Search results for: increase of [CO₂]
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10339

Search results for: increase of [CO₂]

289 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production

Authors: Deepak Loura

Abstract:

Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.

Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance

Procedia PDF Downloads 47
288 Atmospheric Circulation Patterns Inducing Coastal Upwelling in the Baltic Sea

Authors: Ewa Bednorz, Marek Polrolniczak, Bartosz Czernecki, Arkadiusz Marek Tomczyk

Abstract:

This study is meant as a contribution to the research of the upwelling phenomenon, which is one of the most pronounced examples of the sea-atmosphere coupling. The aim is to confirm the atmospheric forcing of the sea waters circulation and sea surface temperature along the variously oriented Baltic Sea coasts and to find out macroscale and regional circulation patterns triggering upwelling along different sections of this relatively small and semi-closed sea basin. The mean daily sea surface temperature data from the summer seasons (June–August) of the years 1982–2017 made the basis for the detection of upwelling cases. For the atmospheric part of the analysis, monthly indices of the Northern Hemisphere macroscale circulation patterns were used. Besides, in order to identify the local direction of airflow, the daily zonal and meridional regional circulation indices were constructed and introduced to the analysis. Finally, daily regional circulation patterns over the Baltic Sea region were distinguished by applying the principal component analysis to the gridded mean daily sea level pressure data. Within the Baltic Sea, upwelling is the most frequent along the zonally oriented northern coast of the Gulf of Finland, southern coasts of Sweden, and along the middle part of the western Gulf of Bothnia coast. Among the macroscale circulation patterns, the Scandinavian type (SCAND), with a primary circulation center located over Scandinavia, has the strongest impact on the horizontal flow of surface sea waters in the Baltic Sea, which triggers upwelling. An anticyclone center over Scandinavia in the positive phase of SCAND enhances the eastern airflow, which increases upwelling frequency along southeastern Baltic coasts. It was proved in the study that the zonal circulation has a stronger impact on upwelling occurrence than the meridional one, and it could increase/decrease a chance of upwelling formation by more than 70% in some coastal sections. Positive and negative phases of six distinguished regional daily circulation patterns made 12 different synoptic situations which were analyzed in the terms of their influence on the upwelling formation. Each of them revealed some impact on the frequency of upwelling in some coastal section of the Baltic Sea; however, two kinds of synoptic situations seemed to have the strongest influence, namely, the first kind representing pressure patterns enhancing the zonal flow and the second kind representing synoptic patterns with a cyclone/anticyclone centers over southern Scandinavia. Upwelling occurrence appeared to be particularly strongly reliant on the atmospheric conditions in some specific coastal sections, namely: the Gulf of Finland, the south eastern Baltic coasts (Polish and Latvian-Lithuanian section), and the western part of the Gulf of Bothnia. Concluding, it can be stated that atmospheric conditions strongly control the occurrence of upwelling within the Baltic Sea basin. Both local and macroscale circulation patterns expressed by the location of the pressure centers influence the frequency of this phenomenon; however, the impact strength varies, depending on the coastal region. Acknowledgment: This research was funded by the National Science Centre, Poland, grant number 2016/21/B/ST10/01440.

Keywords: Baltic Sea, circulation patterns, coastal upwelling, synoptic conditions

Procedia PDF Downloads 100
287 EEG and DC-Potential Level Сhanges in the Elderly

Authors: Irina Deputat, Anatoly Gribanov, Yuliya Dzhos, Alexandra Nekhoroshkova, Tatyana Yemelianova, Irina Bolshevidtseva, Irina Deryabina, Yana Kereush, Larisa Startseva, Tatyana Bagretsova, Irina Ikonnikova

Abstract:

In the modern world the number of elderly people increases. Preservation of functionality of an organism in the elderly becomes very important now. During aging the higher cortical functions such as feelings, perception, attention, memory, and ideation are gradual decrease. It is expressed in the rate of information processing reduction, volume of random access memory loss, ability to training and storing of new information decrease. Perspective directions in studying of aging neurophysiological parameters are brain imaging: computer electroencephalography, neuroenergy mapping of a brain, and also methods of studying of a neurodynamic brain processes. Research aim – to study features of a brain aging in elderly people by electroencephalogram (EEG) and the DC-potential level. We examined 130 people aged 55 - 74 years that did not have psychiatric disorders and chronic states in a decompensation stage. EEG was recorded with a 128-channel GES-300 system (USA). EEG recordings are collected while the participant sits at rest with their eyes closed for 3 minutes. For a quantitative assessment of EEG we used the spectral analysis. The range was analyzed on delta (0,5–3,5 Hz), a theta - (3,5–7,0 Hz), an alpha 1-(7,0–11,0 Hz) an alpha 2-(11–13,0 Hz), beta1-(13–16,5 Hz) and beta2-(16,5–20 Hz) ranges. In each frequency range spectral power was estimated. The 12-channel hardware-software diagnostic ‘Neuroenergometr-KM’ complex was applied for registration, processing and the analysis of a brain constant potentials level. The DC-potential level registered in monopolar leads. It is revealed that the EEG of elderly people differ in higher rates of spectral power in the range delta (р < 0,01) and a theta - (р < 0,05) rhythms, especially in frontal areas in aging. By results of the comparative analysis it is noted that elderly people 60-64 aged differ in higher values of spectral power alfa-2 range in the left frontal and central areas (р < 0,05) and also higher values beta-1 range in frontal and parieto-occipital areas (р < 0,05). Study of a brain constant potential level distribution revealed increase of total energy consumption on the main areas of a brain. In frontal leads we registered the lowest values of constant potential level. Perhaps it indicates decrease in an energy metabolism in this area and difficulties of executive functions. The comparative analysis of a potential difference on the main assignments testifies to unevenness of a lateralization of a brain functions at elderly people. The results of a potential difference between right and left hemispheres testify to prevalence of the left hemisphere activity. Thus, higher rates of functional activity of a cerebral cortex are peculiar to people of early advanced age (60-64 years) that points to higher reserve opportunities of central nervous system. By 70 years there are age changes of a cerebral power exchange and level of electrogenesis of a brain which reflect deterioration of a condition of homeostatic mechanisms of self-control and the program of processing of the perceptual data current flow.

