Search results for: in-situ molten Al infiltration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 388

Search results for: in-situ molten Al infiltration

88 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques

Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair

Abstract:

Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.

Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting

Procedia PDF Downloads 334
87 Emblica officinalis Fruit Extract Ameliorates Cisplatin-Induced Nephrotoxicity in Experimental Rats

Authors: Prerna Kalra, Surender Singh

Abstract:

Cisplatin is the most common chemotherapeutic agent used in different solid tumors, but its main limiting factor is dose-dependent nephrotoxicity by generating reactive oxygen species, by stimulating inflammatory and apoptotic pathways. Additional adjuvant therapies to decrease the toxicity of this chemotherapeutic drug are essential. This study was designed to evaluate the protective role of Emblica officinalis Geartn (Indian gooseberry) against cisplatin induced nephrotoxicity. Emblica officinalis was orally administered to Wistar rats (n=6) for 10 days in 50, 100 and 200mg/kg body weight. On day 7, 8mg/kg of cisplatin was administered intra-peritoneally to rats in all groups. Serum creatinine, blood urea nitrogen and antioxidant levels were measured on day10. The renal damage was evaluated by histopathological and transmission electron microscopy. We found that 200mg/kg dose of Emblica officinalis significantly inhibited the elevation of biochemical parameters i.e. serum creatinine, blood urea nitrogen, oxidant stress marker (malondialdehyde) and increased the reduced levels of antioxidant marker (endogenous glutathione and superoxide dismutase). Cisplatin treated rats have shown acute tubular necrosis and infiltration of inflammatory cells in rat kidney which was reversed after treating the animals with Emblica officinalis in the treatment group. In ultrastructural changes cisplatin treated group showed the damaged mitochondria (M) with dissolved cristae and large number of lysosomes (L) and vacuole (V) formation in tubular epithelial cells. EOE administered group showed visible cristae formation and sign of autophagy vacuoles at a dose of 200mg/kg. Further in-silico studies revealed that ellagic acid is responsible for its nephroprotective effect. The above findings conclude that the Emblica officinalis may be used as an adjuvant therapy in cisplatin induced nephrotoxicity.

Keywords: antioxidant, cisplatin, Emblica officinalis, in silico, nephrotoxicity

Procedia PDF Downloads 262
86 MR Enterography Findings in Pediatric and Adult Patients with Crohn's Disease

Authors: Karolina Siejka, Monika Piekarska, Monika Zbroja, Weronika Cyranka, Maryla Kuczynska, Magdalena Grzegorczyk, Malgorzata Nowakowska, Agnieszka Brodzisz, Magdalena Maria Wozniak

Abstract:

Crohn’s disease is one of chronic inflammatory bowel diseases. It is increasing in prevalence worldwide, especially with young people. The disease usually occurs in the second to the fourth decade of life. Traditionally is diagnosed by clinical indicates, endoscopic, and histological findings. Magnetic Resonance Enterography (MRE) can demonstrate mural and extramural inflammatory signs and complications, which make it a valuable diagnostic modality. The study included 76 adults and 36 children diagnosed with Crohn’s disease. Each patient underwent MRE with intravenous administration of a contrast agent. All the studies were performed using Siemens Aera 1.5T scanner according to a local study protocol. Whenever applicable, MR Enterography findings were verified with endoscopy. Forty adults and all 36 children had an active phase of Crohn’s disease; five adults had a chronic phase of the disease; one adult had both chronic and active inflammatory features. Thirty adults have no sings of pathology. In both adult and pediatric groups the most commonly observed manifestation of active disease was thickened edematous ileum wall (26 adults and 36 children). Adults had Bauhin’s valve edema in 58% cases (n=23) and mesenteric changes in 34% cases (n=9). To compare, 32 children had Bauhin’s valve edema (89%) and, in 23 cases, was found inflammatory infiltration of the peri-intestinal fat (64%). The involvement of the large intestine was more common among children (100%). Complications of Crohn’s disease were found commonly in adults (40% of adults, 22% of children). There were observed 18 fistulas (14 adults, four children) and six abscesses (2 adults, four children). MRE is a reliable method in the evaluation of Crohn’s disease activity, especially of its complications. The lack of radiations makes MRE well-tolerated modality, which can be often repeated, particularly in young patients. The disease had different medical sings depending on age – children often had a more active inflammatory process, but there were more complications in the adult group.

