds. The optimal time interval for IRS differed between bendiocarb and actellic and by IRS round. It was estimated to be 17 and 40 weeks after the first round of bendiocarb and actellic, respectively. After the third round of actellic, 36 weeks was estimated to be optimal. However, we could not estimate from the data the optimal time after the second and third rounds of bendiocarb and after the second round of actellic. Conclusion: We conclude that to sustain the effect of IRS in a high-medium transmission setting, the second rounds of bendiocarb need to be applied roughly 17 weeks and actellic 40 weeks after the first round, and the timing differs for subsequent rounds. The amount of rainfall did not influence the trend in malaria incidence after IRS, as well as the IRS timing intervals. Our results suggest that shorter intervals for the IRS application can be more effective compared to the current practice, which is about 24 weeks for bendiocarb and 48 weeks for actellic. However, when considering our findings, one should account for the cost and drug resistance associated with IRS. We also recommend that the timing and incidence should be monitored in the future to improve these estimates.

Keywords: incidence, indoor residual spraying, generalized additive model, malaria

Procedia PDF Downloads 120
1535 Correlation between Indoor and Outdoor Air

Authors: Jamal A. Radaideh, Ziad N. Shatnawi

Abstract:

Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7).

Keywords: criteria air pollutants, indoor/outdoor air pollution, indoor/outdoor ratio, Saudi Arabia

Procedia PDF Downloads 425
1534 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 564
1533 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.

Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks

Procedia PDF Downloads 473
1532 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: indoor navigation, low light, RGB-D camera, vision based

Procedia PDF Downloads 459
1531 Technology of Thermal Spray Coating Machining

Authors: Jana Petrů, Tomáš Zlámal, Robert Čep, Lenka Čepová

Abstract:

This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem.

Keywords: coating, aerospace, plasma, grinding

Procedia PDF Downloads 554
1530 The Effect of Water Droplets Size in Fire Fighting Systems

Authors: Tassadit Tabouche

Abstract:

Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.

Keywords: droplets, water spray, water droplets size, 3D

Procedia PDF Downloads 532
1529 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying

Authors: Hyeongdo Jeong, Jong Kook Lee

Abstract:

Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.

Keywords: zirconia, solid content, granulation, spray drying

Procedia PDF Downloads 215
1528 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique

Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra

Abstract:

Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.

Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying

Procedia PDF Downloads 242
1527 Effect of Drop Impact Behavior on Spray Retention

Authors: Hassina Hafida Boukhalfa, Mathieu Massinon, Fréderic Lebeau, Mohamed Belhamra

Abstract:

Drop behaviour during impact affects retention. The increase of adhesion is usually seen as the objective when applying crop protection products, while bouncing and shattering are seen as detrimental to spray retention. However, observation of drop impacts using high speed shadow graphy shows that fragmentation can occur in Wenzel wetting regime. In this case, a part of the drop sticks on the surface, what contributes to retention. Using simultaneous measurements of drop impacts with high speed imaging and of retention with fluorometry for 3 spray mixtures on excised barley leaves allowed us to observe that about 50% of the drops fragmented in Wenzel state remain on the leaf. Depending on spray mixture, these impact outcomes accounted for 25 to 50% of retention, the higher contribution being correlated with bigger VMD (Volume Median Diameter). This contribution is non-negligible and should be considered when a modelling of spray retention process is performed.

Keywords: drop impact, retention, fluorometry, high speed imaging

Procedia PDF Downloads 380
1526 Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House

Authors: Thet Su Hlaing, Shoichi Kojima

Abstract:

The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption.

Keywords: bamboo house, hot and humid climate, indoor thermal comfort, local indigenous roofing material

Procedia PDF Downloads 183