Search results for: face skin cancer
5684 Retrospective Analysis of Facial Skin Cancer Patients Treated in the Department of Oral and Maxillofacial Surgery Kiel
Authors: Abdullah Saeidi, Aydin Gülses, Christan Flörke
Abstract:
Skin cancer of the face region is the most common type of malignancy and surgical excision is the preferred approach. However, the clinical long term results reported in the literature are still controversial. Objectives: To describe; 1. Demographical characteristics 2. Affected site, distribution and TNM classification regarding tumor type 3. Surgical aspects • Surgical removal: excision principles, safety margins, the need for secondary resection, primary reconstruction/ defect closure, anesthesia protocol, duration of hospital stay (if any) • Secondary intervention for defect closure/reconstruction: Flap technique, anesthesia protocol, duration of hospital stay (if any), postoperative wound management etc. 4. Tumor recurrences 5. Clinical outcomes 6. Studying the possible therapy approach throw Biostatistical relation and correlation between multiple Histological, diagnostics and clinical Faktors. following surgical ablation of the skin cancer of the head and neck region. Methods: Selection and statistical analysis of medical records of patients who had admitted to the Department of Oral and Maxillofacial Surgery, Universitätsklinikum Schleswig Holstein, Campus Kiel during the period of 2015-2019 will be retrospectively evaluated. Data will be collected via ORBIS Information-Management-System (ORBIS AG, Saarbrücken, Germany).Keywords: non melanoma skin cancer, face skin cancer, skin reconstruction, non melanoma skin cancer recurrence, non melanoma skin cancer metastases
Procedia PDF Downloads 1065683 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 1485682 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1285681 New Approach for Melanoma Skin Cancer Controled Releasing Drugs for Neutron Capture Therapy: A Review
Authors: Lucas Bernardes Naves, Luis Almeida
Abstract:
The paper includes a review concerning the use of some composites including poly(lactide-co-glycolide) (PGLA), zeolite and Gadopentetic acid (Gd-DTPA) loaded chitosan nanoparticles (Gd-nanoCPs) in order to establish a new alternative for the treatment of Melanoma Skin Cancer. The main goal of this paper it to make a review of what scientist have done in the last few years, as well as to propose a less invasive therapy for skin cancer, by using Hydrocolloid, based on PLGA coated with Gd-nanoCPs for Neutron Capture Therapy.Keywords: cancer therapy, dressing polymers, melanoma, wound healing
Procedia PDF Downloads 4925680 A Molecular Modelling Approach for Identification of Lead Compound from Rhizomes of Glycosmis Pentaphylla for Skin Cancer Treatment
Authors: Rahul Shrivastava, Manish Tripathi, Mohmmad Yasir, Shailesh Singh
Abstract:
Life style changes and depletion in atmospheric ozone layer in recent decades lead to increase in skin cancer including both melanoma and nonmelanomas. Natural products which were obtained from different plant species have the potential of anti skin cancer activity. In regard of this, present study focuses the potential effect of Glycosmis pentaphylla against anti skin cancer activity. Different Phytochemical constituents which were present in the roots of Glycosmis pentaphylla were identified and were used as ligands after sketching of their structures with the help of ACD/Chemsketch. These ligands are screened for their anticancer potential with proteins which are involved in skin cancer effects with the help of pyrx software. After performing docking studies, results reveal that Noracronycine secondary metabolite of Glycosmis pentaphylla shows strong affinity of their binding energy with Ribosomal S6 Kinase 2 (2QR8) protein. Ribosomal S6 Kinase 2 (2QR8) has an important role in the cell proliferation and transformation mediated through by N-terminal kinase domain and was induced by the tumour promoters such as epidermal growth factor. It also plays a key role in the neoplastic transformation of human skin cells and in skin cancer growth. Noracronycine interact with THR-493 and MET-496 residue of Ribosomal S6 Kinase 2 protein with binding energy ΔG = -8.68 kcal/mole. Thus on the basis of this study we can say that Noracronycine which present in roots of Glycosmis pentaphylla can be used as lead compound against skin cancer.Keywords: glycosmis pentaphylla, pyrx, ribosomal s6 kinase, skin cancer
Procedia PDF Downloads 3035679 Inhibitory Effect of 13-Butoxyberberine Bromide on Metastasis of Skin Cancer A431 Cells
Authors: Phuriwat Laomethakorn, Siritron Samosorn, Ramida Watanapokasin
Abstract:
Cancer metastasis is the major cause of cancer-related death. Therefore searching for a compound that could inhibit cancer metastasis is necessary. 13-Butoxyberberine bromide is a berberine derivative that has not been reported an anti-metastatic effect on skin cancer cells. This study aimed to investigate the anti-metastatic effect of 13-butoxyberberine bromide on skin cancer A431 cells. The effect of 13-butoxyberberine bromide on A431 cell viability was examined by MTT assay. Suppression of cell migration and invasion in A431 cells were determined by wound healing assay, transwell migration assay, and transwell invasion assay. Metastasis proteins were determined by western blotting. The results demonstrated that 13-butoxyberberine bromide decreased A431 cell viability in a dose-dependent manner. In addition, sub-toxic concentrations of 13-butoxyberberine bromide suppressed cell migration and invasion in A431 cells. In addition, 13-butoxyberberine bromide showed anti-metastatic effects by down-regulated MMP-2 and MMP-9 expression. These findings may be useful in the development of 13-butoxyberberine bromide as an anti-metastatic drug in the future.Keywords: 13-butoxyberberine bromide, metastasis, skin cancer, MMP
Procedia PDF Downloads 1045678 Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study
Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa
Abstract:
Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.Keywords: non melanoma skin cancer, Hail Region, histopathology, BCC
Procedia PDF Downloads 1585677 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 355676 Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin
Authors: Kemal Polat
Abstract:
In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not.Keywords: k-NN classifier, skin or non-skin classification, RGB values, classification
Procedia PDF Downloads 2485675 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4625674 Non-melanoma Nasal Skin Cancer: Literature Review
Authors: Geovanna dos Santos Romeiro, Polintia Rayza Brito da Silva, Luis Henrique Moura, Izadora Moreira Do Amaral, Marília Vitória Pinto Milhomem
Abstract:
Introduction: The nose is one of the most likely sites for the appearance of malignancy on the face. This can be associated with its unique position of exposure to environmental damage, lack of photoprotection and because it is an area susceptible to greater sun exposure. It is already known that the most common type of nasal tumor is basal cell carcinoma. Squamous cell carcinoma is less common but considerably more aggressive, with a tendency to grow rapidly and metastasize. Nasal skin cancer can have a good prognosis, regardless of the type of treatment chosen, i.e., surgery, radiotherapy or electrodissection. However, tumors that are not diagnosed and treated quickly can be harmful and have a greater chance of metastasizing. When curative surgery is performed, therapies and reconstructive surgical procedures are usually required. Objective: The objective is to review the literature on nasal skin tumors and their types and specific locations. Forty-four articles published in Pubmed related to the location of skin cancer in the specific nasal areas region were analyzed. Twelve were excluded for being prior to the year 2000, three with inconclusive results, and one with unbiased conclusions. Results and Conclusion: Regarding the prevalence of types of nasal tumors, basal cell carcinoma comprises the majority, occurring predominantly in the ala, tip and root; squamous cell carcinoma, on the other hand, is more common in the lateral borders and columella. Even so, 2 articles report that the prevalence of metastasis has a higher incidence in squamous cell carcinomas. All of this points to the importance of early location, including regions that are often overlooked in the examination if the patient is wearing glasses. This topic needs further investigation for a greater correlation between anatomy and clinical-surgical implications.Keywords: skin cancer, melanoma, non-melanoma, surgery
Procedia PDF Downloads 525673 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 815672 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.Keywords: call center agents, fatigue, skin color detection, face recognition
Procedia PDF Downloads 2945671 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics
Authors: Neha Singh
Abstract:
The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits
Procedia PDF Downloads 2615670 Improvements in OpenCV's Viola Jones Algorithm in Face Detection–Skin Detection
Authors: Jyoti Bharti, M. K. Gupta, Astha Jain
Abstract:
This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved.Keywords: face detection, Viola Jones, false positives, OpenCV
Procedia PDF Downloads 4065669 Overview and Pathophysiology of Radiation-Induced Breast Changes as a Consequence of Radiotherapy Toxicity
Authors: Monika Rezacova
Abstract:
Radiation-induced breast changes are a consequence of radiotherapy toxicity over the breast tissues either related to targeted breast cancer treatment or other thoracic malignancies (eg. lung cancer). This study has created an overview of different changes and their pathophysiology. The main conditions included were skin thickening, interstitial oedema, fat necrosis, dystrophic calcifications, skin retractions, glandular atrophy, breast fibrosis and radiation induced breast cancer. This study has performed focused literature search through multiple databases including pubmed, medline and embase. The study has reviewed English as well as non English publications. As a result of the literature the study provides comprehensive overview of radiation-induced breast changes and their pathophysiology with small focus on new development and prevention.Keywords: radiotherapy toxicity, breast tissue changes, breast cancer treatment, radiation-induced breast changes
