Search results for: highly weathered soils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5190

Search results for: highly weathered soils

5160 Phytoremediation of Zn-Contaminated Soils by Malva Sylvestris

Authors: Abdelouahab Diafat, Meribai Abdelmalek, Ahmed Bahloul

Abstract:

phytoremediation is the use of plants to remove or degrade organic or inorganic contaminants from soil and water this work aims to study the potential effect of malva sylvestris for the phytoremediation of soils contaminated by Zn. plants were grown in pots containing soil artificially contaminated with Zn at concentrations of 100, 200, and 300 mg/kg. the results obtained show that the Zn concentrations used have a negative effect on the growth of this plant the search for the metal carried out by the technique of atomic absorption spectrometry shows that this plant accumulates a small quantity of this metal. it can be concluded that the malva sylvestris plant tolerates Zn contaminated soils but it is not considered as a zinc hyperaccumulator plant

Keywords: phytoremidiation, Zn-contaminated soils, Malva Sylvestris, phytoextraction

Procedia PDF Downloads 57
5159 Selenium Content in Agricultural Soils and Wheat from the Balkan Peninsula

Authors: S. Krustev, V. Angelova, P. Zaprjanova

Abstract:

Selenium (Se) is an essential micro-nutrient for human and animals but it is highly toxic. Its organic compounds play an important role in biochemistry and nutrition of the cells. Concentration levels of this element in the different regions of the world vary considerably. This study aimed to compare the availability and levels of the Se in some rural areas of the Balkan Peninsula and relationship with the concentrations of other trace elements. For this purpose soil samples and wheat grains from different regions of Bulgaria, Serbia, Nord Macedonia, Romania, and Greece situated far from large industrial centers have been analyzed. The main methods for their determination were the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels from the main grain-producing regions of the Balkan Peninsula were determined and systematized. The presented results confirm the low levels of Se in this region: 0.222– 0.962 mg.kg-1 in soils and 0.001 - 0.005 mg.kg-1 in wheat grains and require measures to offset the effect of this deficiency.

Keywords: agricultural soils, balkan peninsula, rural areas, selenium

Procedia PDF Downloads 108
5158 Cadaver Free Fatty Acid Distribution Associated with Burial in Mangrove and Oil Palm Plantation Soils under Tropical Climate

Authors: Siti Sofo Ismail, Siti Noraina Wahida Mohd Alwi, Mohamad Hafiz Ameran, Masrudin M. Yusoff

Abstract:

Locating clandestine cadaver is crucially important in forensic investigations. However, it requires a lot of man power, costly and time consuming. Therefore, the development of a new method to locate the clandestine graves is urgently needed as the cases involve burial of cadaver in different types of soils under tropical climates are still not well explored. This study focused on the burial in mangrove and oil palm plantation soils, comparing the fatty acid distributions in different soil acidities. A stimulated burial experiment was conducted using domestic pig (Sus scrofa) to substitute human tissues. Approximately 20g of pig fatty flesh was allowed to decompose in mangrove and oil palm plantation soils, mimicking burial in a shallow grave. The associated soils were collected at different designated sampling points, corresponding different decomposition stages. Modified Bligh-Dyer Extraction method was applied to extract the soil free fatty acids. Then, the obtained free fatty acids were analyzed with gas chromatography-flame ionization (GC-FID). A similar fatty acid distribution was observed for both mangrove and oil palm plantations soils. Palmitic acid (C₁₆) was the most abundance of free fatty acid, followed by stearic acid (C₁₈). However, the concentration of palmitic acid (C₁₆) higher in oil palm plantation compare to mangrove soils. Conclusion, the decomposition rate of cadaver can be affected by different type of soils.

Keywords: clandestine grave, burial, soils, free fatty acid

Procedia PDF Downloads 367
5157 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study

Authors: S. P. Pradhan, Amulya Ratna Roul

Abstract:

A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.

Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation

Procedia PDF Downloads 159
5156 Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test

Authors: Reza Ziaie Moayed, Seyed Abdolhassan Naeini, Peyman Nouri, Hamed Yekehdehghan

Abstract:

The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test.

Keywords: liquidity index, plasticity index, shear strength, unsaturated soil

Procedia PDF Downloads 108
5155 Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices

Authors: Olubunmi S. Shittu, Olufemi J. Ayodele, Augustus O. A. Ilori, Abidemi O. Filani, Adetola T. Afuye

Abstract:

Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (Igeo) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mCd) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping.