Keywords: Crohn's disease, diagnostics, inflammatory bowel disease, magnetic resonance enterography, MRE

Procedia PDF Downloads 150
85 Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests

Authors: Rahila Yilangai, Sonali Saha, Amartya Saha, Augustine Ezealor

Abstract:

Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region.

Keywords: evapotranspiration, gallery forest, rainfall, streamflow, transpiration

Procedia PDF Downloads 138
84 Dynamic Model for Forecasting Rainfall Induced Landslides

Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan

Abstract:

Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.

Keywords: factor of safety, geographic information system, hydrological model, slope stability

Procedia PDF Downloads 392
83 The Impact of Urbanisation on Sediment Concentration of Ginzo River in Katsina City, Katsina State, Nigeria

Authors: Ahmed A. Lugard, Mohammed A. Aliyu

Abstract:

This paper studied the influence of urban development and its accompanied land surface transformation on sediment concentration of a natural flowing Ginzo river across the city of Katsina. An opposite twin river known as Tille river, which is less urbanized, was used to compare the result of the sediment concentration of the Ginzo River in order to ascertain the consequences of the urban area on impacting the sediment concentration. An instrument called USP 61 point integrating cable way sampler described by Gregory and walling (1973), was used to collect the suspended sediment samples in the wet season months of June, July, August and September. The result obtained in the study shows that only the sample collected at the peripheral site of the city, which is mostly farmland areas resembles the results in the four sites of Tille river, which is the reference stream in the study. It was found to be only + 10% different from one another, while at the other three sites of the Ginzo which are highly urbanized the disparity ranges from 35-45% less than what are obtained at the four sites of Tille River. In the generalized assessment, the t-distribution result applied to the two set of data shows that there is a significant difference between the sediment concentration of urbanized River Ginzo and that of less urbanized River Tille. The study further discovered that the less sediment concentration found in urbanized River Ginzo is attributed to concretization of surfaced, tarred roads, concretized channeling of segments of the river including the river bed and reserved open grassland areas, all within the catchments. The study therefore concludes that urbanization affect not only the hydrology of an urbanized river basin, but also the sediment concentration which is a significant aspect of its geomorphology. This world certainly affects the flood plain of the basin at a certain point which might be a suitable land for cultivation. It is recommended here that further studies on the impact of urbanization on River Basins should focus on all elements of geomorphology as it has been on hydrology. This would make the work rather complete as the two disciplines are inseparable from each other. The authorities concern should also trigger a more proper environmental and land use management policies to arrest the menace of land degradation and related episodic events.

Keywords: environment, infiltration, river, urbanization

Procedia PDF Downloads 289
82 Surface Water Flow of Urban Areas and Sustainable Urban Planning

Authors: Sheetal Sharma

Abstract:

Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.

Keywords: runoff, built up, roughness, recharge, temporal changes

Procedia PDF Downloads 253
81 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester

Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski

Abstract:

Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.

Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex

Procedia PDF Downloads 417
80 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 103
79 Hydrochemistry and Stable Isotopes (ẟ18O and ẟ2H) Tools Applied to the Study of Karst Aquifers in Wonderfonteinspruit Valley: North West, South Africa

Authors: Naziha Mokadem, Rainier Dennis, Ingrid Dennis

Abstract:

In South Africa, Karst aquifers are receiving greater attention since they provide large supplies of water which is used for domestic and agricultural purposes as well as for industry. Accordingly, a better insight into the origin of water mineralization and the geochemical processes controlling the recharge of the aquifer is crucial. Analyses of geochemical and environmental isotopes could lead to relevant information regarding karstification and infiltration processes, groundwater chemistry and isotopy. A study was conducted in a typical karst landscape of Wonderfonteinspruit catchment, also known as Wonderfonteinspruit Valley in North-western -South Africa. Furthermore, fifty-two samples were collected from (35 boreholes, 5 surface waters, 4 Dams, 4 springs, 1 canal, 2 pipelines, 1 cave) within the study area for hydrochemistry and 2H and 18O analysis. The determination of the anions (Cl-, SO42-, NO2, NO3-) were performed using Metrohm ion chromatography, model: 761 compact IC, with a precision of ± 0.001 mg/l. While, the cations (Na+, Mg2+, K+, Ca2+) were determined using Metrohm ion chromatography, Model: ICP-MS 7500 series. The alkalinity (Alk) was determined by pH meter with volumetric titration using HCL to pH 4.5; 4.2; and 8.2. In addition, 18O and 2H relative to the Vienna-Standard Mean Ocean Water (RVSMOW), were determined by picarro L2130-I Isotopic H2O (Cavity Ringdown laser spectrometer, Picarro Ltd). The hydrochemical analysis of Wonderfonteinspruit groundwater showed a dominance of the cations Ca-Mg and the anion HCO3. Piper diagram shows that the groundwater sample of study area is characterized by four hydrochemical facies: Two main groups: (1) Ca–Mg–Cl–SO4; (2) Ca–Mg–HCO3 and two minor groups: (3) Ca–Mg–Cl; (4) Na–K–HCO3. The majority of boreholes of Malmani (Transvaal Supergroup) aquifer are plotted in Ca–Mg–HCO3.Oxygen-18 (18O‰SMOW) and deuterium (D‰SMOW) isotopic data indicate that the aquifer’s recharge is influenced by two phenomena; precipitation rates for most of the samples and river flow (Wonderfonteinspruit, Middelvieinspruit, Renfonteinspruit) for some samples.

Keywords: South Africa, Wonderfonteinspruit Valley, isotopic, hydrochemical, carbonate aquifers

Procedia PDF Downloads 128
78 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 178
77 Smart Automated Furrow Irrigation: A Preliminary Evaluation

Authors: Jasim Uddin, Rod Smith, Malcolm Gillies

Abstract:

Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.

Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control

Procedia PDF Downloads 420
76 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 130
75 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 107
74 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities

Authors: Abdelghani Qadem

Abstract:

Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.

Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development

Procedia PDF Downloads 23
73 The Climate Change and Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with impacts of climate change with the main emphasis on land degradation, agriculture and forestry management in the landscape. Land degradation, due to adverse effect of farmers activities, as a result of inappropriate conventional technologies, was a major issue in the Czech Republic during the 20th century and will remain for solving in the 21st century. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Land degradation through soil degradation is causing losses on crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water-holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Water erosion occurs on fields with row crops (maize, sunflower), especially during the rainfall period from April to October. Recently there is a serious problem of greatly expanded production of biofuels and bioenergy from field crops. The result is accelerated soil degradation. The damages (on and off- site) are greater than the benefits. An effective soil conservation requires an appropriate complex system of measures in the landscape. They are also important to continue to develop new sophisticated methods and technologies for decreasing land degradation. The system of soil conservation solving land degradation depend on the ability and the willingness of land users to apply them. When we talk about land degradation, it is not just a technical issue but also an economic and political issue. From a technical point of view, we have already made many positive steps, but for successful solving the problem of land degradation is necessary to develop suitable economic and political tools to increase the willingness and ability of land users to adopt conservation measures.

Keywords: land degradation, soil erosion, soil conservation, climate change

Procedia PDF Downloads 348
72 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 80
71 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 132
70 Mapping and Characterizing the Jefoure Cultural Landscape Which Provides Multiple Ecosystem Services to the Gurage People in Ethiopia

Authors: M. Achemo, O. Saito

Abstract:

Jefoure land use system is one of the traditional landscape human settlement patterns, and it is a cultural design and peculiar art of the people of Gurage in Ethiopia via which houses and trees flank roads left and right. Assessment of the multiple benefits of the traditional road that benefit society and development could enhance the understanding of the land use planners and decision makers to pay attention while planning and managing the land use system. Recent trend shows that the Jefoure land use is on the threshold of change as a result of flourishing road networks, overgrazing, and agricultural expansion. This study aimed to evaluate the multiple ecosystem services provided by the Jefoure land use system after characterization of the socio-ecological landscape. Information was compiled from existing data sources such as ordnance survey maps, aerial photographs, recent high resolution satellite imageries, designated questionnaires and interviews, and local authority contacts. The result generated scientific data on the characteristics, ecosystem services provision, and drivers of changes. The cultural landscape has novel characteristics and providing multiple ecosystem services to the community for long period of time. It is serving as road for humans, livestock and vehicles, habitat for plant species, regulating local temperature, climate, runoff and infiltration, and place for meeting, conducting religious and spiritual activities, holding social events such as marriage and mourning, playing station for children and court for football and other traditional games. As a result of its aesthetic quality and scenic beauty, it is considered as recreational place for improving mental and physical health. The study draws relevant land use planning and management solution in the improvement of socio-ecological resilience in the Jefoure land use system. The study suggests the landscape needs to be registrar as heritage site for recognizing the wisdom of the community and enhancing the conservation mechanisms.

