Search results for: finite rings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2536

Search results for: finite rings

2536 Some Properties in Jordan Ideal on 3-Prime Near-Rings

Authors: Abdelkarim Boua, Abdelhakim Chillali

Abstract:

The study of non-associative structures in algebraic structures has become a separate entity; for, in the case of groups, their corresponding non-associative structure i.e. loops is dealt with separately. Similarly there is vast amount of research on the nonassociative structures of semigroups i.e. groupoids and that of rings i.e. nonassociative rings. However it is unfortunate that we do not have a parallel notions or study of non-associative near-rings. In this work we shall attempt to generalize a few known results and study the commutativity of Jordan ideal in 3-prime near-rings satisfying certain identities involving the Jordan ideal. We study the derivations satisfying certain differential identities on Jordan ideals of 3-prime near-rings. Moreover, we provide examples to show that hypothesis of our results are necessary. We give some new results and examples concerning the existence of Jordan ideal and derivations in near-rings. These near-rings can be used to build a new codes.

Keywords: 3-prime near-rings, near-rings, Jordan ideal, derivations

Procedia PDF Downloads 306
2535 Jacobson Semisimple Skew Inverse Laurent Series Rings

Authors: Ahmad Moussavi

Abstract:

In this paper, we are concerned with the Jacobson semisimple skew inverse Laurent series rings R((x−1; α, δ)) and the skew Laurent power series rings R[[x, x−1; α]], where R is an associative ring equipped with an automorphism α and an α-derivation δ. Examples to illustrate and delimit the theory are provided.

Keywords: skew polynomial rings, Laurent series, skew inverse Laurent series rings

Procedia PDF Downloads 165
2534 A Study on Weddernburn – Artin Theorem for Rings

Authors: Fahad Suleiman, Sammani Abdullahi

Abstract:

The study depicts that a Wedderburn Artin – theorem for rings is considered to be a semisimple ring R which is isomorphic to a product of finitely many mi by mi matrix rings over division rings Di, for some integers n_i, both of which are uniquely determined up to permutation of the index i. It has been concluded that when R is simple the Wedderburn – Artin theorem is known as Wedderburn’s theorem.

Keywords: Commutativity, Wedderburn theorem, Semisimple ring, R module

Procedia PDF Downloads 165
2533 A Generalization of the Secret Sharing Scheme Codes Over Certain Ring

Authors: Ibrahim Özbek, Erdoğan Mehmet Özkan

Abstract:

In this study, we generalize (k,n) threshold secret sharing scheme on the study Ozbek and Siap to the codes over the ring Fq+ αFq. In this way, it is mentioned that the method obtained in that article can also be used on codes over rings, and new advantages to be obtained. The method of securely sharing the key in cryptography, which Shamir first systematized and Massey carried over to codes, became usable for all error-correcting codes. The firewall of this scheme is based on the hardness of the syndrome decoding problem. Also, an open study area is left for those working for other rings and code classes. All codes that correct errors with this method have been the working area of this method.

Keywords: secret sharing scheme, linear codes, algebra, finite rings

Procedia PDF Downloads 75
2532 Application of Soft Sets to Non-Associative Rings

Authors: Inayatur Rehman

Abstract:

Molodtstove developed the theory of soft sets which can be seen as an effective tool to deal with uncertainties. Since the introduction of this concept, the application of soft sets has been restricted to associative algebraic structures (groups, semi groups, associative rings, semi-rings etc.). Acceptably, though the study of soft sets, where the base set of parameters is a commutative structure, has attracted the attention of many researchers for more than one decade. But on the other hand there are many sets which are naturally endowed by two compatible binary operations forming a non-associative ring and we may dig out examples which investigate a non-associative structure in the context of soft sets. Thus it seems natural to apply the concept of soft sets to non-commutative and non-associative structures. In present paper, we make a new approach to apply Molodtsoves notion of soft sets to LA-ring (a class of non-associative ring). We extend the study of soft commutative rings from theoretical aspect.

Keywords: soft sets, LA-rings, soft LA-rings, soft ideals, soft prime ideals, idealistic soft LA-rings, LA-ring homomorphism

Procedia PDF Downloads 465
2531 Solution for Rider Ring Wear Problem in Boil off Gas Reciprocating Compressor: A Case Study

Authors: Hessam Mortezaei, Saeid Joudakian

Abstract:

In this paper, the wear problem on rider rings of boil off gas compressor has been studied. This kind of oil free double acting compressor has free floating piston (FFP) technology and as a result of that it should have the lowest possible wear on its rider rings. But a design problem had caused a complete wear of rider rings after one month of continuous operation. In this case study, the source of this problem was recognized and solved.