Keywords: brain, DC-potential level, EEG, elderly people

Procedia PDF Downloads 461
286 Formation of Self Help Groups (SHGs) Protected Human Rights and Ensured Human Security of Female Sex Workers at Brothel in Bangladesh

Authors: Md. Nurul Alom Siddikqe

Abstract:

The purpose of this intervention was to describe how the marginalized people protect their rights and increase their self-dignity and self-esteem among brothel-based sex workers in 6 cities which are the victim of trafficked who came from different periphery areas Bangladesh. Eventually the sex workers are tortured by the pimp, clients, Msahi (so called guardian of bonded sex workers), Babu (So called husband) highly discriminated, vulnerable and stigmatized due to their occupation, movement, behavior and activities, which has got social disapproval. However, stigma, discrimination and violation of human rights not only bar them to access legal services, education of their kids, health, movement of outside of brothel, deprived of funeral after death, but also make them inaccessible due to their invisibility. Conducted an assessment among brothel-based sex workers setup to know their knowledge on human rights and find out their harassment and violence in their community. Inspired them to think about to be united and also assisted them to formation of self help group (SHG). Developed capacity of the SHG and developed leadership of its members through different trainings like administrative, financial management, public speaking and resource mobilization. Developed strategy to enhance the capacity of SHG so that they can collectively claim their rights and develop strategic partnership and network with the relevant service provider’s for restoring all sorts of rights. Conducted meeting with stakeholder including duty bearers, civil society organizations, media people and local government initiatives. Developed Networking with human rights commission, local elite, religious leaders and form human right watch committees at community level. Organized rally and observed national and international days along with government counterparts. By utilizing the project resources the members of SHG became capable to raise their collective voices against violence, discrimination and stigma as well as protected them from insecurity. The members of SHG have been participating in social program/event the SHG got membership of district level NGO coordination meeting through invitation from Deputy Commissioner, Civil Surgeon and Social welfare office of Government of Bangladesh. The Law Enforcement Agency is ensuring safety and security and the education department of government enrolled their children in primary level education. The Government provided land for grave yard after death for the Muslim sex workers and same for the other religious group. The SHGs are registered with government respective authorities. The SHGs are working with support from different development partners and implementing different projects sometime as consortium leaders. Opportunity created to take the vocational training from the government reputed department. The harassment by the clients reduced remarkably, babu, Mashi and other counterparts recognized the sex workers rights and ensure security with government counterpart access increased in legal, health and education. Indications are that the brothel based sex workers understood about their rights and became capable of ensuring their security through working under the self-help groups meaningfully.

Keywords: brothel, discrimination, harassment, stigma

Procedia PDF Downloads 330
285 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations

Authors: Oleg Kabantsev, Karomatullo Umarov

Abstract:

The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1

Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis

Procedia PDF Downloads 164
284 Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice

Authors: Meiling Yu, Nadia Rouatbi, Khuloud T. Al-Jamal

Abstract:

Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology.

Keywords: CRISPR, nanoparticles, brain diseases, administration routes

Procedia PDF Downloads 66
283 Comparison of On-Site Stormwater Detention Policies in Australian and Brazilian Cities

Authors: Pedro P. Drumond, James E. Ball, Priscilla M. Moura, Márcia M. L. P. Coelho

Abstract:

In recent decades, On-site Stormwater Detention (OSD) systems have been implemented in many cities around the world. In Brazil, urban drainage source control policies were created in the 1990’s and were mainly based on OSD. The concept of this technique is to promote the detention of additional stormwater runoff caused by impervious areas, in order to maintain pre-urbanization peak flow levels. In Australia OSD, was first adopted in the early 1980’s by the Ku-ring-gai Council in Sydney’s northern suburbs and Wollongong City Council. Many papers on the topic were published at that time. However, source control techniques related to stormwater quality have become to the forefront and OSD has been relegated to the background. In order to evaluate the effectiveness of the current regulations regarding OSD, the existing policies were compared in Australian cities, a country considered experienced in the use of this technique, and in Brazilian cities where OSD adoption has been increasing. The cities selected for analysis were Wollongong and Belo Horizonte, the first municipalities to adopt OSD in their respective countries, and Sydney and Porto Alegre, cities where these policies are local references. The Australian and Brazilian cities are located in Southern Hemisphere of the planet and similar rainfall intensities can be observed, especially in storm bursts greater than 15 minutes. Regarding technical criteria, Brazilian cities have a site-based approach, analyzing only on-site system drainage. This approach is criticized for not evaluating impacts on urban drainage systems and in rare cases may cause the increase of peak flows downstream. The city of Wollongong and most of the Sydney Councils adopted a catchment-based approach, requiring the use of Permissible Site Discharge (PSD) and Site Storage Requirements (SSR) values based on analysis of entire catchments via hydrograph-producing computer models. Based on the premise that OSD should be designed to dampen storms of 100 years Average Recurrence Interval (ARI) storm, the values of PSD and SSR in these four municipalities were compared. In general, Brazilian cities presented low values of PSD and high values of SSR. This can be explained by site-based approach and the low runoff coefficient value adopted for pre-development conditions. The results clearly show the differences between approaches and methodologies adopted in OSD designs among Brazilian and Australian municipalities, especially with regard to PSD values, being on opposite sides of the scale. However, lack of research regarding the real performance of constructed OSD does not allow for determining which is best. It is necessary to investigate OSD performance in a real situation, assessing the damping provided throughout its useful life, maintenance issues, debris blockage problems and the parameters related to rain-flow methods. Acknowledgments: The authors wish to thank CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (Chamada Universal – MCTI/CNPq Nº 14/2014), FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais, and CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for their financial support.

Keywords: on-site stormwater detention, source control, stormwater, urban drainage

Procedia PDF Downloads 160
282 A Case Report: The Role of Gut Directed Hypnotherapy in Resolution of Irritable Bowel Syndrome in a Medication Refractory Pediatric Male Patient

Authors: Alok Bapatla, Pamela Lutting, Mariastella Serrano

Abstract:

Background: Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain associated with altered bowel habits in the absence of an underlying organic cause. Although the exact etiology of IBS is not fully understood, one of the leading theories postulates a pathology within the Brain-Gut Axis that leads to an overall increase in gastrointestinal sensitivity and pejorative changes in gastrointestinal motility. Research and clinical practice have shown that Gut Directed Hypnotherapy (GDH) has a beneficial clinical role in improving Mind-Gut control and thereby comorbid conditions such as anxiety, abdominal pain, constipation, and diarrhea. Aims: This study presents a 17-year old male with underlying anxiety and a one-year history of IBS-Constipation Predominant Subtype (IBS-C), who has demonstrated impressive improvement of symptoms following GDH treatment following refractory trials with medications including bisacodyl, senna, docusate, magnesium citrate, lubiprostone, linaclotide. Method: The patient was referred to a licensed clinical psychologist specializing in clinical hypnosis and cognitive-behavioral therapy (CBT), who implemented “The Standardized Hypnosis Protocol for IBS” developed by Dr. Olafur S. Palsson, Psy.D at the University of North Carolina at Chapel Hill. The hypnotherapy protocol consisted of a total of seven weekly 45-minute sessions supplemented with a 20-minute audio recording to be listened to once daily. Outcome variables included the GAD-7, PHQ-9 and DCI-2, as well as self-ratings (ranging 0-10) for pain (intensity and frequency), emotional distress about IBS symptoms, and overall emotional distress. All variables were measured at intake prior to administration of the hypnosis protocol and at the conclusion of the hypnosis treatment. A retrospective IBS Questionnaire (IBS Severity Scoring System) was also completed at the conclusion of the GDH treatment for pre-and post-test ratings of clinical symptoms. Results: The patient showed improvement in all outcome variables and self-ratings, including abdominal pain intensity, frequency of abdominal pain episodes, emotional distress relating to gut issues, depression, and anxiety. The IBS Questionnaire showed a significant improvement from a severity score of 400 (defined as severe) prior to GDH intervention compared to 55 (defined as complete resolution) at four months after the last session. IBS Questionnaire subset questions that showed a significant score improvement included abdominal pain intensity, days of pain experienced per 10 days, satisfaction with bowel habits, and overall interference of life affected by IBS symptoms. Conclusion: This case supports the existing research literature that GDH has a significantly beneficial role in improving symptoms in patients with IBS. Emphasis is placed on the numerical results of the IBS Questionnaire scoring, which reflects a patient who initially suffered from severe IBS with failed response to multiple medications, who subsequently showed full and sustained resolution

Keywords: pediatrics, constipation, irritable bowel syndrome, hypnotherapy, gut-directed hypnosis

Procedia PDF Downloads 170
281 Effects of the In-Situ Upgrading Project in Afghanistan: A Case Study on the Formally and Informally Developed Areas in Kabul

Authors: Maisam Rafiee, Chikashi Deguchi, Akio Odake, Minoru Matsui, Takanori Sata

Abstract:

Cities in Afghanistan have been rapidly urbanized; however, many parts of these cities have been developed with no detailed land use plan or infrastructure. In other words, they have been informally developed without any government leadership. The new government started the In-situ Upgrading Project in Kabul to upgrade roads, the water supply network system, and the surface water drainage system on the existing street layout in 2002, with the financial support of international agencies. This project is an appropriate emergency improvement for living life, but not an essential improvement of living conditions and infrastructure problems because the life expectancies of the improved facilities are as short as 10–15 years, and residents cannot obtain land tenure in the unplanned areas. The Land Readjustment System (LRS) conducted in Japan has good advantages that rearrange irregularly shaped land lots and develop the infrastructure effectively. This study investigates the effects of the In-situ Upgrading Project on private investment, land prices, and residents’ satisfaction with projects in Kart-e-Char, where properties are registered, and in Afshar-e-Silo Lot 1, where properties are unregistered. These projects are located 5 km and 7 km from the CBD area of Kabul, respectively. This study discusses whether LRS should be applied to the unplanned area based on the questionnaire and interview responses of experts experienced in the In-situ Upgrading Project who have knowledge of LRS. The analysis results reveal that, in Kart-e-Char, a lot of private investment has been made in the construction of medium-rise (five- to nine-story) buildings for commercial and residential purposes. Land values have also incrementally increased since the project, and residents are commonly satisfied with the road pavement, drainage systems, and water supplies, but dissatisfied with the poor delivery of electricity as well as the lack of public facilities (e.g., parks and sport facilities). In Afshar-e-Silo Lot 1, basic infrastructures like paved roads and surface water drainage systems have improved from the project. After the project, a few four- and five-story residential buildings were built with very low-level private investments, but significant increases in land prices were not evident. The residents are satisfied with the contribution ratio, drainage system, and small increase in land price, but there is still no drinking water supply system or tenure security; moreover, there are substandard paved roads and a lack of public facilities, such as parks, sport facilities, mosques, and schools. The results of the questionnaire and interviews with the four engineers highlight the problems that remain to be solved in the unplanned areas if LRS is applied—namely, land use differences, types and conditions of the infrastructure still to be installed by the project, and time spent for positive consensus building among the residents, given the project’s budget limitation.

Keywords: in-situ upgrading, Kabul city, land readjustment, land value, planned area, private investment, residents' satisfaction, unplanned area

Procedia PDF Downloads 166
280 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions

Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales

Abstract:

Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.

Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit

Procedia PDF Downloads 64
279 Post-Exercise Recovery Tracking Based on Electrocardiography-Derived Features

Authors: Pavel Bulai, Taras Pitlik, Tatsiana Kulahava, Timofei Lipski

Abstract:

The method of Electrocardiography (ECG) interpretation for post-exercise recovery tracking was developed. Metabolic indices (aerobic and anaerobic) were designed using ECG-derived features. This study reports the associations between aerobic and anaerobic indices and classical parameters of the person’s physiological state, including blood biochemistry, glycogen concentration and VO2max changes. During the study 9 participants, healthy, physically active medium trained men and women, which trained 2-4 times per week for at least 9 weeks, fulfilled (i) ECG monitoring using Apple Watch Series 4 (AWS4); (ii) blood biochemical analysis; (iii) maximal oxygen consumption (VO2max) test, (iv) bioimpedance analysis (BIA). ECG signals from a single-lead wrist-wearable device were processed with detection of QRS-complex. Aerobic index (AI) was derived as the normalized slope of QR segment. Anaerobic index (ANI) was derived as the normalized slope of SJ segment. Biochemical parameters, glycogen content and VO2max were evaluated eight times within 3-60 hours after training. ECGs were recorded 5 times per day, plus before and after training, cycloergometry and BIA. The negative correlation between AI and blood markers of the muscles functional status including creatine phosphokinase (r=-0.238, p < 0.008), aspartate aminotransferase (r=-0.249, p < 0.004) and uric acid (r = -0.293, p<0.004) were observed. ANI was also correlated with creatine phosphokinase (r= -0.265, p < 0.003), aspartate aminotransferase (r = -0.292, p < 0.001), lactate dehydrogenase (LDH) (r = -0.190, p < 0.050). So, when the level of muscular enzymes increases during post-exercise fatigue, AI and ANI decrease. During recovery, the level of metabolites is restored, and metabolic indices rising is registered. It can be concluded that AI and ANI adequately reflect the physiology of the muscles during recovery. One of the markers of an athlete’s physiological state is the ratio between testosterone and cortisol (TCR). TCR provides a relative indication of anabolic-catabolic balance and is considered to be more sensitive to training stress than measuring testosterone and cortisol separately. AI shows a strong negative correlation with TCR (r=-0.437, p < 0.001) and correctly represents post-exercise physiology. In order to reveal the relation between the ECG-derived metabolic indices and the state of the cardiorespiratory system, direct measurements of VO2max were carried out at various time points after training sessions. The negative correlation between AI and VO2max (r = -0.342, p < 0.001) was obtained. These data testifying VO2max rising during fatigue are controversial. However, some studies have revealed increased stroke volume after training, that agrees with findings. It is important to note that post-exercise increase in VO2max does not mean an athlete’s readiness for the next training session, because the recovery of the cardiovascular system occurs over a substantially longer period. Negative correlations registered for ANI with glycogen (r = -0.303, p < 0.001), albumin (r = -0.205, p < 0.021) and creatinine (r = -0.268, p < 0.002) reflect the dehydration status of participants after training. Correlations between designed metabolic indices and physiological parameters revealed in this study can be considered as the sufficient evidence to use these indices for assessing the state of person’s aerobic and anaerobic metabolic systems after training during fatigue, recovery and supercompensation.