Keywords: cultural landscape, ecosystem services, Gurage, Jefoure

Procedia PDF Downloads 93
69 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 128
68 Comparative Morphometric Analysis of Ambardi and Mangari Watersheds of Kadvi and Kasari River Sub-Basins in Kolhapur District, Maharashtra, India: Using Geographical Information System (GIS)

Authors: Chandrakant Gurav, Md. Babar

Abstract:

In the present study, an attempt is made to delineate the comparative morphometric analysis of Ambardi and Mangari watersheds of Kadvi and Kasari rivers sub-basins, Kolhapur District, Maharashtra India, using Geographical Information System (GIS) techniques. GIS is a computer assisted information method to store, analyze and display spatial data. Both the watersheds originate from Masai plateau of Jotiba- Panhala Hill range in Panhala Taluka of Kolhapur district. Ambardi watersheds cover 42.31 Sq. km. area and occur in northern hill slope, whereas Mangari watershed covers 54.63 Sq. km. area and occur on southern hill slope. Geologically, the entire study area is covered by Deccan Basaltic Province (DBP) of late Cretaceous to early Eocene age. Laterites belonging to late Pleistocene age also occur in the top of the hills. The objective of the present study is to carry out the morphometric parameters of watersheds, which occurs in differing slopes of the hill. Morphometric analysis of Ambardi watershed indicates it is of 4th order stream and Mangari watershed is of 5th order stream. Average bifurcation ratio of both watersheds is 5.4 and 4.0 showing that in both the watersheds streams flow from homogeneous nature of lithology and there is no structural controlled in development of the watersheds. Drainage density of Ambardi and Mangari watersheds is 3.45 km/km2 and 3.81 km/km2 respectively, and Stream Frequency is 4.51 streams/ km2 and 5.97 streams/ km2, it indicates that high drainage density and high stream frequency is governed by steep slope and low infiltration rate of the area for groundwater recharge. Textural ratio of both the watersheds is 6.6 km-1 and 9.6 km-1, which indicates that the drainage texture is fine to very fine. Form factor, circularity ratio and elongation ratios of the Ambardi and Mangari watersheds shows that both the watersheds are elongated in shape. The basin relief of Ambardi watershed is 447 m, while Mangari is 456 m. Relief ratio of Ambardi is 0.0428 and Mangari is 0.040. The ruggedness number of Ambardi is 1.542 and Mangari watershed is 1.737. The ruggedness number of both the watersheds is high which indicates the relief and drainage density is high.

Keywords: Ambardi, Deccan basalt, GIS, morphometry, Mangari, watershed

Procedia PDF Downloads 273
67 Enhancing Cooperation Between LEAs and Citizens: The INSPEC2T Approach

Authors: George Leventakis, George Kokkinis, Nikos Moustakidis, George Papalexandratos, Ioanna Vasiliadou

Abstract:

Enhancing the feeling of public safety and crime prevention are tasks customarily assigned to the Police. Police departments have, however, recognized that traditional ways of policing methods are becoming obsolete; Community Policing (CP) philosophy; however, when applied appropriately, leads to seamless collaboration between various stakeholders like the Police, NGOs and the general public and provides the opportunity to identify risks, assist in solving problems of crime, disorder, safety and crucially contribute to improving the quality of life for everyone in a community. Social Media, on the other hand, due to its high level of infiltration in modern life, constitutes a powerful mechanism which offers additional and direct communication channels to reach individuals or communities. These channels can be utilized to improve the citizens’ perception of the Police and to capture individual and community needs, when their feedback is taken into account by Law Enforcement Agencies (LEAs) in a structured and coordinated manner. This paper presents research conducted under INSPEC2T (Inspiring CitizeNS Participation for Enhanced Community PoliCing AcTions), a project funded by the European Commission’s research agenda to bridge the gap between CP as a philosophy and as an organizational strategy, capitalizing on the use of Social Media. The project aims to increase transparency, trust, police accountability, and the role of civil society. It aspires to build strong, trusting relationships between LEAs and the public, supporting two-way, contemporary communication while at the same time respecting anonymity of all affected parties. Results presented herein summarize the outcomes of four online multilingual surveys, focus group interviews, desktop research and interviews with experts in the field of CP practices. The above research activities were conducted in various EU countries aiming to capture requirements of end users from diverse backgrounds (social, cultural, legal and ethical) and determine public expectations regarding CP, community safety and crime prevention.