Keywords: piston rider, rings, gas distribution, pressure wear

Procedia PDF Downloads 366
2530 On Modules over Dedekind Prime Rings

Authors: Elvira Kusniyanti, Hanni Garminia, Pudji Astuti

Abstract:

This research studies an interconnection between finitely generated uniform modules and Dedekind prime rings. The characterization of modules over Dedekind prime rings that will be investigated is an adoption of Noetherian and hereditary concept. Dedekind prime rings are Noetherian and hereditary rings. This property of Dedekind prime rings is a background of the idea of adopting arises. In Noetherian area, it was known that a ring R is Noetherian ring if and only if every finitely generated R-module is a Noetherian module. Similar to that result, a characterization of the hereditary ring is related to its projective modules. That is, a ring R is hereditary ring if and only if every projective R-module is a hereditary module. Due to the above two results, we suppose that characterization of a Dedekind prime ring can be analyzed from finitely generated modules over it. We propose a conjecture: a ring R is a Dedekind prime ring if and only if every finitely generated uniform R-module is a Dedekind module. In this article, we will generalize a concept of the Dedekind module for non-commutative ring case and present a part of the above conjecture.

Keywords: dedekind domains, dedekind prime rings, dedekind modules, uniform modules

Procedia PDF Downloads 441
2529 Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast

Authors: Asma Ahmed Aljohani, Mohammed Orif

Abstract:

The concentration of polycyclic aromatic hydrocarbons (PAH) in clam (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources.

Keywords: bivalves, biomonitoring, hydrocarbons, PAHs

Procedia PDF Downloads 98
2528 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns.

Keywords: encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis

Procedia PDF Downloads 318
2527 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring

Procedia PDF Downloads 470
2526 Maximum Distance Separable b-Symbol Repeated-Root γ-Constacylic Codes over a Finite Chain Ring of Length 2

Authors: Jamal Laaouine, Mohammed Elhassani Charkani

Abstract:

Let p be a prime and let b be an integer. MDS b-symbol codes are a direct generalization of MDS codes. The γ-constacyclic codes of length pˢ over the finite commutative chain ring Fₚm [u]/ < u² > had been classified into four distinct types, where is a nonzero element of the field Fₚm. Let C₃ be a code of Type 3. In this paper, we obtain the b-symbol distance db(C₃) of the code C₃. Using this result, necessary and sufficient conditions under which C₃ is an MDS b-symbol code are given.

Keywords: constacyclic code, repeated-root code, maximum distance separable, MDS codes, b-symbol distance, finite chain rings

Procedia PDF Downloads 137
2525 Validation of a Reloading Vehicle Design by Finite Element Analysis

Authors: Tuğrul Aksoy, Hüseyin Karabıyık

Abstract:

Reloading vehicles are the vehicles which are generally equipped with a crane and used to carry a stowage from a point and locate onto the vehicle or vice versa. In this study, structural analysis of a reloading vehicle was performed under the loads which are predicted to be exposed under operating conditions via the finite element method. Among the finite element analysis results, the stress and displacement distributions of the vehicle and the contact pressure distributions of the guide rings within the stabilization legs were examined. Vehicle design was improved by strengthening certain parts according to the analysis results. The analyses performed for the final design were verified by the experiments involving strain gauge measurements.

Keywords: structural analysis, reloading vehicle, crane, strain gauge

Procedia PDF Downloads 70
2524 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 217
2523 Substrate Coupling in Millimeter Wave Frequencies

Authors: Vasileios Gerakis, Fontounasios Christos, Alkis Hatzopoulos

Abstract:

A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures.

Keywords: guard rings, metal pad coupling, millimeter wave frequencies, substrate noise,

Procedia PDF Downloads 540
2522 A Proof of the Fact that a Finite Morphism is Proper

Authors: Ying Yi Wu

Abstract:

In this paper, we present a proof of the fact that a finite morphism is proper. We show that a finite morphism is universally closed and of finite type, which are the conditions for properness. Our proof is based on the theory of schemes and involves the use of the projection formula and the base change theorem. We first show that a finite morphism is of finite type and then proceed to show that it is universally closed. We use the fact that a finite morphism is also an affine morphism, which allows us to use the theory of coherent sheaves and their modules. We then show that the map induced by a finite morphism is flat and that the module it induces is of finite type. We use these facts to show that a finite morphism is universally closed. Our proof is constructive, and we provide details for each step of the argument.