Procedia PDF Downloads 1595668 Improved Skin Detection Using Colour Space and Texture
Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina
Abstract:
Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model.Keywords: skin detection, YCbCr, GLCM, texture, human skin
Procedia PDF Downloads 4595667 Protective Effect of Germinated Fenugreek Seeds on Keratoachantoma Cancer Skin
Authors: Zahra Sokar, Sara Oufquir, Brahim Eddafali, Abderrahman Chait
Abstract:
Fenugreek is one of the oldest plants used in traditional herbal medicine. Several studies have demonstrated the anticancer effects of seeds by inhibiting the proliferation, angiogenesis, invasion and metastasis of various cancers. While there is plenty of research demonstrating the antineoplastic effects of dormant seeds, little is known about the potential of sprouts in fighting cancer. Therefore, we propose to study the chemoprotective effect of germinating fenugreek seeds on keratoacanthoma skin cancer induced by cutaneous exposure to DMA/Croton oil in mice. The results obtained show that oral administration of 250 and 500 mg/kg aqueous sprout seed extract reduces the incidence, rate, volume, and tumor weight in a very significant manner. Histological examination revealed that mice treated with 250 mg/kg showed strong inhibition of squamous cell carcinoma formation with thickening of the epithelial layer and mild acanthosis and hyperkeratosis. A dose of 500 mg/kg prevented invasion and the occurrence of hyperkeratosis. Fenugreek sprouts appear to be a promising natural product for preventing keratoacanthoma skin cancer. Nevertheless, further studies in the same field need to be developed to evaluate the antineoplastic potential of germinated seeds.Keywords: anticancer, fenugreek, keratoacanthoma, sprouts
Procedia PDF Downloads 775666 Analysis of Tactile Perception of Textiles by Fingertip Skin Model
Authors: Izabela L. Ciesielska-Wrόbel
Abstract:
This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles.Keywords: fingertip skin models, finite element models, modelling of textiles, sensation of textiles through the skin
Procedia PDF Downloads 4655665 Methotrexate Associated Skin Cancer: A Signal Review of Pharmacovigilance Center
Authors: Abdulaziz Alakeel, Abdulrahman Alomair, Mohammed Fouda
Abstract:
Introduction: Methotrexate (MTX) is an antimetabolite used to treat multiple conditions, including neoplastic diseases, severe psoriasis, and rheumatoid arthritis. Skin cancer is the out-of-control growth of abnormal cells in the epidermis, the outermost skin layer, caused by unrepaired DNA damage that triggers mutations. These mutations lead the skin cells to multiply rapidly and form malignant tumors. The aim of this review is to evaluate the risk of skin cancer associated with the use of methotrexate and to suggest regulatory recommendations if required. Methodology: Signal Detection team at Saudi Food and Drug Authority (SFDA) performed a safety review using National Pharmacovigilance Center (NPC) database as well as the World Health Organization (WHO) VigiBase, alongside with literature screening to retrieve related information for assessing the causality between skin cancer and methotrexate. The search conducted in July 2020. Results: Four published articles support the association seen while searching in literature, a recent randomized control trial published in 2020 revealed a statistically significant increase in skin cancer among MTX users. Another study mentioned methotrexate increases the risk of non-melanoma skin cancer when used in combination with immunosuppressant and biologic agents. In addition, the incidence of melanoma for methotrexate users was 3-fold more than the general population in a cohort study of rheumatoid arthritis patients. The last article estimated the risk of cutaneous malignant melanoma (CMM) in a cohort study shows a statistically significant risk increase for CMM was observed in MTX exposed patients. The WHO database (VigiBase) searched for individual case safety reports (ICSRs) reported for “Skin Cancer” and 'Methotrexate' use, which yielded 121 ICSRs. The initial review revealed that 106 cases are insufficiently documented for proper medical assessment. However, the remaining fifteen cases have extensively evaluated by applying the WHO criteria of causality assessment. As a result, 30 percent of the cases showed that MTX could possibly cause skin cancer; five cases provide unlikely association and five un-assessable cases due to lack of information. The Saudi NPC database searched to retrieve any reported cases for the combined terms methotrexate/skin cancer; however, no local cases reported up