Keywords: community partnerships, next generation community policing, social media, public safety

Procedia PDF Downloads 312
66 Acute Myeloid Leukemia Relapse in an a Rare form After Treating his Tuberculosis TB

Authors: Sheikha Turki Alketbi

Abstract:

Objectives: 1. Documenting the spontaneous resolution of AML following the initiation of anti-TB therapy. 2. Presenting an uncommon type of relapse in Acute Myeloid Leukemia. 3. Highlighting the role of immune markers in the diagnosis of Leukemia cutis. 4. Exploring and highlighting the possibility of skin relapse as the exclusive manifestation, even when skin involvement is known secondary manifestation in AML. Background: Spontaneous remission of Acute Myeloid Leukemia (AML) is a rare phenomenon that has only been reported in some case reports, usually following severe infections. Some studies have described the occurrence of tuberculosis (TB) infection with AML, usually after starting chemotherapy. Spontaneous resolution of AML after starting anti TB therapy (ATT), without starting chemotherapy has never been described in the literature. Moreover, Leukemia cutis is another rare skin manifestation of Acute Myeloid Leukemia as a result of infiltration of the skin or subcutaneous tissue by leukemic cells, in which can present during, precedes, after or independently of systemic leukemia. Methods: Here, we present a case of a 13-year-old male who presented with fever, weight loss, lethargy, epistaxis, bruising and dry cough and was later diagnosed with AML. Before initiating leukemia treatment, the patient was tested for TB and was found to have active TB infection. His leukemia treatment was postponed to clear the TB infection and he was commenced on ATT. Two months later, repeat blood film and bone marrow biopsy showed resolution of his AML. The patient remained in remission for 1 month, after which he presented with symmetrical blue purple well-defined round indurated plaques on the chest and thighs. Our differentials were leukemia cutis and Kaposi sarcoma. Results: Skin Biopsy with immune markers done, showed a picture of Acute Myeloid Leukemia. Immunohistochemistry (IHC) showed neoplastic cells diffusely and strongly positive for LCA, CD2, CD31, MPO, CD117, Lysozymes and TDT, and moderately positive for CD34, CD99, CD43 and CD6 And patchy for CD68. Ki67 showed 60% proliferation index. They were negative for the remaining markers. This suggested acute myeloid leukemia (AML). Conclusion: In summary, we present a rare case of TB with AML that resolved after treatment of TB with ATT but relapsed later as leukemia cutis. While skin involvement might occur as a secondary manifestation of AML, Skin relapse could be the only one.

Keywords: Leukemia cutis, Leukemia relapse, Acute Myeloid Leukemia, spontaneous resolution of AML

Procedia PDF Downloads 29
65 Safety Assessment of Traditional Ready-to-Eat Meat Products Vended at Retail Outlets in Kebbi and Sokoto States, Nigeria

Authors: M. I. Ribah, M. Jibir, Y. A. Bashar, S. S. Manga

Abstract:

Food safety is a significant and growing public health problem in the world and Nigeria as a developing country, since food-borne diseases are important contributors to the huge burden of sickness and death of humans. In Nigeria, traditional ready-to-eat meat products (RTE-MPs) like balangu, tsire, guru and dried meat products like kilishi, dambun nama, banda, were reported to be highly appreciated because of their eating qualities. The consumption of these products was considered as safe due to the treatments that are usually involved during their production process. However, during processing and handling, the products could be contaminated by pathogens that could cause food poisoning. Therefore, a hazard identification for pathogenic bacteria on some traditional RTE-MPs was conducted in Kebbi and Sokoto States, Nigeria. A total of 116 RTE-MPs (balangu-38, kilishi-39 and tsire-39) samples were obtained from retail outlets and analyzed using standard cultural microbiological procedures in general and selective enrichment media to isolate the target pathogens. A six-fold serial dilution was prepared and using the pour plating method, colonies were counted. Serial dilutions were selected based on the prepared pre-labeled Petri dishes for each sample. A volume of 10-12 ml of molten Nutrient agar cooled to 42-45°C was poured into each Petri dish and 1 ml each from dilutions of 102, 104 and 106 for every sample was respectively poured on a pre-labeled Petri plate after which colonies were counted. The isolated pathogens were identified and confirmed after series of biochemical tests. Frequencies and percentages were used to describe the presence of pathogens. The General Linear Model was used to analyze data on pathogen presence according to RTE-MPs and means were separated using the Tukey test at 0.05 confidence level. Of the 116 RTE-MPs samples collected, 35 (30.17%) samples were found to be contaminated with some tested pathogens. Prevalence results showed that Escherichia coli, salmonella and Staphylococcus aureus were present in the samples. Mean total bacterial count was 23.82×106 cfu/g. The frequency of individual pathogens isolated was; Staphylococcus aureus 18 (15.51%), Escherichia coli 12 (10.34%) and Salmonella 5 (4.31%). Also, among the RTE-MPs tested, the total bacterial counts were found to differ significantly (P < 0.05), with 1.81, 2.41 and 2.9×104 cfu/g for tsire, kilishi, and balangu, respectively. The study concluded that the presence of pathogenic bacteria in balangu could pose grave health risks to consumers, and hence, recommended good manufacturing practices in the production of balangu to improve the products’ safety.

Keywords: ready-to-eat meat products, retail outlets, public health, safety assessment

Procedia PDF Downloads 101
64 Using Biofunctool® Index to Assess Soil Quality after Eight Years of Conservation Agriculture in New Caledonia

Authors: Remy Kulagowski, Tobias Sturm, Audrey Leopold, Aurelie Metay, Josephine Peigne, Alexis Thoumazeau, Alain Brauman, Bruno Fogliani, Florent Tivet

Abstract:

A major challenge for agriculture is to enhance productivity while limiting the impact on the environment. Conservation agriculture (CA) is one strategy whereby both sustainability and productivity can be achieved by preserving and improving the soil quality. Soils provide and regulate a large number of ecosystem services (ES) such as agricultural productivity and climate change adaptation and mitigation. The aim of this study is to assess the impacts of contrasted CA crop management on soil functions for maize (Zea mays L.) cultivation in an eight years field experiment (2010-2018). The study included two CA practices: direct seeding in dead mulch (DM) and living mulch (LM), and conventional plough-based tillage (CT) practices on a fluvisol in New Caledonia (French Archipelago in the South Pacific). In 2018, soil quality of the cropping systems were evaluated with the Biofunctool® set of indicators, that consists in twelve integrative, in-field, and low-tech indicators assessing the biological, physical and chemical properties of soils. Main soil functions were evaluated including (i) carbon transformation, (ii) structure maintenance, and (iii) nutrient cycling in the ten first soil centimeters. The results showed significant higher score for soil structure maintenance (e.g., aggregate stability, water infiltration) and carbon transformation function (e.g., soil respiration, labile carbon) under CA in DM and LM when compared with CT. Score of carbon transformation index was higher in DM compared with LM. However, no significant effect of cropping systems was observed on nutrient cycling (i.e., nitrogen and phosphorus). In conclusion, the aggregated synthetic scores of soil multi-functions evaluated with Biofunctool® demonstrate that CA cropping systems lead to a better soil functioning. Further analysis of the results with agronomic performance of the soil-crop systems would allow to better understand the links between soil functioning and production ES of CA.