Keywords: finite, morphism, schemes, projection.

Procedia PDF Downloads 109
2521 Linkage between Trace Element Distribution and Growth Ring Formation in Japanese Red Coral (Paracorallium japonicum)

Authors: Luan Trong Nguyen, M. Azizur Rahman, Yusuke Tamenori, Toshihiro Yoshimura, Nozomu Iwasaki, Hiroshi Hasegawa

Abstract:

This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (µ-XRF) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in µ-XRF mapping images correspond to the dark and light bands along the annual growth rings observed in microscopic images of the coral skeleton. The µ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two trace elements. The distribution pattern of S, P and Mg reveals linkage between their distributions and the formation of dark/light bands along the annual growth rings in the axial skeleton of P. japonicum. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings.

Keywords: µ-XRF, trace element, precious coral, Paracorallium japonicum

Procedia PDF Downloads 443
2520 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition

Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher

Abstract:

Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.

Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication

Procedia PDF Downloads 300
2519 Second Representation of Modules over Commutative Rings

Authors: Jawad Abuhlail, Hamza Hroub

Abstract:

Let R be a commutative ring. Representation theory studies the representation of R-modules as (possibly finite) sums of special types of R-submodules. Here we are interested in a class of R-modules between the class of semisimple R-modules and the class of R-modules that can be written as (possibly finite) sums of secondary R-submodules (we know that every simple R-submodule is secondary). We investigate R-modules which can be written as (possibly finite) sums of second R-submodules (we call those modules second representable). Moreover, we investigate the class of (main) second attached prime ideals related to a module with such representation. We provide sufficient conditions for an R-module M to get a (minimal) second representation. We also found the collection of second attached prime ideals for some types of second representable R-modules, in particular within the class of injective R-modules. As we know that every simple R-submodule is second and every second R-submodule is secondary, we can see the importance of the second representable R-module.

Keywords: lifting modules, second attached prime ideals, second representations, secondary representations, semisimple modules, second submodules

Procedia PDF Downloads 193
2518 Enhancing Health Information Management with Smart Rings

Authors: Bhavishya Ramchandani

Abstract:

A little electronic device that is worn on the finger is called a smart ring. It incorporates mobile technology and has features that make it simple to use the device. These gadgets, which resemble conventional rings and are usually made to fit on the finger, are outfitted with features including access management, gesture control, mobile payment processing, and activity tracking. A poor sleep pattern, an irregular schedule, and bad eating habits are all part of the problems with health that a lot of people today are facing. Diets lacking fruits, vegetables, legumes, nuts, and whole grains are common. Individuals in India also experience metabolic issues. In the medical field, smart rings will help patients with problems relating to stomach illnesses and the incapacity to consume meals that are tailored to their bodies' needs. The smart ring tracks all bodily functions, including blood sugar and glucose levels, and presents the information instantly. Based on this data, the ring generates what the body will find to be perfect insights and a workable site layout. In addition, we conducted focus groups and individual interviews as part of our core approach and discussed the difficulties they're having maintaining the right diet, as well as whether or not the smart ring will be beneficial to them. However, everyone was very enthusiastic about and supportive of the concept of using smart rings in healthcare, and they believed that these rings may assist them in maintaining their health and having a well-balanced diet plan. This response came from the primary data, and also working on the Emerging Technology Canvas Analysis of smart rings in healthcare has led to a significant improvement in our understanding of the technology's application in the medical field. It is believed that there will be a growing demand for smart health care as people become more conscious of their health. The majority of individuals will finally utilize this ring after three to four years when demand for it will have increased. Their daily lives will be significantly impacted by it.