Keywords: contamination factor, enrichment factor, geoaccumulation index, modified degree of contamination, pollution load index

Procedia PDF Downloads 353
5154 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 278
5153 Characterization of the Soils of the Edough Massif (North East Algeria)

Authors: Somia Lakehal Ayat, Ibtissem Samai, Srara Lakehal Ayat, Chaima Dahmani

Abstract:

The aim of this work relates to the physicochemical diversity and the characterization of the different types of soils of the edough massif (North East of Algeria) and to the evaluation and characterization of the existing organic matter as well as to the evolution. and the dynamics of the latter, also on its influence on changes in the physical properties of soils. In order to know the soil properties of seraidi forest, we established a stratified sampling plan. The results obtained show that we are in the presence of a great diversity of soils, such as neutral to alkaline, whose adsorbent complex is sufficiently saturated. Also, the presence of limestone offers the soil a fairly significant buffering capacity. In our study region, the texture of the soils is varied between clayey and silty, where it offers medium porosity, there is a strong accumulation of organic matter, therefore soils rich in organic matter.The fractionation of the organic matter of the soils allowed to obtain a very high rate of humification. The soil characteristics of the edough massif (North East of Algeria) are controlled by the contribution of organic matter, which presents a dynamic and an important evolution and which varies with the climatic conditions and the nature and the type of plant formation, and these the latter have a capital and important role in the rate of mineralization of organic matter.

Keywords: organic matter, soil, foresty, diversity, mineralization

Procedia PDF Downloads 56
5152 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils

Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan

Abstract:

Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.

Keywords: differential free swell index, expansive soils, matric suction, swelling pressure

Procedia PDF Downloads 135
5151 Growing Vetiver (Chrysopogon zizanioides L.) on Contaminated Soils with Heavy Metals in Bulgaria

Authors: Violina Angelova, Huu Q. Lee

Abstract:

A field study was conducted to evaluate the efficacy of Vetiver (Chrysopogon zizanioides L.) for phytoremediation of contaminated soils. The experiment was performed on agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.5, 3.5, and 15 km) from the source of pollution. The concentrations of Pb, Zn, and Cd in vetiver (roots and leaves) were determined. Correlations between the content of the heavy metal mobile forms extracted with DTPA and their content in the roots and leaves of the Vetiver have been established. The Vetiver is tolerant to heavy metals and can be grown on soils contaminated with heavy metals. Plants are characterized by low ability to absorb and accumulate Pb, Cd, and Zn and have no signs of toxicity (chlorosis and necrosis) at 36.8 mg/kg Cd, 1158.8 mg/kg Pb and 1526.2 mg/kg Zn in the soil. Vetiver plants can be classified as Pb, Cd and Zn excluder, therefore, this plant has the suitable potential for the phytostabilization of heavy metal contaminated soils. Acknowledgements: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI 04/9).

Keywords: contaminated soils, heavy metals, phytoremediation, vetiver

Procedia PDF Downloads 200
5150 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils

Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract:

In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.

Keywords: elasto-plasticity, uncertainty, soils, fokker-planck equation, fourier spectral method, finite difference method

Procedia PDF Downloads 344
5149 The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine

Authors: K. A. Ghazaryan, G. A. Gevorgyan, H. S. Movsesyan, N. P. Ghazaryan, K. V. Grigoryan

Abstract:

The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils.

Keywords: Armenia, Zangezur copper and molybdenum combine, soil, heavy metal pollution degree

Procedia PDF Downloads 275
5148 The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement

Authors: Ali̇ Si̇nan Soğanci

Abstract:

The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content.

Keywords: cement stabilization, unconfined compression test, clayey soils, unified soil classification system.

Procedia PDF Downloads 396
5147 Quantification of Extent of Pollution from Total Lead in the Shooting Ranges Found in Southern and Central Botswana: A Pioneering Study

Authors: Nicholas Sehube, Rosemary Kelebemang, Pogisego Dinake

Abstract:

The extent of Pb contamination of shooting range soils has never been ascertained in Botswana, this was the first attempt in evaluating the deposition of Pb into the soils emanating from munitions. A total of 8 military shooting ranges were used for this study. Soil samples were collected at each of the 8 shooting ranges at the berm (stop butt), target line, 50 and 100 m from the berm. In all of the shooting ranges investigated the highest concentrations were found in the berm soils. The highest Pb concentrations of 38 406.87 mg/Kg were found in the berm soils of Thebephatshwa shooting range which is enclosed within a military camp with staff residential dwelling only a kilometre away. Most of the shooting ranges soils contained elevated levels of Pb in the ranges above 2000 mg/kg far exceeding the United States Environmental Protection Agency (USEPA) critical value of 400 mg/Kg. Mobilization of lead at high pH is attributed to low organic matter and such was the case with Thebephatshwa shooting range with a percept organic matter of 0.35±0.08. The predominant weathering products in these shooting ranges were cerussite (PbCO3), hydrocerussite (Pb(CO3)2(OH)2 and massicot (PbO). The detailed examination and characterization of the extent of pollution will help in the development and implementation of scientifically sound remediation and restoration of shooting ranges soils.