Keywords: aerobic index, anaerobic index, electrocardiography, supercompensation

Procedia PDF Downloads 91
278 A Corpus-Based Analysis of "MeToo" Discourse in South Korea: Coverage Representation in Korean Newspapers

Authors: Sun-Hee Lee, Amanda Kraley

Abstract:

The “MeToo” movement is a social movement against sexual abuse and harassment. Though the hashtag went viral in 2017 following different cultural flashpoints in different countries, the initial response was quiet in South Korea. This radically changed in January 2018, when a high-ranking senior prosecutor, Seo Ji-hyun, gave a televised interview discussing being sexually assaulted by a colleague. Acknowledging public anger, particularly among women, on the long-existing problems of sexual harassment and abuse, the South Korean media have focused on several high-profile cases. Analyzing the media representation of these cases is a window into the evolving South Korean discourse around “MeToo.” This study presents a linguistic analysis of “MeToo” discourse in South Korea by utilizing a corpus-based approach. The term corpus (pl. corpora) is used to refer to electronic language data, that is, any collection of recorded instances of spoken or written language. A “MeToo” corpus has been collected by extracting newspaper articles containing the keyword “MeToo” from BIGKinds, big data analysis, and service and Nexis Uni, an online academic database search engine, to conduct this language analysis. The corpus analysis explores how Korean media represent accusers and the accused, victims and perpetrators. The extracted data includes 5,885 articles from four broadsheet newspapers (Chosun, JoongAng, Hangyore, and Kyunghyang) and 88 articles from two Korea-based English newspapers (Korea Times and Korea Herald) between January 2017 and November 2020. The information includes basic data analysis with respect to keyword frequency and network analysis and adds refined examinations of select corpus samples through naming strategies, semantic relations, and pragmatic properties. Along with the exponential increase of the number of articles containing the keyword “MeToo” from 104 articles in 2017 to 3,546 articles in 2018, the network and keyword analysis highlights ‘US,’ ‘Harvey Weinstein’, and ‘Hollywood,’ as keywords for 2017, with articles in 2018 highlighting ‘Seo Ji-Hyun, ‘politics,’ ‘President Moon,’ ‘An Ui-Jeong, ‘Lee Yoon-taek’ (the names of perpetrators), and ‘(Korean) society.’ This outcome demonstrates the shift of media focus from international affairs to domestic cases. Another crucial finding is that word ‘defamation’ is widely distributed in the “MeToo” corpus. This relates to the South Korean legal system, in which a person who defames another by publicly alleging information detrimental to their reputation—factual or fabricated—is punishable by law (Article 307 of the Criminal Act of Korea). If the defamation occurs on the internet, it is subject to aggravated punishment under the Act on Promotion of Information and Communications Network Utilization and Information Protection. These laws, in particular, have been used against accusers who have publicly come forward in the wake of “MeToo” in South Korea, adding an extra dimension of risk. This corpus analysis of “MeToo” newspaper articles contributes to the analysis of the media representation of the “MeToo” movement and sheds light on the shifting landscape of gender relations in the public sphere in South Korea.

Keywords: corpus linguistics, MeToo, newspapers, South Korea

Procedia PDF Downloads 189
277 Financial Policies in the Process of Global Crisis: Case Study Kosovo, Case Kosovo

Authors: Shpetim Rezniqi

Abstract:

Financial Policies in the process of global crisis the current crisis has swept the world with special emphasis, most developed countries, those countries which have most gross -product world and you have a high level of living.Even those who are not experts can describe the consequences of the crisis to see the reality that is seen, but how far will it go this crisis is impossible to predict. Even the biggest experts have conjecture and large divergence, but agree on one thing: - The devastating effects of this crisis will be more severe than ever before and can not be predicted.Long time, the world was dominated economic theory of free market laws. With the belief that the market is the regulator of all economic problems. The market, as river water will flow to find the best and will find the necessary solution best. Therefore much less state market barriers, less state intervention and market itself is an economic self-regulation. Free market economy became the model of global economic development and progress, it transcends national barriers and became the law of the development of the entire world economy. Globalization and global market freedom were principles of development and international cooperation. All international organizations like the World Bank, states powerful economic, development and cooperation principles laid free market economy and the elimination of state intervention. The less state intervention much more freedom of action was this market- leading international principle. We live in an era of financial tragic. Financial markets and banking in particular economies are in a state of thy good, US stock markets fell about 40%, in other words, this time, was one of the darkest moments 5 since 1920. Prior to her rank can only "collapse" of the stock of Wall Street in 1929, technological collapse of 2000, the crisis of 1973 after the Yom Kippur war, while the price of oil quadrupled and famous collapse of 1937 / '38, when Europe was beginning World war II In 2000, even though it seems like the end of the world was the corner, the world economy survived almost intact. Of course, that was small recessions in the United States, Europe, or Japan. Much more difficult the situation was at crisis 30s, or 70s, however, succeeded the world. Regarding the recent financial crisis, it has all the signs to be much sharper and with more consequences. The decline in stock prices is more a byproduct of what is really happening. Financial markets began dance of death with the credit crisis, which came as a result of the large increase in real estate prices and household debt. It is these last two phenomena can be matched very well with the gains of the '20s, a period during which people spent fists as if there was no tomorrow. All is not away from the mouth of the word recession, that fact no longer a sudden and abrupt. But as much as the financial markets melt, the greater is the risk of a problematic economy for years to come. Thus, for example, the banking crisis in Japan proved to be much more severe than initially expected, partly because the assets which were based more loans had, especially the land that falling in value. The price of land in Japan is about 15 years that continues to fall. (ADRI Nurellari-Published in the newspaper "Classifieds"). At this moment, it is still difficult to çmosh to what extent the crisis has affected the economy and what would be the consequences of the crisis. What we know is that many banks will need more time to reduce the award of credit, but banks have this primary function, this means huge loss.