Keywords: conservation agriculture, cropping systems, ecosystem services, soil functions

Procedia PDF Downloads 116
63 Combined Power Supply at Well Drilling in Extreme Climate Conditions

Authors: V. Morenov, E. Leusheva

Abstract:

Power supplying of well drilling on oil and gas fields at ambient air low temperatures is characterized by increased requirements of electric and heat energy. Power costs for heating of production facilities, technological and living objects may several times exceed drilling equipment electric power consumption. Power supplying of prospecting and exploitation drilling objects is usually done by means of local electric power structures based on diesel power stations. In the meantime, exploitation of oil fields is accompanied by vast quantities of extracted associated petroleum gas, and while developing gas fields there are considerable amounts of natural gas and gas condensate. In this regard implementation of gas-powered self-sufficient power units functioning on produced crude products for power supplying is seen as most potential. For these purposes gas turbines (GT) or gas reciprocating engines (GRE) may be used. In addition gas-powered units are most efficiently used in cogeneration mode - combined heat and power production. Conducted research revealed that GT generate more heat than GRE while producing electricity. One of the latest GT design are microturbines (MT) - devices that may be efficiently exploited in combined heat and power mode. In conditions of ambient air low temperatures and high velocity wind sufficient heat supplying is required for both technological process, specifically for drilling mud heating, and for maintaining comfortable working conditions at the rig. One of the main heat regime parameters are the heat losses. Due to structural peculiarities of the rig most of the heat losses occur at cold air infiltration through the technological apertures and hatchways and heat transition of isolation constructions. Also significant amount of heat is required for working temperature sustaining of the drilling mud. Violation of circulation thermal regime may lead to ice build-up on well surfaces and ice blockages in armature elements. That is why it is important to ensure heating of the drilling mud chamber according to ambient air temperature. Needed heat power will be defined by heat losses of the chamber. Noting heat power required for drilling structure functioning, it is possible to create combined heat and power complex based on MT for satisfying consumer power needs and at the same time lowering power generation costs. As a result, combined power supplying scheme for multiple well drilling utilizing heat of MT flue gases was developed.

Keywords: combined heat, combined power, drilling, electric supply, gas-powered units, heat supply

Procedia PDF Downloads 556
62 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage

Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama

Abstract:

Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.

Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system

Procedia PDF Downloads 154
61 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke

Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan

Abstract:

The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, lung, rat, tobacco smoke

Procedia PDF Downloads 184
60 Mediterranean Diet-Driven Changes in Gut Microbiota Decrease the Infiltration of Inflammatory Myeloid Cells into the Intestinal Tissue

Authors: Gema Gómez-Casado, Alba Rodríguez-Muñoz, Virginia Mela-Rivas, Pallavi Kompella, Francisco José Tinahones-Madueña, Isabel Moreno-Indias, Almudena Ortega-Gómez

Abstract:

Obesity is a high-priority health problem worldwide due to its high prevalence. The proportion of obese and overweight subjects in industrialized countries exceeds half of the population in most cases. Beyond the metabolic problem, obesity boosts inflammation levels in the organism. The gut microbiota, considered an organ by itself, controls a high variety of processes at a systemic level. In fact, the microbiota interacts closely with the immune system, being crucial in determining the maturation state of neutrophils, key effectors of the innate immune response. It is known that changes in the diet exert strong effects on the variety and activity of the gut microbiota. The effect that those changes have on the axis microbiota-immune response is an unexplored field. In this study, 10 patients with obesity (weight 114,3 ± 14,5Kg, BMI 40,47±3,66) followed a Mediterranean-hypocaloric diet for 3 months, reducing their initial weight by 12,71 ± 3%. A transplant of microbiota from these patients before and after the diet was performed into wild type “germ-free” mice (n=10/group), treated with antibiotics. Six weeks after the transplant, mice were euthanized, and the presence of cells from the innate immune system were analysed in different organs (bone marrow, blood, spleen, visceral adipose tissue, and intestine) by flow cytometry. No differences were observed in the number of myeloid cells in bone marrow, blood, spleen, or visceral adipose tissue of mice transplanted with patient’s microbiota before and after following the Mediterranean diet. However, the intestine of mice that received post-diet microbiota presented a marked decrease in the number of neutrophils (whose presence is associated with tissue inflammation), as well as macrophages. In line with these findings, intestine monocytes from mice with post-diet microbiota showed a less inflammatory profile (lower Ly6Gˡᵒʷ proportion of cells). These results point toward a decrease in the inflammatory state of the intestinal tissue, derived from changes in the gut microbiota, which occurred after a 3-month Mediterranean diet.

Keywords: obesity, nutrition, Mediterranean diet, gut microbiota, immune system

Procedia PDF Downloads 99
59 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 72