Keywords: ammunition, Botswana, Pb, pollution, soil

Procedia PDF Downloads 211
5146 The Friction Of Oil Contaminated Granular Soils; Experimental Study

Authors: Miron A, Tadmor R, Pinkert S

Abstract:

Soil contamination is a pressing environmental concern, drawing considerable focus due to its adverse ecological and health outcomes, and the frequent occurrence of contamination incidents in recent years. The interaction between the oil pollutant and the host soil can alter the mechanical properties of the soil in a manner that can crucially affect engineering challenges associated with the stability of soil systems. The geotechnical investigation of contaminated soils has gained momentum since the Gulf War in the 1990s, when a massive amount of oil was spilled into the ocean. Over recent years, various types of soil contaminations have been studied to understand the impact of pollution type, uncovering the mechanical complexity that arises not just from the pollutant type but also from the properties of the host soil and the interplay between them. This complexity is associated with diametrically opposite effects in different soil types. For instance, while certain oils may enhance the frictional properties of cohesive soils, they can reduce the friction in granular soils. This striking difference can be attributed to the different mechanisms at play: physico-chemical interactions predominate in the former case, whereas lubrication effects are more significant in the latter. this study introduces an empirical law designed to quantify the mechanical effect of oil contamination in granular soils, factoring the properties of both the contaminating oil and the host soil. This law is achieved by comprehensive experimental research that spans a wide array of oil types and soils with unique configurations and morphologies. By integrating these diverse data points, our law facilitates accurate predictions of how oil contamination modifies the frictional characteristics of general granular soils.

Keywords: contaminated soils, lubrication, friction, granular media

Procedia PDF Downloads 28
5145 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils

Procedia PDF Downloads 146
5144 Stabilization of Expansive Soils with Polypropylene Fiber

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 448
5143 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties

Procedia PDF Downloads 165
5142 Investigation on the Changes in the Chemical Composition and Ecological State of Soils Contaminated with Heavy Metals

Authors: Metodi Mladenov

Abstract:

Heavy metals contamination of soils is a big problem mainly as a result of industrial production. From this point of view, this is of interests the processes for decontamination of soils for crop of production with low content of heavy metals and suitable for consumption from the animals and the peoples. In the current article, there are presented data for established changes in chemical composition and ecological state on soils contaminated from non-ferrous metallurgy manufacturing, for seven years time period. There was done investigation on alteration of pH, conductivity and contain of the next elements: As, Cd, Cu, Cr, Ni, Pb, Zn, Co, Mn and Al. Also, there was done visual observations under the processes of recovery of root-inhabitable soil layer and reforestation. Obtained data show friendly changes for the investigated indicators pH and conductivity and decreasing of content of some form analyzed elements. Visual observations show augmentation of plant cover areas and change in species structure with increase of number of shrubby and wood specimens.

Keywords: conductivity, contamination of soils, chemical composition, inductively coupled plasma–optical emission spectrometry, heavy metals, visual observation

Procedia PDF Downloads 147
5141 Monitoring Soil Organic Amendments Under Arid Climate: Evolution of Soil Quality and of Two Consecutive Barley Crops

Authors: Houda Oueriemmi, Petra Susan Kidd, Carmen Trasar-Cepeda, Beatriz Rodríguez-Garrido, Mohamed Moussa, Ángeles Prieto-Fernández, Mohamed Ouessar

Abstract:

Organic amendments are generally used for improving the fertility of arid and semi-arid soils. However, the price of farmyard manure, the organic amendment typically applied to many arid and semi-arid soils has highly increased in the last years. To investigate at field scale whether cheap, highly available organic amendments, such as sewage sludge compost and municipal solid waste compost, may be acceptable as substitutes for farmyard manure is therefore of great interest. A field plots experiment was carried out to assess the effects of a single application of three organic amendments on soil fertility, distribution of trace elements and on barley yield. Municipal solid waste compost (MSWC), farmyard manure (FYM) and sewage sludge compost (SSC) were applied at rates of 0, 20, 40 and 60 t ha⁻¹, and barley was cultivated in two consecutive years. Plant samples and soils were collected for laboratory analyses after two consecutive harvests. Compared with unamended soil, the application of the three organic residues improved the fertility of the topsoil, showing a significant dose-dependent increase of TOC, N, P contents up to the highest dose of 60 t ha⁻¹ (0.74%, 0.06% and 40 mg kg⁻¹, respectively). The enhancement of soil nutrient status impacted positively on grain yield (up to 51%). The distribution of trace elements in the soil, analysed by a sequential extraction procedure, revealed that the MSWC increased the acid-extractable Co and Cu and reducible Ni, while SSC increased reducible Co and Ni and oxidisable Cu, relative to the control soil.