Keywords: globalisation, finance, crisis, recomandation, bank, credits

Procedia PDF Downloads 360
276 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 189
275 Examining Influence of The Ultrasonic Power and Frequency on Microbubbles Dynamics Using Real-Time Visualization of Synchrotron X-Ray Imaging: Application to Membrane Fouling Control

Authors: Masoume Ehsani, Ning Zhu, Huu Doan, Ali Lohi, Amira Abdelrasoul

Abstract:

Membrane fouling poses severe challenges in membrane-based wastewater treatment applications. Ultrasound (US) has been considered an effective fouling remediation technique in filtration processes. Bubble cavitation in the liquid medium results from the alternating rarefaction and compression cycles during the US irradiation at sufficiently high acoustic pressure. Cavitation microbubbles generated under US irradiation can cause eddy current and turbulent flow within the medium by either oscillating or discharging energy to the system through microbubble explosion. Turbulent flow regime and shear forces created close to the membrane surface cause disturbing the cake layer and dislodging the foulants, which in turn improve the cleaning efficiency and filtration performance. Therefore, the number, size, velocity, and oscillation pattern of the microbubbles created in the liquid medium play a crucial role in foulant detachment and permeate flux recovery. The goal of the current study is to gain in depth understanding of the influence of the US power intensity and frequency on the microbubble dynamics and its characteristics generated under US irradiation. In comparison with other imaging techniques, the synchrotron in-line Phase Contrast Imaging technique at the Canadian Light Source (CLS) allows in-situ observation and real-time visualization of microbubble dynamics. At CLS biomedical imaging and therapy (BMIT) polychromatic beamline, the effective parameters were optimized to enhance the contrast gas/liquid interface for the accuracy of the qualitative and quantitative analysis of bubble cavitation within the system. With the high flux of photons and the high-speed camera, a typical high projection speed was achieved; and each projection of microbubbles in water was captured in 0.5 ms. ImageJ software was used for post-processing the raw images for the detailed quantitative analyses of microbubbles. The imaging has been performed under the US power intensity levels of 50 W, 60 W, and 100 W, in addition to the US frequency levels of 20 kHz, 28 kHz, and 40 kHz. For the duration of 2 seconds of imaging, the effect of the US power and frequency on the average number, size, and fraction of the area occupied by bubbles were analyzed. Microbubbles’ dynamics in terms of their velocity in water was also investigated. For the US power increase of 50 W to 100 W, the average bubble number and the average bubble diameter were increased from 746 to 880 and from 36.7 µm to 48.4 µm, respectively. In terms of the influence of US frequency, a fewer number of bubbles were created at 20 kHz (average of 176 bubbles rather than 808 bubbles at 40 kHz), while the average bubble size was significantly larger than that of 40 kHz (almost seven times). The majority of bubbles were captured close to the membrane surface in the filtration unit. According to the study observations, membrane cleaning efficiency is expected to be improved at higher US power and lower US frequency due to the higher energy release to the system by increasing the number of bubbles or growing their size during oscillation (optimum condition is expected to be at 20 kHz and 100 W).

Keywords: bubble dynamics, cavitational bubbles, membrane fouling, ultrasonic cleaning

Procedia PDF Downloads 121
274 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions

Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia

Abstract:

The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.

Keywords: InAs-InP, electrons concentration, irradiation, solid solutions

Procedia PDF Downloads 169
273 Effect of Resistance Exercise on Hypothalamic-Pituitary-Gonadal Axis

Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi

Abstract:

Abstract: Introduction: Physical activity may be related to male reproductive function by affecting on thehypothalamic-pituitary-gonadal(HPG) axis. Our aim was to determine the effects of 6 weeks resistance exercise on reproductive hormones, HPG axis. The hypothalamic-pituitary-gonadal (HPG) axis refers tothe effects of endocrine glands in three-level including (i) the hypothalamic releasing hormone GnRH, which is synthesized in in a small heterogenous neuronal population and released in a pulsatile fashion, (ii) the anterior pituitary hormones, follicle-stimulating hormone(FSH) and luteinizing hormone (LH) and (iii) the gonadal hormones, which include both steroid such as testosterone (T), estradiol and progesterone and peptide hormones (such as inhibin). Hormonal changes that create a more anabolic environment have been suggested to contribute to the adaptation to strength exercise. Physical activity has an extensive impact on male reproductive function depending upon the intensity and duration of the exercise and the fitness level of the individual. However, strenuous exercise represents a physical stress and inflammation changed that challenges homeostasis. Materials and methods: Sixteen male volunteered were included in a 6-week control period followed by 6 weeks of resistance training (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. intensity of training loading was 60%-75% of one maximum repetition. Participants performed 3 sets of 10 repetitions. Rest periods were two min between exercises and sets. Start with warm up exercises include: The muscles relax and stretch the body, which was for 10 minutes. Body composition, VO2max and the circulating level of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone binding globulin (SHBG) and inhibin B measured prior and post 6-week intervention. The hormonal levels of each serum sample were measured using commercially available ELISA kits. Analysis of anthropometrical data and hormonal level were compared using the independent samples t- test in both groups and using SPSS (version 19). P ≤ 0.05 was considered statistically significant. Results: For muscle strength, both lower- and upper-body strength were increased significantly. Aerobic fitness level improved in trained participant from 39.4 ± 5.6 to 41.9 ± 5.3 (P = 0.002). fT concentration rise progressively in the trained group and was significantly greater than those in the control group (P = 0.000). By the end of the 6-week resistance training, serum SHBG significantly increased in the trained group compared with the control group (P = 0.013). In response to resistance training, LH, FSH and inhibin B were not significantly changed. Discussion: According to our finfings, 6 weeks of resistance training induce fat loss without any changes in body weight and BMI. A decline of 25.3% in percentage of body fat with statiscally same weight was due to increase in muscle mass that happened during resistance exercise periods . Six weeks of resistance training resulted in significant improvement in BF%, VO2max and increasing strength and the level of fT and SHBG.