Keywords: smart ring, healthcare, electronic wearable, emerging technology

Procedia PDF Downloads 64
2517 Prime Graphs of Polynomials and Power Series Over Non-Commutative Rings

Authors: Walaa Obaidallah Alqarafi, Wafaa Mohammed Fakieh, Alaa Abdallah Altassan

Abstract:

Algebraic graph theory is defined as a bridge between algebraic structures and graphs. It has several uses in many fields, including chemistry, physics, and computer science. The prime graph is a type of graph associated with a ring R, where the vertex set is the whole ring R, and two vertices x and y are adjacent if either xRy=0 or yRx=0. However, the investigation of the prime graph over rings remains relatively limited. The behavior of this graph in extended rings, like R[x] and R[[x]], where R is a non-commutative ring, deserves more attention because of the wider applicability in algebra and other mathematical fields. To study the prime graphs over polynomials and power series rings, we used a combination of ring-theoretic and graph-theoretic techniques. This paper focuses on two invariants: the diameter and the girth of these graphs. Furthermore, the work discusses how the graph structures change when passing from R to R[x] and R[[x]]. In our study, we found that the set of strong zero-divisors of ring R represents the set of vertices in prime graphs. Based on this discovery, we redefined the vertices of prime graphs using the definition of strong zero divisors. Additionally, our results show that although the prime graphs of R[x] and R[[x]] are comparable to the graph of R, they have different combinatorial characteristics since these extensions contain new strong zero-divisors. In particular, we find conditions in which the diameter and girth of the graphs, as they expand from R to R[x] and R[[x]], do not change or do change. In conclusion, this study shows how extending a non-commutative ring R to R[x] and R[[x]] affects the structure of their prime graphs, particularly in terms of diameter and girth. These findings enhance the understanding of the relationship between ring extensions and graph properties.

Keywords: prime graph, diameter, girth, polynomial ring, power series ring

Procedia PDF Downloads 18
2516 Characterization of Number of Subgroups of Finite Groups

Authors: Khyati Sharma, A. Satyanarayana Reddy

Abstract:

The topic of how many subgroups exist within a certain finite group naturally arises in the study of finite groups. Over the years, different researchers have investigated this issue from a variety of angles. The significant contributions of the key mathematicians over the time have been summarized in this article. To this end, we classify finite groups into three categories viz. (a) Groups for which the number of subgroups is less than |G|, (b) equals to |G|, and finally, (c) greater than |G|. Because every element of a finite group generates a cyclic subgroup, counting cyclic subgroups is the most important task in this endeavor. A brief survey on the number of cyclic subgroups of finite groups is also conducted by us. Furthermore, we also covered certain arithmetic relations between the order of a finite group |G| and the number of its distinct cyclic subgroups |C(G)|. In order to provide pertinent context and possibly reveal new novel areas of potential research within the field of research on finite groups, we finally pose and solicit a few open questions.

Keywords: abstract algebra, cyclic subgroup, finite group, subgroup

Procedia PDF Downloads 120
2515 Search for APN Permutations in Rings ℤ_2×ℤ_2^k

Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens

Abstract:

Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.

Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design

Procedia PDF Downloads 159
2514 High Frequency Rotary Transformer Used in Synchronous Motor/Generator of Flywheel Energy Storage System

Authors: J. Lu, H. Li, F. Cole

Abstract:

This paper proposes a high-frequency rotary transformer (HFRT) for a separately excited synchronous machine (SESM) used in a flywheel energy storage system. The SESM can eliminate and reduce rare earth permanent magnet (REPM) usage and provide a better performance in renewable energy systems. However, the major drawback of such SESM is the necessity of brushes and slip rings to supply the field current, which increases the maintenance cost and operation reliability. To overcome these problems, an HFRT integrated with SiC semiconductor devices can replace brushes and slip rings in the SESM. The proposed HFRT features a high-frequency magnetic ferrite for both the stationary part as the transformer primary and the rotating part as the transformer secondary, as well as an air gap, allowing safe operation at high rotational speeds. Hence, this rotary transformer can enable the adoption of a wound rotor synchronous machine (WRSM). The HFRT, working at over 100kHz operating frequency, exhibits excellent performance of power efficiency and significant size reduction. The experimental validations to support the theoretical findings have been provided.

Keywords: brushes and slip rings, flywheel energy storage, high frequency rotary transformer, separately excited synchronous machine

Procedia PDF Downloads 42
2513 Rings Characterized by Classes of Rad-plus-Supplemented Modules

Authors: Manoj Kumar Patel

Abstract:

In this paper, we introduce and give various properties of weak* Rad-plus-supplemented and cofinitely weak* Rad-plus-supplemented modules over some special kinds of rings, in particular, artinian serial ring and semiperfect ring. Also prove that ring R is artinian serial if and only if every right and left R-module is weak* Rad-plus-supplemented. We provide the counter example which proves that weak* Rad-plus-supplemented module is the generalization of plus-supplemented and Rad-plus-supplemented modules. Furthermore, as an application of above finding results of this research article, our main focus is to characterized the semisimple ring, artinian principal ideal ring, semilocal ring, semiperfect ring, perfect ring, commutative noetherian ring and Dedekind domain in terms of weak* Rad-plus-supplemented module.