to date. The data mining of the observed and the expected reporting rate for drug/adverse drug reaction pair is estimated using information component (IC), a tool developed by the WHO Uppsala Monitoring Centre to measure the reporting ratio. Positive IC reflects higher statistical association, while negative values translated as a less statistical association, considering the null value equal to zero. Results showed that a combination of 'Methotrexate' and 'Skin cancer' observed more than expected when compared to other medications in the WHO database (IC value is 1.2). Conclusion: The weighted cumulative pieces of evidence identified from global cases, data mining, and published literature are sufficient to support a causal association between the risk of skin cancer and methotrexate. Therefore, health care professionals should be aware of this possible risk and may consider monitoring any signs or symptoms of skin cancer in patients treated with methotrexate.Keywords: methotrexate, skin cancer, signal detection, pharmacovigilance
Procedia PDF Downloads 1145664 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 865663 Penetration Depth Study of Linear Siloxanes through Human Skin
Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska
Abstract:
Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation
Procedia PDF Downloads 4015662 Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation
Authors: SunWoo Lee, TaeBum Lee, YoonHwa Park, YooJeong Kim
Abstract:
Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment.Keywords: depigmentation, lentigine, quality switched ruby laser, skin color
Procedia PDF Downloads 2515661 Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B
Authors: Maomao Cao
Abstract:
Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk.Keywords: cross-sectional study, fish intake, liver cancer, risk factor
Procedia PDF Downloads 2735660 Development and Characterization of Topical 5-Fluorouracil Solid Lipid Nanoparticles for the Effective Treatment of Non-Melanoma Skin Cancer
Authors: Sudhir Kumar, V. R. Sinha
Abstract:
Background: The topical and systemic toxicity associated with present nonmelanoma skin cancer (NMSC) treatment therapy using 5-Fluorouracil (5-FU) make it necessary to develop a novel delivery system having lesser toxicity and better control over drug release. Solid lipid nanoparticles offer many advantages like: controlled and localized release of entrapped actives, nontoxicity, and better tolerance. Aim:-To investigate safety and efficacy of 5-FU loaded solid lipid nanoparticles as a topical delivery system for the treatment of nonmelanoma skin cancer. Method: Topical solid lipid nanoparticles of 5-FU were prepared using Compritol 888 ATO (Glyceryl behenate) as lipid component and pluronic F68 (Poloxamer 188), Tween 80 (Polysorbate 80), Tyloxapol (4-(1,1,3,3-Tetramethylbutyl) phenol polymer with formaldehyde and oxirane) as surfactants. The SLNs were prepared with emulsification method. Different formulation parameters viz. type and ratio of surfactant, ratio of lipid and ratio of surfactant:lipid were investigated on particle size and drug entrapment efficiency. Results: Characterization of SLNs like–Transmission Electron Microscopy (TEM), Differential Scannig calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Particle size determination, Polydispersity index, Entrapment efficiency, Drug loading, ex vivo skin permeation and skin retention studies, skin irritation and histopathology studies were performed. TEM results showed that shape of SLNs was spherical with size range 200-500nm. Higher encapsulation efficiency was obtained for batches having higher concentration of surfactant and lipid. It was found maximum 64.3% for SLN-6 batch with size of 400.1±9.22 nm and PDI 0.221±0.031. Optimized SLN batches and marketed 5-FU cream were compared for flux across rat skin and skin drug retention. The lesser flux and higher skin retention was obtained for SLN formulation in comparison to topical 5-FU cream, which ensures less systemic toxicity and better control of drug release across skin. Chronic skin irritation studies lacks serious erythema or inflammation and histopathology studies showed no significant change in physiology of epidermal layers of rat skin. So, these studies suggest that the optimized SLN formulation is efficient then marketed cream and safer for long term NMSC treatment regimens. Conclusion: Topical and systemic toxicity associated with long-term use of 5-FU, in the treatment of NMSC, can be minimized with its controlled release with significant drug retention with minimal flux across skin. The study may provide a better alternate for effective NMSC treatment.Keywords: 5-FU, topical formulation, solid lipid nanoparticles, non melanoma skin cancer
Procedia PDF Downloads 5165659 Rearrangement and Depletion of Human Skin Folate after UVA Exposure
Authors: Luai Z. Hasoun, Steven W. Bailey, Kitti K. Outlaw, June E. Ayling
Abstract:
Human skin color is thought to have evolved to balance sufficient photochemical synthesis of vitamin D versus the need to protect not only DNA but also folate from degradation by ultraviolet light (UV). Although the risk of DNA damage and subsequent skin cancer is related to light skin color, the effect of UV on skin folate of any species is unknown. Here we show that UVA irradiation at 13 mW/cm2 for a total exposure of 187 J/cm2 (similar to a maximal daily equatorial dose) induced a significant loss of total folate in epidermis of ex vivo white skin. No loss was observed in black skin samples, or in the dermis of either color. Interestingly, while the concentration of 5 methyltetrahydrofolate (5-MTHF) fell in white epidermis, a concomitant increase of tetrahydrofolic acid was found, though not enough to maintain the total pool. These results demonstrate that UVA indeed not only decreases folate in skin, but also rearranges the pool components. This could be due in part to the reported increase of NADPH oxidase activity upon UV irradiation, which in turn depletes the NADPH needed for 5-MTHF biosynthesis by 5,10-methylenetetrahydrofolate reductase. The increased tetrahydrofolic acid might further support production of the nucleotide bases needed for DNA repair. However, total folate was lost at a rate that could, with strong or continuous enough exposure to ultraviolet radiation, substantially deplete light colored skin locally, and also put pressure on total body stores for individuals with low intake of folate.Keywords: depletion, folate, human skin, ultraviolet
Procedia PDF Downloads 3865658 A Study of Effectiveness of Topical Grapeseed Oil for Reducing Wrinkles on Periorbital Areas in Asian People in Thailand
Authors: Cherish Romina Prajitno, Sunisa Thaichinda
Abstract:
One indicator of facial aging is wrinkles. Not only that, but wrinkles are a key indicator in our world of facial aesthetics. Wrinkles occur where fault lines develop in aging skin. Nowadays, people are more motivated to keep up their appealing and young appearance. Many individuals are seeking a fast recovery time for their aesthetic procedures and are interested in non-invasive techniques that have a proven track record for successful outcomes. The purpose of this study is to see the efficacy of 100% (pure) grapeseed oil for reducing periorbital wrinkles. This study used the split-face, double-blind method, and this treatment was administered for three months at random to fifteen patients, with the grapeseed oil at one side of the face and the other side with the placebo. The main outcome measure was determined by conducting a comparative analysis of the participants' wrinkle results during each visit using the VIsioscan® VC98. Additionally, we evaluated the skin's elasticity and barrier function using the Cutometer® MP 530 and Tewameter® TM300. Furthermore, we administered a satisfaction score questionnaire to the patients in the 12th week. The findings of the study indicate that grapeseed oil exhibited a noteworthy effect in diminishing the appearance of wrinkles in the periorbital region, enhancing the viscoelastic properties of the periorbital skin, and improving the functionality of the skin barrier in the periorbital area.Keywords: periorbital wrinkles, pure grapeseed oil, split-face method
Procedia PDF Downloads 695657 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 795656 The Effect of Endurance Training and Taxol Consumption on Cyclooxygenase-2 and Prostaglandin E2 Levels in the Liver Tissue of Mice with Cervical Cancer
Authors: Alireza Barari, Maryam Firozi-Niyaki, Maryam Kamarlouei
Abstract:
Background: Herbs have a strong anti-cancer effect. Also, exercise is one of several lifestyle factors known to lower the risk of developing cancer. The aim of this study was to investigate the effect of endurance training and taxol on cyclooxygenase-2 and prostaglandin E2 in the liver tissue of mice with cervical cancer. Materials and Methods: In this experimental study, 35 female C57 mice were randomly divided into 5 groups (n=7 in each group): control (healthy), control (cancer), complement (cancer), training-supplementary (cancer) and training (cancer). The implantation of cancerous tumors was performed under the skin of the upper pelvis. The training group completed the endurance training protocol, which included 3 sessions per week, 50 minutes per session, at a speed of 14-18 m/s for six weeks. A dose of 60 mg/kg/day of pure taxol was injected intra peritoneally. The dependent variables of this study were measured 24 hours after the last training session by ELISA. Results: The results showed that the use of taxol and endurance training reduced the levels of cyclooxygenase-2 and prostaglandin E2 in the liver tissues of C57 mice with cervical cancer. Conclusion: Induction of the cancerous tissue in mice with cervical cancer increases the levels of cyclooxygenase-2 and prostaglandin E2 and endurance training along with taxol may reduce these levels.Keywords: cervical cancer, taxol, endurance training, cyclooxygenase-2, prostaglandin E2
Procedia PDF Downloads 2385655 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 586