Keywords: resistance, hypothalamic, pituitary, gonadal axis

Procedia PDF Downloads 379
272 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 318
271 The Relevance of Community Involvement in Flood Risk Governance Towards Resilience to Groundwater Flooding. A Case Study of Project Groundwater Buckinghamshire, UK

Authors: Claude Nsobya, Alice Moncaster, Karen Potter, Jed Ramsay

Abstract:

The shift in Flood Risk Governance (FRG) has moved away from traditional approaches that solely relied on centralized decision-making and structural flood defenses. Instead, there is now the adoption of integrated flood risk management measures that involve various actors and stakeholders. This new approach emphasizes people-centered approaches, including adaptation and learning. This shift to a diversity of FRG approaches has been identified as a significant factor in enhancing resilience. Resilience here refers to a community's ability to withstand, absorb, recover, adapt, and potentially transform in the face of flood events. It is argued that if the FRG merely focused on the conventional 'fighting the water' - flood defense - communities would not be resilient. The move to these people-centered approaches also implies that communities will be more involved in FRG. It is suggested that effective flood risk governance influences resilience through meaningful community involvement, and effective community engagement is vital in shaping community resilience to floods. Successful community participation not only uses context-specific indigenous knowledge but also develops a sense of ownership and responsibility. Through capacity development initiatives, it can also raise awareness and all these help in building resilience. Recent Flood Risk Management (FRM) projects have thus had increasing community involvement, with varied conceptualizations of such community engagement in the academic literature on FRM. In the context of overland floods, there has been a substantial body of literature on Flood Risk Governance and Management. Yet, groundwater flooding has gotten little attention despite its unique qualities, such as its persistence for weeks or months, slow onset, and near-invisibility. There has been a little study in this area on how successful community involvement in Flood Risk Governance may improve community resilience to groundwater flooding in particular. This paper focuses on a case study of a flood risk management project in the United Kingdom. Buckinghamshire Council is leading Project Groundwater, which is one of 25 significant initiatives sponsored by England's Department for Environment, Food and Rural Affairs (DEFRA) Flood and Coastal Resilience Innovation Programme. DEFRA awarded Buckinghamshire Council and other councils 150 million to collaborate with communities and implement innovative methods to increase resilience to groundwater flooding. Based on a literature review, this paper proposes a new paradigm for effective community engagement in Flood Risk Governance (FRG). This study contends that effective community participation can have an impact on various resilience capacities identified in the literature, including social capital, institutional capital, physical capital, natural capital, human capital, and economic capital. In the case of social capital, for example, successful community engagement can influence social capital through the process of social learning as well as through developing social networks and trust values, which are vital in influencing communities' capacity to resist, absorb, recover, and adapt. The study examines community engagement in Project Groundwater using surveys with local communities and documentary analysis to test this notion. The outcomes of the study will inform community involvement activities in Project Groundwater and may shape DEFRA policies and guidelines for community engagement in FRM.

Keywords: flood risk governance, community, resilience, groundwater flooding

Procedia PDF Downloads 40
270 An Alternative to Problem-Based Learning in a Post-Graduate Healthcare Professional Programme

Authors: Brogan Guest, Amy Donaldson-Perrott

Abstract:

The Master’s of Physician Associate Studies (MPAS) programme at St George’s, University of London (SGUL), is an intensive two-year course that trains students to become physician associates (PAs). PAs are generalized healthcare providers who work in primary and secondary care across the UK. PA programmes face the difficult task of preparing students to become safe medical providers in two short years. Our goal is to teach students to develop clinical reasoning early on in their studies and historically, this has been done predominantly though problem-based learning (PBL). We have had an increase concern about student engagement in PBL and difficulty recruiting facilitators to maintain the low student to facilitator ratio required in PBL. To address this issue, we created ‘Clinical Application of Anatomy and Physiology (CAAP)’. These peer-led, interactive, problem-based, small group sessions were designed to facilitate students’ clinical reasoning skills. The sessions were designed using the concept of Team-Based Learning (TBL). Students were divided into small groups and each completed a pre-session quiz consisting of difficult questions devised to assess students’ application of medical knowledge. The quiz was completed in small groups and they were not permitted access of external resources. After the quiz, students worked through a series of openended, clinical tasks using all available resources. They worked at their own pace and the session was peer-led, rather than facilitator-driven. For a group of 35 students, there were two facilitators who observed the sessions. The sessions utilised an infinite space whiteboard software. Each group member was encouraged to actively participate and work together to complete the 15-20 tasks. The session ran for 2 hours and concluded with a post-session quiz, identical to the pre-session quiz. We obtained subjective feedback from students on their experience with CAAP and evaluated the objective benefit of the sessions through the quiz results. Qualitative feedback from students was generally positive with students feeling the sessions increased engagement, clinical understanding, and confidence. They found the small group aspect beneficial and the technology easy to use and intuitive. They also liked the benefit of building a resource for their future revision, something unique to CAAP compared to PBL, which out students participate in weekly. Preliminary quiz results showed improvement from pre- and post- session; however, further statistical analysis will occur once all sessions are complete (final session to run December 2022) to determine significance. As a post-graduate healthcare professional programme, we have a strong focus on self-directed learning. Whilst PBL has been a mainstay in our curriculum since its inception, there are limitations and concerns about its future in view of student engagement and facilitator availability. Whilst CAAP is not TBL, it draws on the benefits of peer-led, small group work with pre- and post- team-based quizzes. The pilot of these sessions has shown that students are engaged by CAAP, and they can make significant progress in clinical reasoning in a short amount of time. This can be achieved with a high student to facilitator ratio.

Keywords: problem based learning, team based learning, active learning, peer-to-peer teaching, engagement

Procedia PDF Downloads 60
269 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress

Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz

Abstract:

World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.

Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity

Procedia PDF Downloads 198
268 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 219
267 Leveraging the HDAC Inhibitory Pharmacophore to Construct Deoxyvasicinone Based Tractable Anti-Lung Cancer Agent and pH-Responsive Nanocarrier

Authors: Ram Sharma, Esha Chatterjee, Santosh Kumar Guru, Kunal Nepali

Abstract:

A tractable anti-lung cancer agent was identified via the installation of a Ring C expanded synthetic analogue of the alkaloid vasicinone [7,8,9,10-tetrahydroazepino[2,1-b] quinazolin-12(6H)-one (TAZQ)] as a surface recognition part in the HDAC inhibitory three-component model. Noteworthy to mention that the candidature of TAZQ was deemed suitable for accommodation in HDAC inhibitory pharmacophore as per the results of the fragment recruitment process conducted by our laboratory. TAZQ was pinpointed through the fragment screening program as a synthetically flexible fragment endowed with some moderate cell growth inhibitory activity against the lung cancer cell lines, and it was anticipated that the use of the aforementioned fragment to generate hydroxamic acid functionality (zinc-binding motif) bearing HDAC inhibitors would boost the antitumor efficacy of TAZQ. Consistent with our aim of applying epigenetic targets to the treatment of lung cancer, a strikingly potent anti-lung cancer scaffold (compound 6) was pinpointed through a series of in-vitro experiments. Notably, the compounds manifested a magnificent activity profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80 - 0.96 µM), and the effects were found to be mediated through preferential HDAC6 inhibition (IC50 = 12.9 nM). In addition to HDAC6 inhibition, the compounds also elicited HDAC1 and HDAC3 inhibitory activity with an IC50 value of 49.9 nM and 68.5 nM, respectively. The HDAC inhibitory ability of compound 6 was also confirmed from the results of the western blot experiment that revealed its potential to decrease the expression levels of HDAC isoforms (HDAC1, HDAC3, and HDAC6). Noteworthy to mention that complete downregulation of the HDAC6 isoform was exerted by compound 6 at 0.5 and 1 µM. Moreover, in another western blot experiment, treatment with hydroxamic acid 6 led to upregulation of H3 acK9 and α-Tubulin acK40 levels, ascertaining its inhibitory activity toward both the class I HDACs and Class II B HDACs. The results of other assays were also encouraging as treatment with compound 6 led to the suppression of the colony formation ability of A549 cells, induction of apoptosis, and increase in autophagic flux. In silico studies led us to rationalize the results of the experimental assay, and some key interactions of compound 6 with the amino acid residues of HDAC isoforms were identified. In light of the impressive activity spectrum of compound 6, a pH-responsive nanocarrier (hyaluronic acid-compound 6 nanoparticles) was prepared. The dialysis bag approach was used for the assessment of the nanoparticles under both normal and acidic circumstances, and the pH-sensitive nature of hyaluronic acid-compound 6 nanoparticles was confirmed. Delightfully, the nanoformulation was devoid of cytotoxicity against the L929 mouse fibroblast cells (normal settings) and exhibited selective cytotoxicity towards the A549 lung cancer cell lines. In a nutshell, compound 6 appears to be a promising adduct, and a detailed investigation of this compound might yield a therapeutic for the treatment of lung cancer.