Keywords: municipal solid waste compost, sewage sludge compost, fertility, trace metals

Procedia PDF Downloads 59
5140 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 492
5139 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 162
5138 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column

Procedia PDF Downloads 150
5137 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 143
5136 The Grain Size Distribution of Sandy Soils in Libya

Authors: Massoud Farag Abouklaish

Abstract:

The main aim of the present study is to investigate and classify the particle size distribution of sandy soils in Libya. More than fifty soil samples collected from many regions in North, West and South of Libya. Laboratory sieve analysis tests performed on disturbed soil samples to determine grain size distribution. As well as to provide an indicator of general engineering behavior and good understanding, test results are presented and analysed. In addition, conclusions, recommendations are made.

Keywords: Libya, grain size, sandy soils, sieve analysis tests

Procedia PDF Downloads 575
5135 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor (EF), Armenia

Procedia PDF Downloads 205
5134 Soil Sensibility Characterization of Granular Soils Due to Suffusion

Authors: Abdul Rochim, Didier Marot, Luc Sibille

Abstract:

This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.

Keywords: erodimeter, sandy gravel, suffusion, water seepage energy

Procedia PDF Downloads 423
5133 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals

Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle

Abstract:

This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.

Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans

Procedia PDF Downloads 134
5132 Electrokinetic Remediation of Nickel Contaminated Clayey Soils

Authors: Waddah S. Abdullah, Saleh M. Al-Sarem

Abstract:

Electrokinetic remediation of contaminated soils has undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar contaminants (such as heavy metals) and nonpolar organic contaminants. It can efficiently be used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. EK processes have proved to be superior to other conventional methods, such as the pump and treat, and soil washing, since these methods are ineffective in such cases. This paper describes the use of electrokinetic remediation to clean up soils contaminated with nickel. Open cells, as well as advanced cylindrical cells, were used to perform electrokinetic experiments. Azraq green clay (low permeability soil, taken from the east part of Jordan) was used for the experiments. The clayey soil was spiked with 500 ppm of nickel. The EK experiments were conducted under direct current of 80 mA and 50 mA. Chelating agents (NaEDTA), disodium ethylene diamine-tetra-ascetic acid was used to enhance the electroremediation processes. The effect of carbonates presence in soils was, also, investigated by use of sodium carbonate. pH changes in the anode and the cathode compartments were controlled by using buffer solutions. The results showed that the average removal efficiency was 64%, for the Nickel spiked saturated clayey soil.Experiment results have shown that carbonates retarded the remediation process of nickel contaminated soils. Na-EDTA effectively enhanced the decontamination process, with removal efficiency increased from 64% without using the NaEDTA to over 90% after using Na-EDTA.

Keywords: buffer solution, contaminated soils, EDTA enhancement, electrokinetic processes, Nickel contaminated soil, soil remediation

Procedia PDF Downloads 226
5131 Impacts Of Salinity on Co2 Turnover in Some Gefara Soils of Libya

Authors: Fathi Elyaagubi

Abstract:

Salinization is a major threat to the productivity of agricultural land. The Gefara Plain located in the northwest of Libya; comprises about 80% of the total agricultural activity. The high water requirements for the populations and agriculture are depleting the groundwater aquifer, resulting in intrusion of seawater in the first few kilometers along the coast. Due to increasing salinity in the groundwater used for irrigation, the soils of the Gefara Plain are becoming increasingly saline. This research paper investigated the sensitivity of these soils to increased salinity using Co2 evolution as an integrating measure of soil function. Soil was collected from four sites located in the Gefara Plain, Almaya, Janzur, Gargaresh and Tajura. Soil collected from Tajura had the highest background salinity, and Janzur had the highest organic matter content. All of the soils had relatively low organic matter content, ranging between 0.49-%1.25. The cumulative rate of 14CO2 of added 14C-labelled Lolium shoots (Lolium perenne L.) to soils was decreased under effects of water containing different concentrations of NaCl at 20, 50, 70, 90, 150, and 200 mM compared to the control at any time of incubation in four sites.

Keywords: soil salinity, gefara plain, organic matter, 14C-labelled lolium shoots

Procedia PDF Downloads 196