Keywords: cofinitely weak* Rad-plus-supplemented module , Dedekind domain, Rad-plus-supplemented module, semiperfect ring

Procedia PDF Downloads 261
2512 Mathematical modeling of the calculation of the absorbed dose in uranium production workers with the genetic effects.

Authors: P. Kazymbet, G. Abildinova, K.Makhambetov, M. Bakhtin, D. Rybalkina, K. Zhumadilov

Abstract:

Conducted cytogenetic research in workers Stepnogorsk Mining-Chemical Combine (Akmola region) with the study of 26341 chromosomal metaphase. Using a regression analysis with program DataFit, version 5.0, dependence between exposure dose and the following cytogenetic exponents has been studied: frequency of aberrant cells, frequency of chromosomal aberrations, frequency of the amounts of dicentric chromosomes, and centric rings. Experimental data on calibration curves "dose-effect" enabled the development of a mathematical model, allowing on data of the frequency of aberrant cells, chromosome aberrations, the amounts of dicentric chromosomes and centric rings calculate the absorbed dose at the time of the study. In the dose range of 0.1 Gy to 5.0 Gy dependence cytogenetic parameters on the dose had the following equation: Y = 0,0067е^0,3307х (R2 = 0,8206) – for frequency of chromosomal aberrations; Y = 0,0057е^0,3161х (R2 = 0,8832) –for frequency of cells with chromosomal aberrations; Y =5 Е-0,5е^0,6383 (R2 = 0,6321) – or frequency of the amounts of dicentric chromosomes and centric rings on cells. On the basis of cytogenetic parameters and regression equations calculated absorbed dose in workers of uranium production at the time of the study did not exceed 0.3 Gy.

Keywords: Stepnogorsk, mathematical modeling, cytogenetic, dicentric chromosomes

Procedia PDF Downloads 480
2511 Modeling of the Dynamic Characteristics of a Spindle with Experimental Validation

Authors: Jhe-Hao Huang, Kun-Da Wu, Wei-Cheng Shih, Jui-Pin Hung

Abstract:

This study presented the investigation on the dynamic characteristics of a spindle tool system by experimental and finite element modeling approaches. As well known facts, the machining stability is greatly determined by the dynamic characteristics of the spindle tool system. Therefore, understanding the factors affecting dynamic behavior of a spindle tooling system is a prerequisite in dominating the final machining performance of machine tool system. To this purpose, a physical spindle unit was employed to assess the dynamic characteristics by vibration tests. Then, a three-dimensional finite element model of a high-speed spindle system integrated with tool holder was created to simulate the dynamic behaviors. For modeling the angular contact bearings, a series of spring elements were introduced between the inner and outer rings. The spring constant can be represented by the contact stiffness of the rolling bearing based on Hertz theory. The interface characteristic between spindle nose and tool holder taper can be quantified from the comparison of the measurements and predictions. According to the results obtained from experiments and finite element predictions, the vibration behavior of the spindle is dominated by the bending deformation of the spindle shaft in different modes, which is further determined by the stiffness of the bearings in spindle housing. Also, the spindle unit with tool holder shows a different dynamic behavior from that of spindle without tool holder. This indicates the interface property between tool holder and spindle nose plays an dominance on the dynamic characteristics the spindle tool system. Overall, the dynamic behaviors the spindle with and without tool holder can be successfully investigated through the finite element model proposed in this study. The prediction accuracy is determined by the modeling of the rolling interface of ball bearings in spindles and the interface characteristics between tool holder and spindle nose. Besides, identifications of the interface characteristics of a ball bearing and spindle tool holder are important for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: contact stiffness, dynamic characteristics, spindle, tool holder interface

Procedia PDF Downloads 298
2510 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 192
2509 The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation

Authors: Abdulmajid Mukhtar Afat

Abstract:

This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.

Keywords: finite automata, subset construction, DFA, NFA

Procedia PDF Downloads 426
2508 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind

Authors: Melusi Khumalo, Anastacia Dlamini

Abstract:

In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.

Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations

Procedia PDF Downloads 377
2507 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results

Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif

Abstract:

This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.

Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence

Procedia PDF Downloads 497