Keywords: HDAC inhibitors, lung cancer, scaffold, hyaluronic acid, nanoparticles

Procedia PDF Downloads 68
266 Autophagy Promotes Vascular Smooth Muscle Cell Migration in vitro and in vivo

Authors: Changhan Ouyang, Zhonglin Xie

Abstract:

In response to proatherosclerotic factors such as oxidized lipids, or to therapeutic interventions such as angioplasty, stents, or bypass surgery, vascular smooth muscle cells (VSMCs) migrate from the media to the intima, resulting in intimal hyperplasia, restenosis, graft failure, or atherosclerosis. These proatherosclerotic factors also activate autophagy in VSMCs. However, the functional role of autophagy in vascular health and disease remains poorly understood. In the present study, we determined the role of autophagy in the regulation of VSMC migration. Autophagy activity in cultured human aortic smooth muscle cells (HASMCs) and mouse carotid arteries was measured by Western blot analysis of microtubule-associated protein 1 light chain 3 B (LC3B) and P62. The VSMC migration was determined by scratch wound assay and transwell migration assay. Ex vivo smooth muscle cell migration was determined using aortic ring assay. The in vivo SMC migration was examined by staining the carotid artery sections with smooth muscle alpha actin (alpha SMA) after carotid artery ligation. To examine the relationship between autophagy and neointimal hyperplasia, C57BL/6J mice were subjected to carotid artery ligation. Seven days after injury, protein levels of Atg5, Atg7, Beclin1, and LC3B drastically increased and remained higher in the injured arteries three weeks after the injury. In parallel with the activation of autophagy, vascular injury-induced neointimal hyperplasia as estimated by increased intima/media ratio. The en face staining of carotid artery showed that vascular injury enhanced alpha SMA staining in the intimal cells as compared with the sham operation. Treatment of HASMCs with platelet-derived growth factor (PDGF), one of the major factors for vascular remodeling in response to vascular injury, increased Atg7 and LC3 II protein levels and enhanced autophagosome formation. In addition, aortic ring assay demonstrated that PDGF treated aortic rings displayed an increase in neovessel formation compared with control rings. Whole mount staining for CD31 and alpha SMA in PDGF treated neovessels revealed that the neovessel structures were stained by alpha SMA but not CD31. In contrast, pharmacological and genetic suppression of autophagy inhibits VSMC migration. Especially, gene silencing of Atg7 inhibited VSMC migration induced by PDGF. Furthermore, three weeks after ligation, markedly decreased neointimal formation was found in mice treated with chloroquine, an inhibitor of autophagy. Quantitative morphometric analysis of the injured vessels revealed a marked reduction in the intima/media ratio in the mice treated with chloroquine. Conclusion: Autophagy activation increases VSMC migration while autophagy suppression inhibits VSMC migration. These findings suggest that autophagy suppression may be an important therapeutic strategy for atherosclerosis and intimal hyperplasia.

Keywords: autophagy, vascular smooth muscle cell, migration, neointimal formation

Procedia PDF Downloads 286
265 The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study

Authors: Yaser S. Kishawi, Sadi R. Ali

Abstract:

Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.

Keywords: soil aquifer treatment, recovery reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 181
264 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 240
263 Innovative Technologies of Distant Spectral Temperature Control

Authors: Leonid Zhukov, Dmytro Petrenko

Abstract:

Optical thermometry has no alternative in many cases of industrial most effective continuous temperature control. Classical optical thermometry technologies can be used on available for pyrometers controlled objects with stable radiation characteristics and transmissivity of the intermediate medium. Without using temperature corrections, it is possible in the case of a “black” body for energy pyrometry and the cases of “black” and “grey” bodies for spectral ratio pyrometry or with using corrections – for any colored bodies. Consequently, with increasing the number of operating waves, optical thermometry possibilities to reduce methodical errors significantly expand. That is why, in recent 25-30 years, research works have been reoriented on more perfect spectral (multicolor) thermometry technologies. There are two physical material substances, i.e., substance (controlled object) and electromagnetic field (thermal radiation), to be operated in optical thermometry. Heat is transferred by radiation; therefore, radiation has the energy, entropy, and temperature. Optical thermometry was originating simultaneously with the developing of thermal radiation theory when the concept and the term "radiation temperature" was not used, and therefore concepts and terms "conditional temperatures" or "pseudo temperature" of controlled objects were introduced. They do not correspond to the physical sense and definitions of temperature in thermodynamics, molecular-kinetic theory, and statistical physics. Launched by the scientific thermometric society, discussion about the possibilities of temperature measurements of objects, including colored bodies, using the temperatures of their radiation is not finished. Are the information about controlled objects transferred by their radiation enough for temperature measurements? The positive and negative answers on this fundamental question divided experts into two opposite camps. Recent achievements of spectral thermometry develop events in her favour and don’t leave any hope for skeptics. This article presents the results of investigations and developments in the field of spectral thermometry carried out by the authors in the Department of Thermometry and Physics-Chemical Investigations. The authors have many-year’s of experience in the field of modern optical thermometry technologies. Innovative technologies of optical continuous temperature control have been developed: symmetric-wave, two-color compensative, and based on obtained nonlinearity equation of spectral emissivity distribution linear, two-range, and parabolic. Тhe technologies are based on direct measurements of physically substantiated and proposed by Prof. L. Zhukov, radiation temperatures with the next calculation of the controlled object temperature using this radiation temperatures and corresponding mathematical models. Тhe technologies significantly increase metrological characteristics of continuous contactless and light-guide temperature control in energy, metallurgical, ceramic, glassy, and other productions. For example, under the same conditions, the methodical errors of proposed technologies are less than the errors of known spectral and classical technologies in 2 and 3-13 times, respectively. Innovative technologies provide quality products obtaining at the lowest possible resource-including energy costs. More than 600 publications have been published on the completed developments, including more than 100 domestic patents, as well as 34 patents in Australia, Bulgaria, Germany, France, Canada, the USA, Sweden, and Japan. The developments have been implemented in the enterprises of USA, as well as Western Europe and Asia, including Germany and Japan.

Keywords: emissivity, radiation temperature, object temperature, spectral thermometry

Procedia PDF Downloads 74
262 Tensile Behaviours of Sansevieria Ehrenbergii Fiber Reinforced Polyester Composites with Water Absorption Time

Authors: T. P. Sathishkumar, P. Navaneethakrishnan

Abstract:

The research work investigates the variation of tensile properties for the sansevieria ehrenbergii fiber (SEF) and SEF reinforced polyester composites respect to various water absorption time. The experiments were conducted according to ATSM D3379-75 and ASTM D570 standards. The percentage of water absorption for composite specimens was measured according to ASTM D570 standard. The fiber of SE was cut in to 30 mm length for preparation of the composites. The simple hand lay-up method followed by compression moulding process adopted to prepare the randomly oriented SEF reinforced polyester composites at constant fiber weight fraction of 40%. The surface treatment was done on the SEFs with various chemicals such as NaOH, KMnO4, Benzoyl Peroxide, Benzoyl Chloride and Stearic Acid before preparing the composites. NaOH was used for pre-treatment of all other chemical treatments. The morphology of the tensile fractured specimens studied using the Scanning Electron Microscopic. The tensile strength of the SEF and SEF reinforced polymer composites were carried out with various water absorption time such as 4, 8, 12, 16, 20 and 24 hours respectively. The result shows that the tensile strength was drop off with increase in water absorption time for all composites. The highest tensile property of raw fiber was found due to lowest moistures content. Also the chemical bond between the cellulose and cementic materials such as lignin and wax was highest due to lowest moisture content. Tensile load was lowest and elongation was highest for the water absorbed fibers at various water absorption time ranges. During this process, the fiber cellulose inhales the water and expands the primary and secondary fibers walls. This increases the moisture content in the fibers. Ultimately this increases the hydrogen cation and the hydroxide anion from the water. In tensile testing, the water absorbed fibers shows highest elongation by stretching of expanded cellulose walls and the bonding strength between the fiber cellulose is low. The load carrying capability was stable at 20 hours of water absorption time. This could be directly affecting the interfacial bonding between the fiber/matrix and composite strength. The chemically treated fibers carry higher load and lower elongation which is due to removal of lignin, hemicellulose and wax content. The water time absorption decreases the tensile strength of the composites. The chemically SEF reinforced composites shows highest tensile strength compared to untreated SEF reinforced composites. This was due to highest bonding area between the fiber/matrix. This was proven in the morphology at the fracture zone of the composites. The intra-fiber debonding was occurred by water capsulation in the fiber cellulose. Among all, the tensile strength was found to be highest for KMnO4 treated SEF reinforced composite compared to other composites. This was due to better interfacial bonding between the fiber-matrix compared to other treated fiber composites. The percentage of water absorption of composites increased with time of water absorption. The percentage weight gain of chemically treated SEF composites at 4 hours to zero water absorption are 9, 9, 10, 10.8 and 9.5 for NaOH, BP, BC, KMnO4 and SA respectively. The percentage weight gain of chemically treated SEF composites at 24 hours to zero water absorption 5.2, 7.3, 12.5, 16.7 and 13.5 for NaOH, BP, BC, KMnO4 and SA respectively. Hence the lowest weight gain was found for KMnO4 treated SEF composites by highest percentage with lowest water uptake. However the chemically treated SEF reinforced composites is possible materials for automotive application like body panels, bumpers and interior parts, and household application like tables and racks etc.

Keywords: fibres, polymer-matrix composites (PMCs), mechanical properties, scanning electron microscopy (SEM)

Procedia PDF Downloads 392
261 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 60
260 Evaluation of Airborne Particulate Matter Early Biological Effects in Children with Micronucleus Cytome Assay: The MAPEC_LIFE Project

Authors: E. Carraro, Sa. Bonetta, Si. Bonetta, E. Ceretti, G. C. V. Viola, C. Pignata, S. Levorato, T. Salvatori, S. Vannini, V. Romanazzi, A. Carducci, G. Donzelli, T. Schilirò, A. De Donno, T. Grassi, S. Bonizzoni, A. Bonetti, G. Gilli, U. Gelatti

Abstract:

In 2013, air pollution and particulate matter were classified as carcinogenic to human by the IARC. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2015. A percentage between 17-30 of the EU urban population lives in areas where the EU air quality 24-hour limit value for PM10 is exceeded. Many studies have found a consistent association between exposure to PM and the incidence and mortality for some chronic diseases (i.e. lung cancer, cardiovascular diseases). Among the mechanisms responsible for these adverse effects, genotoxic damage is of particular concern. Children are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme (LIFE12 ENV/IT/000614) which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. This work is focused on the micronuclei frequency in child buccal cells in association with airborne PM levels taking into account the influence of other factors associated with the lifestyle of children. The micronucleus test was performed in exfoliated buccal cells of 6–8 years old children from 5 Italian towns with different air pollution levels. Data on air quality during the study period were obtained from the Regional Agency for Environmental Protection. A questionnaire administered to children’s parents was used to obtain details on family socio-economic status, children health condition, exposures to other indoor and outdoor pollutants (i.e. passive smoke) and life-style, with particular reference to eating habits. During the first sampling campaign (winter 2014-15) 1315 children were recruited and sampled for Micronuclei test in buccal cells. In the sampling period the levels of the main pollutants and PM10 were, as expected, higher in the North of Italy (PM10 mean values 62 μg/m3 in Torino and 40 μg/m3 in Brescia) than in the other towns (Pisa, Perugia, Lecce). A higher Micronucleus frequency in buccal cells of children was found in Brescia (0.6/1000 cells) than in the other towns (range 0.3-0.5/1000 cells). The statistical analysis underlines a relation of the micronuclei frequency with PM concentrations, traffic level near child residence, and level of education of parents. The results suggest that, in addition to air pollution exposure, some other factors, related to lifestyle or further exposures, may influence micronucleus frequency and cellular response to air pollutants.

Keywords: air pollution, buccal cells, children, micronucleus cytome assay

Procedia PDF Downloads 228